QUESTION: (HD 1210) What should we expect from an ideal A of grade 1 with $A_t = D$?

ANSWER: I wrote a short note a while ago. It is sort of incomplete, but hopefully it will answer your question.

Let D be an integral domain with quotient field K. Let F(D) denote the set of nonzero fractional ideals of D and denote, for $A \in F(D)$, the set $D:_K$ $A = \{x \in K : xA \subseteq D\}$ by A^{-1} . It is well known that for $A \in F(D), A^{-1}$ is a fractional ideal and of course so is $A_v = (A^{-1})^{-1}$. The function v on F(D) defined by $A \mapsto A_v$ is called the v-operation (see section 34 of Gilmer [G]). By an ideal we mean a fractional ideal contained in D. Call two elements $a, b \in D \setminus \{0\}$ v-coprime if $(a, b)_v = D$. It is easy to show that a, b are v-coprime if and only if $(a, b)^{-1} = D$ if and only if $aD \cap bD = abD$. This notion started with the paper of Gilmer and Parker [GP] and is stronger than the notion of coprimality, as indicated by Zafrullah [Z]. H. Uda, in section 7 of [U] gave an example of an ideal A such that G(A) = 1 but $A_t = D$. The purpose of this short note is to explore the properties a finitely generated nonzero proper ideal A must have if $A_v = D$ and G(A) = 1. Here G(A) denotes the classical grade of A and it is known, as shown below, that if A is a nonzero proper ideal in a Noetherian domain D then $A_v = D$ if and only if $G(A) \ge 2$. We actually show that for a nonzero ideal A in $D G(A) \ge 2$ if and only if there are two v-coprime elements $a, b \in A$ and that in a so called TV domain (to be defined later) which generalizes Noetherian domains, $G(A) \geq 2$ if and only if A contains a pair of v-coprime element.

Proposition A. Let A be a nonzero proper ideal in a domain D and let G(A) denote the classical grade of A. Then $G(A) \ge 2$ if and only if A contains a pair of v-coprime elements.

Let's now include the tools needed to prove the above proposition, and prove it. A sequence of elements $x_1, x_2, ..., x_n$ in a ring R is called a regular sequence or an R-sequence if (a) $(x_1, x_2, ..., x_n) R \neq R$, (b) x_1 is a nonzero divisor on Rand x_i is a nonzero divisor on $R/(x_1, x_2, ..., x_{i-1})$ for i > 1. The classical grade of an ideal I is the (maximum) length of an R-sequence in I. I have picked these notions from Kaplansky's book [K]. According to Theorem 116 of Kaplansky [K] $x_1, x_2, ..., x_n$ is an R-sequence on a ring R if and only if for each i < n, $x_1, ..., x_i$ is an R-sequence and $x_{i+1}, ..., x_n$ is an R-sequence on $R/(x_1, ..., x_i)$. So, if $x_1, x_2, ..., x_n$ is an R sequence on R and $n \ge 2$, then x_1, x_2 is an Rsequence. Now let a, b, ... be an R-sequence on an integral domain D then a is a nonzero divisor on D/(b) which means that $b \mid ax$ implies $b \mid x$. This in turn means that if $y \in aD \cap bD$ then $y \in abD$ which means that $aD \cap bD = abD$ i.e. $(a, b)_v = D$. Thus we have the following Lemma

Lemma B. In an integral domain D, the first two elements of every R-sequence of length > 1 are v-coprime.

Now if I is a proper ideal of D and if I contains a pair of v-coprime elements a, b. Then as $aD \cap bD = abD$ we have from $b \mid ax$ that $ax \in aD \cap bD = abD$ which means that ax = aby cancelling a from both sides we have $b \mid x$. So if a.b are v-coprime, $b \mid ax$ implies $b \mid x$ and so b is a nonzero divisor on D/(a)

and a, b is an *R*-sequence in *D*. Of course by Theorem 116 of [K] again, we can construct an *R*-sequence contained in *I* by selecting $x_3 \in I$ such that x_3 is a nonzero divisor in D/(a, b) and so on ... This gives us the following Lemma.

Lemma C. Let I be an ideal of an integral domain D such that $I \subsetneq D$. If I contains a pair of v-coprime elements then $G(I) \ge 2$.

The two lemmas above constitute the proof of Proposition A. Next, using some properties of the v-operation, we indicate what it means to say that for a proper ideal I of a domain $D, G(I) \ge 2$.

Corollary D. Let I be a proper nonzero ideal of an integral domain D. Then the following are equivalent.

(1) There exist two elements $a, b \in I$ such that $(a, b)_v = D$.

(2) There exist two elements $a, b \in I$ such that $I_v = (a, b)_v = D$.

(3) There exist two elements $a, b \in I$ such that $I^{-1} = (a, b)^{-1} = D$

(4) There exist two elements $a, b \in I$ such that $(a, b)^{-1} = D$.

(5) There exist two elements $a, b \in I$ such that $aD \cap bD = abD$.

(6) $G(I) \ge 2$.

Proof. (1) \Rightarrow (2). All we need to note is that if $I \subsetneq D$ is an ideal then $I_v \subseteq D_v = D$ and that $(a, b) \subseteq I$ implies $(a, b)_v \subseteq I_v$. So we have $D = (a, b)_v \subseteq I_v \subseteq D$. Of course (2) \Rightarrow (1) is obvious and (3) \Leftrightarrow (2) because for any nonzero fractional ideal A we have $(A_v)^{-1} = A^{-1}$ and $A_v = (A^{-1})^{-1}$ and for the same reason (1) \Leftrightarrow (4). Again (4) and (5) are equivalent because they are the restatements of each other. That (1) \Leftrightarrow (6) is Proposition A.

The "properties" of the v-operation used above can be verified from the definition or the reader may look up sections 32 and 34 of [G]. However we provide some introduction here so that the reader does not need to refer to [G] for minor details.

A star operation * on D is a function $*: F(D) \to F(D)$ such that for all $A, B \in F(D)$ and for all $0 \neq x \in K$

(a) $(x)^* = (x)$ and $(xA)^* = xA^*$,

(b) $A \subseteq A^*$ and $A^* \subseteq B^*$ whenever $A \subseteq B$, and

(c)
$$(A^*)^* = A^*$$

For $A, B \in F(D)$ we define *-multiplication by $(AB)^* = (A^*B)^* = (A^*B^*)^*$. A fractional ideal $A \in F(D)$ is called a *-*ideal* if $A = A^*$ and a *-ideal A is of finite type if $A = B^*$ where B is a finitely generated fractional ideal. A star operation * is said to be of finite character if $A^* = \bigcup \{B^* \mid 0 \neq B \text{ is a finitely}$ generated subideal of $A\}$. For $A \in F(D)$ define $A^{-1} = \{x \in K \mid xA \subseteq D\}$ and call $A \in F(D)$ *-*invertible* if $(AA^{-1})^* = D$. Clearly every invertible ideal is *-invertible for every star operation *. If * is of finite character and A is *invertible, then A^* is of finite type. The best known examples of star operations are the *d*-operation defined by $A \mapsto A_d = A$, the *v*-operation defined by $A \mapsto$ $A_v = (A^{-1})^{-1}$, and the *t*-operation defined by $A \mapsto A_t = \bigcup \{B_v \mid 0 \neq B \text{ is a}$ finitely generated subideal of $A\}$.

In some integral domains D, such as in Krull domains, given an ideal I and an element $a \in I$ there is an element $b \in I$ such that $I_v = (a, b)_v$ (see Mott and Zafrullah [MZ]). Taking a hint from Theorem 2.2 of Anderson and Zafrullah [AZ], we state and prove the following result.

Proposition E. Let A be a proper finitely generated ideal of an integral domain D. Suppose that A contains a nonzero element a which belongs to at most a finite number of maximal t-ideals. Then $G(A) \ge 2$ if and only if $A^{-1} = D$.

Proof. Note that if $G(D) \geq 2$ then $A^{-1} = D$. So all we need to prove is the converse. For that let $Q_1, Q_2, ..., Q_n$ be the set of all the maximal *t*-ideals of D that contain a. Since A is finitely generated and $A_v = D$ we conclude that A is not contained in any maximal *t*-ideal M of D. In particular $A \nsubseteq Q_1 \cup Q_2 \cup ... \cup Q_n$. Choose $b \in A \setminus Q_1 \cup Q_2 \cup ... \cup Q_n$ and proceed as follows. We have $(a, b) \subseteq A$. Now for any maximal *t*-ideal M of D we have $(a, b)D_M = D_M = AD_M$ if M is one of Q_i (because of b) and we have $(a, b)D_M = D_M = AD_M$ if $M \notin \{Q_1, Q_2, ..., Q_n\}$ because of a. Thus we have $D = \bigcap_{M \in t - \max(D)} D_M = \bigcap_{M \in t - \max(D)} (a, b)D_M = D_M = AD_M$.

 $\bigcap_{M \in t-\max(D)} AD_M \text{ which implies that } (a,b)_v = A_v \text{ (see Griffin [Gr]) where } a,b \in A_v$

A and this by Proposition A means that $G(A) \ge 2$.

Corollary F. (1). Let M be a non-maximal maximal t-ideal of D and let x be a nonzero nonunit element of $D \setminus M$. If x belongs to at most a finite number of maximal t-ideals then there exists an element $y \in M$ such that $D = (M, x)_t =$ $(x, y)_v$, i.e., $G(M, x) \ge 2$, if (M, x) is proper. Consequently if M is a maximal t-ideal in a domain of finite t-character and x is a nonzero nonunit of D with $x \in D \setminus M$, with $(M, x) \neq D$ then $G(M, x) \ge 2$.

(2). Let M be a non-maximal maximal t-ideal of D and let $(M, x) \neq D$. If there is a nonzero $y \in (M, x)$ such that y is contained in at most a finite number of maximal t-ideals then $G(A) \geq 2$.

Proof. Since $D = (M, x)_t$ there exist $x_1, x_2, ..., x_n \in (M, x)$ such that $(x_1, x_2, ..., x_n)_v = D$. Since $x \in (x_1, x_2, ..., x_n)_v$ we can write $(x_1, x_2, ..., x_n)_v = (x_1, x_2, ..., x_n, x)_v = D$. The ideal $(x_1, x_2, ..., x_n, x)$ meets the requirements of Proposition E and so there is $y \in (x_1, x_2, ..., x_n, x)$ such that $D = (x_1, x_2, ..., x_n)_v = (x_1, x_2, ..., x_n, x)_v$. Now as $y \in (x_1, x_2, ..., x_n, x)$ and as $x_i = m_i + \alpha_i x$, where $m_i \in M$ and $\alpha_i \in D$, we have $y = m + \alpha x$ where $m \in M$ and $\alpha \in D$. So we have $D = (x_1, x_2, ..., x_n, x)_v = (m + \alpha x, x)_v = (m, x)_v$. But that means $G(M, x) \ge 2$.

(2) is a direct corollary of Proposition E.

Recall that an integral domain D is a Mori domain if D satisfies ACC on integral divisorial ideals. So Noetherian domains are Mori domains and it is well known that a Mori domain is of finite t-character see, e.g., Proposition 1.4 Houston and Zafrullah [HZ]. In [HZ] the authors introduced TV-domains as those domains whose t-ideals are v-ideals. It was shown in [HZ] that a TVdomain is of finite t-character; a Mori domain is a TV-domain.

Corollary G. If D is a TV-domain and A is a finitely generated proper nonzero ideal then $A^{-1} = D$ if and only if $G(A) \ge 2$. Consequently in a Mori domain (or in a Noetherian domain), for a nonzero proper ideal $A, A^{-1} = D$ if and only if $G(A) \ge 2$.

To my knowledge, the above corollary is only known for Noetherian domains. Corollary H. If A is a nonzero proper ideal of a domain D such that $A_t = D$ and G(A) = 1 then there is no nonzero element a in A such that a is contained in at most a finite number of maximal t-ideals.

Acknowledgements: I corresponded with David Dobbs and Evan Houston about the above material during September 2012 and recently in December with David Anderson and Said El-Baghdadi. Please, powers that be, do not beat them up for responding to my e-mails. As usual mistakes are all mine.

Muhammad Zafrullah Dated: 12-24-2012.

References

[G] R. Gilmer, Multiplicative Ideal Theory, Dekker 1972.

[GP] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65—86.

[Z] M. Zafrullah, What *v*-coprimality can do for you, in Multiplicative ideal theory in commutative algebra, 387–404, Springer, New York, 2006.

[U] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13(1983), 357-377.

[K] I. Kaplansky, Commutative Rings, Allyn and Bacon, New York 1970.

[HH] J. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18(1980) 37-44.

[MZ] J. Mott and M. Zafrullah, On Krull domains, Arch. Math. 56 (1991), 559-568.

[AZ] D.D. Anderson and M. Zafrullah, On t-invertibility III, Comm. Algebra 21(4)(1993), 1189-1201.

[Gr] M. Griffin, Some results on v-multiplication rings, Can. J. Math. 10 (1967),710-722.

[HZ] E. Houston and M. Zafrullah, Integral domains in which each *t*-ideal is divisorial, Michigan Math. J. 35(1988), 291-300.