
QUESTION: (HD 1210) What should we expect from an ideal A of grade 1
with At = D?

ANSWER: I wrote a short note a while ago. It is sort of incomplete, but
hopefully it will answer your question.

Let D be an integral domain with quotient field K. Let F (D) denote the
set of nonzero fractional ideals of D and denote, for A ∈ F (D), the set D :K
A = {x ∈ K : xA ⊆ D} by A−1. It is well known that for A ∈ F (D), A−1

is a fractional ideal and of course so is Av = (A−1)−1. The function v on
F (D) defined by A �→ Av is called the v-operation (see section 34 of Gilmer
[G]). By an ideal we mean a fractional ideal contained in D. Call two elements
a, b ∈ D\{0} v-coprime if (a, b)v = D. It is easy to show that a, b are v-coprime
if and only if (a, b)−1 = D if and only if aD ∩ bD = abD. This notion started
with the paper of Gilmer and Parker [GP] and is stronger than the notion of
coprimality, as indicated by Zafrullah [Z]. H. Uda , in section 7 of [U] gave an
example of an ideal A such that G(A) = 1 but At = D. The purpose of this
short note is to explore the properties a finitely generated nonzero proper ideal
A must have if Av = D and G(A) = 1. Here G(A) denotes the classical grade
of A and it is known, as shown below, that if A is a nonzero proper ideal in a
Noetherian domain D then Av = D if and only if G(A) ≥ 2. We actually show
that for a nonzero ideal A in D G(A) ≥ 2 if and only if there are two v-coprime
elements a, b ∈ A and that in a so called TV domain (to be defined later) which
generalizes Noetherian domains, G(A) ≥ 2 if and only if A contains a pair of
v-coprime element.

Proposition A. Let A be a nonzero proper ideal in a domain D and let G(A)
denote the classical grade of A. Then G(A) ≥ 2 if and only if A contains a pair
of v-coprime elements.

Let’s now include the tools needed to prove the above proposition, and prove
it. A sequence of elements x1, x2, ..., xn in a ring R is called a regular sequence
or an R-sequence if (a) (x1, x2, ..., xn)R 
= R , (b) x1 is a nonzero divisor on R
and xi is a nonzero divisor on R/(x1,x2, ..., xi−1) for i > 1. The classical grade
of an ideal I is the (maximum) length of an R-sequence in I. I have picked these
notions from Kaplansky’s book [K]. According to Theorem 116 of Kaplansky
[K] x1, x2, ..., xn is an R-sequence on a ring R if and only if for each i < n,
x1, ..., xi is an R-sequence and xi+1, ..., xn is an R-sequence on R/(x1, ..., xi).
So, if x1, x2, ..., xn is an R sequence on R and n ≥ 2, then x1, x2 is an R-
sequence. Now let a, b, ... be an R-sequence on an integral domain D then a is
a nonzero divisor on D/(b) which means that b | ax implies b | x. This in turn
means that if y ∈ aD∩ bD then y ∈ abD which means that aD ∩ bD = abD i.e.
(a, b)v = D. Thus we have the following Lemma

Lemma B. In an integral domain D, the first two elements of every R-
sequence of length > 1 are v-coprime.

Now if I is a proper ideal of D and if I contains a pair of v-coprime elements
a, b. Then as aD ∩ bD = abD we have from b | ax that ax ∈ aD ∩ bD = abD
which means that ax = aby cancelling a from both sides we have b | x. So if
a.b are v-coprime, b | ax implies b | x and so b is a nonzero divisor on D/(a)
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and a, b is an R-sequence in D. Of course by Theorem 116 of [K] again, we can
construct an R-sequence contained in I by selecting x3 ∈ I such that x3 is a
nonzero divisor in D/(a, b) and so on ... . This gives us the following Lemma.

Lemma C. Let I be an ideal of an integral domain D such that I � D. If I
contains a pair of v-coprime elements then G(I) ≥ 2.

The two lemmas above constitute the proof of Proposition A. Next, using
some properties of the v-operation, we indicate what it means to say that for a
proper ideal I of a domain D, G(I) ≥ 2.

Corollary D. Let I be a proper nonzero ideal of an integral domain D. Then
the following are equivalent.

(1) There exist two elements a, b ∈ I such that (a, b)v = D.
(2) There exist two elements a, b ∈ I such that Iv = (a, b)v = D.
(3) There exist two elements a, b ∈ I such that I−1 = (a, b)−1 = D
(4) There exist two elements a, b ∈ I such that (a, b)−1 = D.
(5) There exist two elements a, b ∈ I such that aD ∩ bD = abD.
(6) G(I) ≥ 2.
Proof. (1) ⇒ (2). All we need to note is that if I � D is an ideal

then Iv ⊆ Dv = D and that (a, b) ⊆ I implies (a, b)v ⊆ Iv. So we have
D = (a, b)v ⊆ Iv ⊆ D. Of course (2) ⇒(1) is obvious and (3) ⇔ (2) because for
any nonzero fractional ideal A we have (Av)−1 = A−1 and Av = (A−1)−1 and
for the same reason (1) ⇔ (4). Again (4) and (5) are equivalent because they
are the restatements of each other. That (1) ⇔ (6) is Proposition A.

The "properties" of the v-operation used above can be verified from the
definition or the reader may look up sections 32 and 34 of [G]. However we
provide some introduction here so that the reader does not need to refer to [G]
for minor details.

A star operation ∗ on D is a function ∗ : F (D) → F (D) such that for all
A,B ∈ F (D) and for all 0 
= x ∈ K

(a) (x)∗ = (x) and (xA)∗ = xA∗,
(b) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B, and
(c) (A∗)∗ = A∗.
For A,B ∈ F (D) we define ∗-multiplication by (AB)∗ = (A∗B)∗ = (A∗B∗)∗.

A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗ and a ∗-ideal A is of
finite type if A = B∗ where B is a finitely generated fractional ideal. A star
operation ∗ is said to be of finite character if A∗ =

⋃
{B∗ | 0 
= B is a finitely

generated subideal of A}. For A ∈ F (D) define A−1 = {x ∈ K | xA ⊆ D}
and call A ∈ F (D) ∗-invertible if (AA−1)∗ = D. Clearly every invertible ideal
is ∗-invertible for every star operation ∗. If ∗ is of finite character and A is ∗-
invertible, then A∗ is of finite type. The best known examples of star operations
are the d-operation defined by A �→ Ad = A, the v-operation defined by A �→
Av = (A−1)−1, and the t-operation defined by A �→ At =

⋃
{Bv | 0 
= B is a

finitely generated subideal of A}.
In some integral domains D, such as in Krull domains, given an ideal I and

an element a ∈ I there is an element b ∈ I such that Iv = (a, b)v (see Mott and
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Zafrullah [MZ]). Taking a hint from Theorem 2.2 of Anderson and Zafrullah
[AZ], we state and prove the following result.

Proposition E. Let A be a proper finitely generated ideal of an integral
domain D. Suppose that A contains a nonzero element a which belongs to
at most a finite number of maximal t-ideals. Then G(A) ≥ 2 if and only if
A−1 = D.

Proof. Note that if G(D) ≥ 2 then A−1 = D. So all we need to prove is the
converse. For that let Q1, Q2, ..., Qn be the set of all the maximal t-ideals of D
that contain a. Since A is finitely generated and Av = D we conclude that A is
not contained in any maximal t-idealM ofD. In particular A � Q1∪Q2∪...∪Qn.
Choose b ∈ A\Q1∪Q2∪...∪Qn and proceed as follows. We have (a, b) ⊆ A. Now
for any maximal t-idealM of D we have (a, b)DM = DM = ADM ifM is one of
Qi (because of b) and we have (a, b)DM = DM = ADM if M /∈ {Q1, Q2, ..., Qn}

because of a. Thus we have D =
⋂

M∈t−max(D)

DM =
⋂

M∈t−max(D)

(a, b)DM =

⋂

M∈t−max(D)

ADM which implies that (a, b)v = Av (see Griffin [Gr]) where a, b ∈

A and this by Proposition A means that G(A) ≥ 2.
Corollary F. (1). LetM be a non-maximal maximal t-ideal of D and let x be

a nonzero nonunit element of D\M. If x belongs to at most a finite number of
maximal t-ideals then there exists an element y ∈M such that D = (M,x)t =
(x, y)v, i.e., G(M,x) ≥ 2, if (M,x) is proper. Consequently if M is a maximal
t-ideal in a domain of finite t-character and x is a nonzero nonunit of D with
x ∈ D\M, with (M,x) 
= D then G(M,x) ≥ 2.

(2). Let M be a non-maximal maximal t-ideal of D and let (M,x) 
= D. If
there is a nonzero y ∈ (M,x) such that y is contained in at most a finite number
of maximal t-ideals then G(A) ≥ 2.

Proof. Since D = (M,x)t there exist x1, x2, ..., xn ∈ (M,x) such that
(x1, x2, ..., xn)v = D. Since x ∈ (x1, x2, ..., xn)v we can write (x1, x2, ..., xn)v =
(x1, x2, ..., xn, x)v = D. The ideal (x1, x2, ..., xn, x) meets the requirements of
Proposition E and so there is y ∈ (x1, x2, ..., xn, x) such thatD = (x1, x2, ..., xn)v =
(x1, x2, ..., xn, x)v = (x, y)v. Now as y ∈ (x1, x2, ..., xn, x) and as xi = mi+αix,
where mi ∈ M and αi ∈ D, we have y = m + αx where m ∈ M and α ∈ D.
So we have D = (x1, x2, ..., xn, x)v = (m + αx,x)v = (m,x)v But that means
G(M,x) ≥ 2.

(2) is a direct corollary of Proposition E.
Recall that an integral domain D is a Mori domain if D satisfies ACC on

integral divisorial ideals. So Noetherian domains are Mori domains and it is
well known that a Mori domain is of finite t-character see, e.g., Proposition 1.4
Houston and Zafrullah [HZ] . In [HZ] the authors introduced TV-domains as
those domains whose t-ideals are v-ideals. It was shown in [HZ] that a TV-
domain is of finite t-character; a Mori domain is a TV-domain.

Corollary G. If D is a TV-domain and A is a finitely generated proper
nonzero ideal then A−1 = D if and only if G(A) ≥ 2. Consequently in a Mori
domain (or in a Noetherian domain), for a nonzero proper ideal A, A−1 = D if
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and only if G(A) ≥ 2.
To my knowledge, the above corollary is only known for Noetherian domains.
Corollary H. If A is a nonzero proper ideal of a domain D such that At = D

and G(A) = 1 then there is no nonzero element a in A such that a is contained
in at most a finite number of maximal t-ideals.

Acknowledgements: I corresponded with David Dobbs and Evan Houston
about the above material during September 2012 and recently in December
with David Anderson and Said El-Baghdadi. Please, powers that be, do not
beat them up for responding to my e-mails. As usual mistakes are all mine.

Muhammad Zafrullah Dated: 12-24-2012.
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