
QUESTION (HD1001) You refer to Conrad’s F-condition a lot, in lattice
ordered groups G, their generalizations, and in the so called multiplicative ideal
theory; and it confuses me. I keep worrying about a situation in an l.o. group
G where the condition F holds yet for some 0 < a ∈ G we have that for every
n ∈ N there is a set En consisting of pairwise disjoint elements below a. I would
like to see a direct proof or an explicit reference where it is shown that the above
situation cannot occur.

ANSWER. Let us agree to use G for a lattice ordered group. Conrad’s F-
condition for G a lattice ordered group reads: Each 0 < x ∈ G exceeds at most
a finite number of disjoint positive elements.

Here’s the reference: [C]. P. Conrad, Some structure theorems for lattice
ordered groups, Trans. Amer. Math. Soc. 99(1961), 212-240. You can find
it mentioned on page 212 of the paper. Theorems 5.2 and 6.2 of that Conrad
paper and their proofs say the following.
(∗). If G satisfies F then every (strictly) positive element is greater than

or equal to at least one and at most a finite number of mutually disjoint basic
elements.

Let us note that a basic element in G is a strictly positive element b such
that the interval [0, b] is a chain, i.e. for every pair x, y ∈ [0, b], x ≤ y or y ≤ x,

two elements x, y are disjoint if inf(x, y) = 0, i.e., x ∧ y = 0. It is easy to see
that
(∗1): if x ∧ y = 0, 0 < r ≤ x and 0 < s ≤ y then r ∧ s = 0.
(∗2): If x is basic and b1, b2, ..., bn are disjoint then x can be non-disjoint

with at most one of the bi.

(∗3): An element 0 < x ∈ G is non-basic if and only if there are at least two
disjoint positive elements preceding x.

In the condition F the key is the phrase "at most a finite number" which, can
be interpreted to mean that there is a finite number m such that the number of
mutually disjoint elements below x would have to be less than or equal to m.
But as you do not seem to like that interpretation I provide below some proofs
of (∗).

(1). Suppose that 0 < x ∈ G where G satisfies F. By Theorem 5.1 of [C]
x exceeds at least one basic element. This means that if S = {x1, x2, ..., xm}
is a set of mutually disjoint elements then there is correspondingly a set T =
{b1, b2, ..., bn} of mutually disjoint basic elements, where each of bi is less than
or equal to (at least) one xi (cf. (∗1)), where | T |≥| S | . (Call this process
association of basic elements.)

Let x > 0 and let S be the set of mutually disjoint basic elements that are less
than or equal to x. If S is not maximal then there is a strictly positive element
u1 that is disjoint with every member of S and is less than or equal to x. Then
there is a basic element b1 ≤ u1 by [C, Theorem 5.1]. By (∗1) b1 is disjoint
with every member of S. Take S1 = S ∪ {b1}. We can repeat this procedure
to improve S1 to S2 etc. but because of condition F we cannot continue this
procedure of improvements indefinitely. So there is an n such that there is no
improvement on Sn. Obviously Sn is a maximal set of basic elements that are
less than or equal to x. This n is the largest size any set of mutually disjoint
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elements can have. The reason is that if U is another set of mutually disjoint
elements that are less than or equal to x, then by association of basic elements
there is a corresponding set V of basic elements. Every member of V must be
non-disjoint with at least (and hence exactly) one member of Sn for if not and
some v ∈ V is disjoint with every member of Sn then our conclusion that Sn
cannot further be improved, is violated. So, |V | ≤ |Sn|. Since | U |≤| V | we
have the conclusion.

Comment (A). From Proof (1) we can also conclude that there is a set
{x1, x2, ..., xn} of largest size n for some n with xi ≤ x and xi mutually disjoint
and that each of xi is necessarily basic. This was essentially the conclusion
in Griffin’s proof of (1) ⇒ (2) of Theorem 6 of [G]: Griffin, Some results on
v-multiplication rings, Canad. J. Math. 19 (1967) 710-722.

Proof (2). Suppose that G satisfies F and 0 < x ∈ G and suppose that

there is for every n ∈ N a set En = {x
(n)
1 , x

(n)
2 , ..., x

(n)
n } of n mutually disjoint

elements with 0 < x
(n)
i < x. Associate to each En a set Bn = {b

(n)
1 , b

(n)
2 , ..., b

(n)
n }

of mutually disjoint basic elements preceding x, associating exactly one of b
(n)
i

to each of x
(n)
i . Now with Bi we proceed as follows: Bn+1 has one more basic

element than Bn so there is at least one basic element say bn+1 in Bn+1 that is
disjoint with all the elements of Bn. (The previous statement can be established
using (∗2). Alternatively assume that each of the n+ 1 mutually disjoint basic
elements of Bn+1 is non-disjoint with at least one member of Bn. This results
in two disjoint basic elements, x, y, of Bn+1 being non-disjoint with one basic
element z of Bn which is impossible in view of the definition of a basic element.)

Now form Sn+1 = Bn ∪ {bn+1}. Now Bn+2 is larger in size than Sn+1, so
there is at least one basic element bn+2 ∈ Bn+2 such that bn+2 is disjoint with
every element of Sn+1, set Sn+2 = Sn+1∪{bn+2}. This process can be continued
indefinitely to obtain an ascending chain: Bn ⊆ Sn+1 ⊆ Sn+2 ⊆ ... ⊆ Sn+r....

But then S = ∪Sn+i is an infinite set of basic elements below x a contradiction.
Comment (B). Proof (2) contains the answer to your question.
Recall that a basis B of an l.o. group G is a maximal set (in size) of mutually

disjoint elements which are necessarily basic. According to [C, Theorem 5.1] G

has a basis if and only if every x > 0 exceeds at least one basic element. The
proof of (2) above can be used to prove the following result.

Theorem C. Let G be a lattice ordered group with a basis. If there is
0 < x ∈ G such that for each n there is a set En consisting of n mutually
disjoint elements preceding x then x exceeds infinitely many disjoint elements.

I have a feeling that the assumption about G having a basis, in the above
theorem, is not necessary. But cannot come up with a proof at present.

Let’s note that by the condition F the basic elements are ubiquitous in that
every strictly positive element exceeds at least one. This observation is at the
base of the following proof.

Proof (3). Let S be the set of sets of mutually disjoint basic elements pre-
ceding x. Then S is not empty, because of F and ∗3. Being a set of sets S can
be partially ordered by inclusion. Let C be a chain of members of S, and let
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T =
⋃

A∈C

A. Then every element of T , being in some member of C, precedes x

and is a basic element. Also for any two distinct x, y ∈ T, x, y belong to some
member of C and hence are disjoint. Thus the union of each chain of S is in
S. Hence by Zorn’s Lemma there is a maximal set U in S. By condition F, U

must be finite; say U = {x1, x2, ..., xn}. This establishes the result.
Remark D. Proof (3) is interesting but it does not work if we replace "mutu-

ally disjoint basic elements" by mutually disjoint elements". Before the example
let me point out that the clue is that a singleton can pass as a set of mutually
disjoint elements.

Example E. Note that the group of divisibility G(D) = {a
b
D : a, b ∈ D\{0}}

of any GCD domain D is a lattice ordered group, with the order defined
by a

b
D ≥ c

d
D if and only if a

b
D ⊆ c

d
D see e.g. page 5 of [A]: D.D. An-

derson, GCD domains, Gauss’ lemma, and contents of polynomials. Non-
Noetherian commutative ring theory, 1—31, Math. Appl., 520, Kluwer Acad.
Publ., Dordrecht, 2000. Note that the strictly positive elements of G(D) are
the nonzero integral principal ideals of D, different from D. Also "precedes"
turns into contains and positive powers of primes are basic elements. Let us
take Z the ring of integers as our GCD domain and consider x = 2252 in Z.
Then S = {{(2252)}, {(252)}, {(225)}{(22)}, {(52)}, {(22), (52)}, {(2)}, {(5)},
{(2), (52)}, {(22), (5)}, {(2), (5)}}. In this case, while S includes legitimate max-
imal elements: {(22), (52)}, {(2), (52)}, {(22), (5)}, {(2), (5)} it also includes
{(2252)}, {(252)}, {(225)} which fit the definition of maximal elements.

Notes:
(1) Warren McGovern who read the above question and answer has come up

with the following result.
Proposition E. Suppose G is an l-group and 0 < x ∈ G. If x has the

property that for each natural n, there is a set En consisting of n pairwise
disjoint elements, then x exceeds an infinite set of pairwise disjoint elements.

Proof. Suppose 0 < x ∈ G has the property that for each natural n, there is
a set En consisting of n pairwise disjoint elements. However, suppose by way of
contradiction that x does not exceed an infinite set of pairwise disjoint elements.
Let H be the convex l-subgroup generated by x. Recall that H = {g ∈ G : ∃n
∈ N such that | g |≤ nx}.

I claim that H has a basis. If not, then there is a 0 < y ∈ H which does not
exceed a basic element by Theorem 5.1 of Conrad. Now, Conrad’s argument in
the proof of Theorem 5.2 yields that y exceeds an infinite set of elements, say
{yi}i∈N , which are pairwise disjoint. Choose n ∈ N such that y ≤ nx. Now for
each i, yi ≤ y ≤ nx. By the Riesz Decomposition, yi = yi1 + ...+ yin such that
0 ≤ yij ≤ x. The collection {yi1}i∈N is an infinite set of elements which are
pairwise disjoint and beneath x; a contradiction. Consequently, H has a basis.

Now, the fact that x satisfies the property in the hypothesis with respect to
G implies that it satisfies the property in the hypothesis with respect to H. But
H has a basis and so by Theorem C, we get that x exceeds an infinite pairwise
disjoint set of elements in H, and hence in G.

(2) For the information of general readers, Conrad’s F-condition yields sim-
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ilar results for Riesz groups as can be seen in a paper by Mott, Rashid and
Zafrullah [MRZ, J. Group Theory, 11(1)(2008), 23-41], with applications in ring
theory as can be seen in recent papers [Z, J. Pure Appl. Algebra 214(2010),
654-657], [DZ, J. Pure Appl. Algebra, 214 (2010), 2087-2091] and in a paper
to appear in Comm. Algebra [DZ, t-Schreier domains]. (Preprints of the above
mentioned papers can be found at: http://www.lohar.com/mit.html

(3) Remark D and Example E must be heeded. If you see such an erroneous
application of Zorn’s Lemma, see if something like Proof (3) can rectify the
error.

(4) I am thankful to Warren McGovern and Yichuan Yang for taking interest,
pointing out typos and errors and pointing to better proofs. I am particularly
grateful to G.M. Bergman for catching a stupid error on my part. (He thinks
he has forgotten all about l.o. groups!)

Muhammad
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