
QUESTION: (HD 1301) Anh, Marki and Vamos in [Trans. Amer. Math. Soc. 364 (8)

(2012), 3967-3992 ] seem to suggest that what they call Bezout monoids provide the best

set up for studying GCD domains and UFDs. Any comments?

ANSWER: Well, they expressly state that their monoids are suited for the study of

divisibility in GCD domains. But as there is a danger of someone mistaking the monoids

as the panacea for all ills of integral domains, I make the following remarks. For the general

case, I believe that if we were to solely depend upon monoids we would miss some results

on GCD domains and UFDs. The reason is, monoids have one operation and rings have

two. Of course the multiplicative structure of a domain is a monoid but staying within that

monoid structure we may not be able to capture some fine points. It appears that some

examples are in order. Yet before that it seems pertinent to provide necessary introductions

for general readers. The paper you mention defines a Bezout monoid as a commutative

monoid S with 0 such that under the natural partial order (for a, b ∈ S,

a ≤ b ∈ S ⇐⇒ bS ⊆ aS), S is a distributive lattice, multiplication is distributive over both

meets and joins, and for any x, y ∈ S, if d = x ∧ y and dx1 = x, then there is a y1 ∈ S with

dy1 = y and x1 ∧ y1 = 1. Let’s recall another definition from another expert Franz

Halter-Koch [HK]. If we look at the definition of a monoid at page 5 of [HK] we find that

Halter-Koch allows a zero in a multiplicative monoid M such that 0 ⋅ m = 0 for all m ∈ M. He

also calls an element x in a monoid M cancellative if x ⋅ a = x ⋅ b implies a = b for all a, b ∈ M

and he calls a monoid M cancellative if all elements in M\0 are cancellative.

Restricting to cancellative monoids Halter-Koch defines, in Chapter 10 of [HK], a GCD of

a (non-empty) finite set B ⊆ M as d such that (1) d ∣ b for all b ∈ B and (2) if c ∈ M such

that c ∣ b for all b ∈ B then c ∣ d. This is pretty much the same as the definition of a GCD

of a finite set in an integral domain. By Halter-Koch’s definition GCDB is a set of

associates of a GCD and GCDB = dM× where d is a GCD and M× is the set of units of M.

He defines a GCD monoid as a cancellative monoid such that for every finite (nonempty)

B ⊆ M, GCDB ≠ Φ. Halter-Koch denotes GCDa, b by a ∧ b and calls it inf. Next he shows

that xGCDa, b = GCDxa, xb or xa ∧ b = xa ∧ xb, that is multiplication distributes over

∧. He also shows that M is a GCD monoid if and only if GCDa, b is nonempty for every pair

a, b ∈ M. He also states that M is a GCD monoid if and only if Mred = M/M× is and that an

integral domain D is a GCD domain if D is a GCD monoid (under the multiplication of D.
Now let M be a reduced GCD monoid and let a, b ∈ M then GCDa, b = dM× for some

d ∈ M. Since M is reduced M× is a singleton and so can be represented by 1. So we can

write a ∧ b = d. Now as d ∣ a, b we can write a = a1d and b = b1d. Now as

d = a1d ∧ b1d = da1 ∧ b1 and as M is cancellative we get 1 = a1 ∧ b1. If for some x1 we

have a = dx1 then by cancellation x1 = a1 and we already have a b1 such that b = b1d and

a1 ∧ b1 = 1. So a reduced GCD monoid is indeed a Bezout monoid of [AMV]. Let’s also note

that Given a GCD monoid M we can take the quotient M1 = M/M× to reduce it and we can

by a direct product with a group K construct a GCD monoid M2 = M1 × K. This indicates that

the multiplicative structure of a GCD monoid does not have any control over the size of its

group of units.

With this introduction let us take the following simple result, that apparently cannot be

proved using the multiplicative monoids and by a monoid we shall mean a cancellative



monoid.

Proposition A. Every valuation domain that is not a field has infinitely many units.

Proof. Let V be a valuation domain that is not a field and let x be a nonzero nonunit in V

and consider the set xn + 1, n ∈ N. Each of xn + 1 is a unit and all are distinct. For if we

put xn + 1 = xm + 1 for n > m then xn−m = 1 forcing x to be a unit. So V has at least a

countably infinite set of units.

There is nothing new in Proposition A. Using the same proof one can prove that if D is a

domain with nonzero Jacobson radical then D has infinitely many units. This result too is not

as important as its contrapositive which says that if D has only a finite number of units then

the Jacobson radical of D is zero. We shall make a use of this in a generalization of GCD

domains and in GCD domains. But for this we need to prepare a little. Let us use D to

denote an integral domain with quotient field K. Let FD be the set of nonzero fractional

ideals of D. For A ∈ FD the inverse of A, that is A−1 = x ∈ K : xA ⊆ D ∈ FD. The

function on FD defined by A ↦ Av = A−1−1 is a star operation called the v-operation.

Another, related, star operation is the so called t-operation defined by A ↦ A t = ∪Fv where F

ranges over nonzero finitely generated subideals of A. A fractional ideal A ∈ FD is called a

v-ideal (resp., t-ideal) if A = Av (resp., A = A t, a nonzero principal fractional ideal is both a

v-ideal and a t-ideal. For a review of the star operations look up sections 32 and 34 of [G].

We recall the notions and results necessary for our study here. Note that A ∈ FD is a

t-ideal if and only if x1, x2, . . . , xn ∈ A implies that x1, x2, . . . , xnv ⊆ A, if x1, x2, . . . , xn ≠ 0.
Also an integral ideal that is maximal among integral t-ideals is a prime ideal called a

maximal t-ideal. Every nonzero prime t-ideal is contained in a maximal t-ideal.

Let’s start with a sort of tongue-in-the-cheek statement.

Proposition B. If an integral domain D ≠ K has only a finite number of maximal t-ideals

then D has infinitely many units.

The proof depends upon Proposition 7 of [Z2] which says that if D has finitely many

maximal t-ideals then D is semi-quasilocal. Now of course the Jacobson radical of a

semiquasi-local domain is nonzero. The point of interest in this case too is that if D has only

a finite number of units then D has an infinite number of maximal t-ideals. (Though D having

an infinite number of maximal t-ideals does not mean that we have a finite number of units,

nor does it mean that the Jacobson radical of D is zero. In Z + XQX every maximal ideal

is principal and hence is a t-ideal yet this ring has infinitely many units.)

One may remark that in the proof of Proposition B, as in the proof of Proposition A,

which serves as the proof of the contrapositive also, we had to use the addition, in addition

to multiplication. Now noting that most of the ideal theoretic notions known for integral

domains have been translated to the language of monoids. We leave the following as a

problem.

Problem C. Prove or disprove: It can be shown using monoid theoretic techniques that if

an integral domain D has finitely many units then D has infinitely many maximal t-ideals.

Let’s now turn to GCD monoids to show similar results. We go a bit general to include

some more notions. For more general results we need some introductions. Call D an almost

GCD domain if for all x, y ∈ D there is a positive integer n = nx, y such that xnD ∩ ynD is

principal (xn, ynv is principal), [Z]. These domains generalize GCD domains in that an



almost GCD domain is a GCD domain if for each pair x, y ∈ D, we can reduce n = nx, y to

1. Some good examples of almost GCD domains are Krull domains with torsion divisor

class groups. These domains were called almost factorial domains in Fossum [F] and were

studied by Storch in [S] as fastfactorielle ringe. In [AZ] an integral domain D was called an

almost Bezout domain if for all x, y ∈ D there is a positive integer n = nx, y such that xn, yn
is principal. An almost Bezout domain is an almost GCD domain and obviously it

generalizes a Bezout domain. It was shown in [AZ] (Corollary 4.5) that an AGCD domain D

is almost Bezout if and only if every maximal ideal of D is a t-ideal. Generally two elements

x, y of a domain D are called v-coprime if xD ∩ yD = xyD (equivalently if a, bv = D.
Theorem D. Let D be an almost GCD domain in which there can at most be finite sets of

mutually v-coprime nonunits. Then D has at least a countable infinity of units. Equivalently,

an almost GCD domain with finitely many units must have an infinite number of mutually

v-coprime nonunits.

Proof. "There can at most be finite sets of mutually v-coprime nonunits" can be

translated into "there is no infinite sequence of mutually v-coprime nonunits". So, by

Proposition 2.1 of [DLMZ] D is an almost Bezout semilocal domain and this forces D to

have finitely many maximal t-ideals and consequently a nonzero Jacobson radical, which

forces D to have an infinity of units.

Corollary E. Let D be a GCD domain in which there can at most be finite sets of mutually

coprime nonunits. Then D has at least a countable infinity of units.

Now note that both Theorem D and Corollary E need both the addition and multiplication

for their proofs and so do their contrapositives namely: if D is an AGCD (or a GCD) domain

with only a finite number of units then D contains infinitely many mutually v-coprime

(coprime) nonunits. This seems to be a sort of analogue of Euclid’s Theorem about

infinitude of primes in the ring of integers. A similar result can be proven in much more

generality. But I restrict it here to GCD domains as the above mentioned paper restricts its

claim to GCD domains.

At this stage we can say that multiplicative monoids are a tool that can be used to settle

questions about divisibility, or questions related to divisibility, by disregarding units and often

the zero. Most of multiplicative ideal theory does just that. But as the monoids are more

general, proving results for monoids does not mean proving results about rings, except in

some limited cases. The "limited cases" are essentially linked with the Krull-Jaffard-Ohm

Theorem that says that given a lattice ordered group G one can construct a Bezout domain

with a group of divisibility isomorphic with G. But there are well known examples of directed

partially ordered groups that are not the groups of divisibility (see e.g. Example 4.7 on page

110 of [FS]). I have brought directed partially ordered groups here because the group of

divisibility of an integral domain is a directed partially ordered group and the positive cone of

a partially ordered group is a reduced monoid.

Then there are some special constructions, such as the polynomial and power series

ring constructions that integral domains permit but monoids do not. The situation is

worsened by the so-called A + XBX constructions of [AAZ] and various other constructions

mimicking them. Let me include a simple description of the A + XBX construction. Let

A ⊆ B be an extension of rings and let X be an indeterminate over B. Then



A + XBX = f ∈ BX : f0 ∈ A is an integral domain which is obviously a subring of BX.
In ring theory we can study the multiplicative properties of A + XBX with reference to those

of A and B, using monoids if we have to but there is no monoid construction that takes care

of A + XBX, as the notion of a polynomial requires addition and so cannot be mimicked

without some extra macinery.

One could come up with the suggestion: let us study some conditions on monoids and

then see if those properties of monoids can define some domains. This would be very

interesting. Yet this reminds me of the first time that I ran into a problem trying to transfer a

defining property of an Abelian Riesz group to that of pre-Schreier domains. Let us recall

that a directed partially ordered group G is a Riesz group if for all x, y, z ∈ G+, x ≤ yz implies

that x = rs where r ≤ y and s ≤ z. Cohn [C] called an integrally closed integral domain D a

Schreier domain if for all x, y, z ∈ D\0 x ∣ yz implies that x = rs where r, s ∈ D are such that

r ∣ y and s ∣ z. If we define the group of divisibility of D as GD = xD : x ∈ qfD\0,

ordering GD by xD ≤ yD if and only if xD ⊇ yD (i.e y = xd for some d ∈ D and defining the

group operation as xDyD = xyD we see that D is the identity of GD and

GD+ = xD : x ∈ D\0 and because order being containment related is conformable with

the product. From this one can conclude that an integrally closed domain is a Schreier

domain if its group of divisibility is a Riesz group. Now if you ditch the integrally closed

condition you get what was termed as a pre-Schreier domain in [Z1]. So a domain D is

pre-Schreier if GD is a Riesz group. Now, for x1, x2, . . . , xn ∈ G where G is a partially

ordered group, let Ux1, x2, . . . , xn = t ∈ G : t ≥ x i. So if x1D, x2D, . . . , xnD ∈ GD then

Ux1D, x2D, . . . , xnD = tD : tD ≥ x iD = tD : x i ∣ t. Thus Ux1, x2, . . . , xn ∪ 0 = ∩x iD.

Since multiplication is involved we can associate ∩x iD with Ux1, x2, . . . , xn. Now by (3) of

Theorem 2.2 of [F], GD is a Riesz group if and only if for all a1D, a2D, . . . , amD,

b1D, b2D, . . . , bnD ∈ GD we have

Ua1D, a2D, . . . , amDUb1D, b2D, . . . , bnD = Ua1b1D, . . . aibjD, . . . , ambnD. This translates, in

ring theoretic terms, to ⋂ aiD⋂ bjD = ⋂ aibjD. In [Z1], where the above observation

was made (pages 1905-6), a domain D was said to have the ∗-property if for for all

a1, a2, . . . , am; b1, b2, . . . , bn ∈ qfD\0 we have ⋂ aiD⋂ bjD = ⋂ aibjD. It is easy to see

that in the definition of the ∗-property we can restrict ai, bj in D\0. It was shown in [Z1]

(Corollary 1.7) that a pre-Schreier domain has the ∗-property yet a domain with the

∗-property may not be a pre-Schreier domain. This discrepancy was blamed on involvement

of addition in the definition of products of ideals in an integral domain. While we are at it let

me mention that if D is a pre-Schreier domain that does not allow an infinite sequence of

mutually coprime nonunits (in a pre-Schreier domain v-coprime is the same as coprime)

then D is semi-quasi-local and so must have an infinity of units. (I could not prove that if a

general domain D has zero Jacobson radical then D must have a an infinite sequence of

mutually comaximal elements.)

Next, here’s an anecdote that might indicate that results proved for monoids may be

very hard to establish for domains. Around February 1995, just days before my kidneys

failed, I wrote to Scott Chapman asking about the possibility of an n-UFD. By an n-UFD I

meant an atomic domain in which every product of n irreducible elements is unique up to

associates etc. The answers resulted in [ACH-KZ] and it turned out that Franz Halter-Koch



was able to find an example of a 2 -UF monoid that was not a UFD and to my knowledge

we have, to date, no example of a 2-UFD that is not a UFD.

To sum up, it appears to me that monoids are an efficient tool but they come in handy

for integral domains only when the dust has settled after an interaction between addition

and multiplication and that the monoids deal mostly with divisibility related problems.

Remark 1. There are some other reasons given on pages 148 and 149 of [FZ].

Remark 2. I exposed my co-authors of [ACH-KZ] to a version of the above material. Of

them Franz Halter-Koch responded. He seems to agree that monoids cannot fill completely

in for rings and is quite enthusiastic about writing with me a more detailed article on

indicating where monoids are more efficient and where rings are. I refrain from including

here his thoughts because I have not got his permission yet and because they would need a

lot of introduction. So you will have to wait until something emrges in the form of an article.

Muhammad Zafrullah,

01-04-2013
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