QUESTION: (HD0405) Let there be a family $\{P_{\alpha}; \alpha \in I\}$ of prime ideals of *R* such that:

(1) Each $R_{P_{\alpha}}$ is a valuation domain and $P_{\alpha}R_{P_{\alpha}}$ is divisorial

(2) the family $\{R_{P_{\alpha}} : \alpha \in I\}$ is a family of finite character for *R*

(3) each pair of $\{R_{P_{\alpha}} : \alpha \in I\}$ are independent.

Why for each maximal t-ideal, M, of R there is $\alpha \in I$

such that $M = P_{\alpha}$?

ANSWER: Let me give you a more general answer. To understand the answer you should have a working knowledge of star operations and should pay attention to the following. Recall from [Theorem 1 (6), D.D. Anderson, Star operations induced by overrings, Comm. Algebra 16(12)(1988) 2535-2553] that the star operation * induced by $\{R_{P_a} : a \in I\}$ (of your description) is a star operation of finite character. This means that for any fractional ideal *A* we have $A^* = \cap AD_{P_a}$ and that $A^* = \bigcup \{F^* : \text{where } F \text{ ranges over nonzero finitely}$ generated subideals of A. Now recall that $A_t = \bigcup \{F_v : \text{where } F \text{ ranges over nonzero finitely}$ generated subideals of A and that for any star operation * we have $A^* \subset A_v$. Using this we have $A^* = \bigcup \{F^* \subset F_v : \text{where } F \text{ ranges over nonzero finitely}$ is a star operation of finite character then for each nonzero fractional ideal A we have $A^* \subseteq A_t$.

Proposition. Let there be a family $\{P_{\alpha}; \alpha \in I\}$ of prime t-ideals of *R* such that

 $R = \bigcap \{R_{P_{\alpha}} : \alpha \in I\}$ is of finite character. If *M* is a maximal t-ideal of *R* then $M = P_{\alpha}$ for some $\alpha \in I$.

Proof. Let *M* be a maximal t-ideal and suppose that $M \nsubseteq P_{\alpha}$ for any α . Then $MR_{P_{\alpha}} = R_{P_{\alpha}}$ for all α and so $M^* = \bigcap MR_{P_{\alpha}} = \bigcap R_{P_{\alpha}} = R$. But since * is of finite character,

 $R = M^* \subseteq M_t = M$ a contradiction, whence $M \subseteq P_{\alpha}$ for some α . Now since P_{α} is a prime t-ideal and *M* is a maximal t-ideal we conclude that $M = P_{\alpha}$.

Note that if for a nonzero prime ideal P we have R_P a valuation domain then P is a prime t-ideal [see HD0306]. This gives rise to the following corollary.

Corollary. Let there be a family $\{P_{\alpha}; \alpha \in I\}$ of prime ideals of *R* such that (i) $R_{P_{\alpha}}$ is a valuation domain for each $\alpha \in I$

(ii) $R = \bigcap \{R_{P_{\alpha}} : \alpha \in I\}$ is of finite character. If *M* is a maximal t-ideal of *R* then $M = P_{\alpha}$ for some $\alpha \in I$.

So you see that the conclusion that $M = P_{\alpha}$ for some α holds even in the absence of your condition (3). However, you have to make sure that (2) includes the word **defining** which means that $R = \bigcap R_{P_{\alpha}}$. If you do not, then you run into problems since there are examples of Noetherian domains *R* which are not integrally closed but for which R_P is a discrete rank one valuation domain for each height one prime *P*.

So, for such a Noetherian domain *R* you would have a family $\{P_{\alpha}\}$ of height one prime ideals such that

(1). Each $R_{P_{\alpha}}$ is a valuation domain and $P_{\alpha}R_{P_{\alpha}}$ is divisorial

(2). the family $\{R_{P_{\alpha}} : \alpha \in I\}$ is such that every nonzero nonunit of *R* is a nonunit in only a finite number of $R_{P_{\alpha}}$

(3). each pair of members $\{R_{P_{\alpha}} : \alpha \in I\}$ is independent.

But since $R \neq \bigcap R_{P_a}$, you cannot conclude that every maximal t-ideal of *R* is equal to some P_{α} .

(This question was asked by Mohammad Sakhdari)