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A GENERAT THEORY OF AIMOST FACTORIALITY
Mohammad Zafrullzh

Iet R be a commuteive integrsl domain with 1. The
non-zero elements a,b of R may be calilied v—coprime if
aR{\ bR = abR. A Krull domain is called almeogt factorizl if
for all f,g in R there is n€ ¥ such that f°R O &°R is
principal. From this it is easy 0 esitebiish that if R is
aimost factorial them for all x in R there is n € N such
that 2 = PiP,--~P. where p; are mitually v—coprime pri-

mary elements and that this expression is unique. In this
article we dxop the reguirement that R be XKrull and re-
place the primary elements by elements calied prime bdlocks
and develope a theory of almost factoriality, a special
case of which is the theory of 2lmost factorial Xrull
domains,

Wo gbart with the definition that a non-zero non—unit
p & R is 2 prime block if for all x,y € R with x,y both v~
coprime bo p there exist n(x,y) ¢ N and d € R such that

e 5 i i I sa Al = roe |

(*,72) € dR and at least ome of x°/3 , ¥°/d is v-coprime
to p. Using this definition we show that if a non~unit x is
expressible as a product of finitely meny orime blocks then
it is expressible waigquely as a product of mutuaslly

v-—coprime prime blocks. Thus & generad aimost facterial -

ring is an integral domain R such that for ail x€ R — {0}
there is n(x)€ N such that B ois expressivle a3 a product
of prime blecks. Here we take a wait as an empty prcauct.

We show that a general zlmost UFD, R is an almost GCD
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(AGCD) domain that is for X,¥ € R there is n « N such that
RN y°R is principal. Unlike the UFD's and GCD—domains 2
general zlmost UFP and hence an almost GCh-domein may not
be integrally closed.An example of a nen-integrally closed
general almost UFD is comstructed to establish this point.
We alse study the relationship between am almost GCD-
domain and if¥s integral closure. It is interesting to note
that the integral closus+ of an aimost GCD—domein is an
almost GCD-domain.

To explain our results on integrally closed general
AUFD's and AGCD-domains we shall be using terminology with
which a general reader may not be familiar. So before men—
tioning cur resulits we explain,briefly, some of the terms
involved. The function defined on F(R), the set of frac—
tional ideals of R, by Ae(A71)7! = 4_ is called the
v—operation on R. For A,B € F(R), (AB)vz(AvB)v=(Ava)V;
these equations represent what may be called v—multipli-
cation. A €& F(R) is called a v—ideal if & = B, for some B
in F(R) 2nd A is s2id to be a v-ideal of finite type if
A = Bv where B iz finitely generated. An integral domain R

is szid to be a Prufer v-multiplication demain (PVMD) if

the set H(R) cof v-ideals ¢f finite Type of R is a group
under v—multiplication. We show that an integrally closed
AGCD-domain is a PVID with the propexrty That for every
finitely generzted ideal A, (An)_v_ is principal for some m€ N.

In [7] it is noted that the theory of PViD's runs along

<

lines remarxably similar te that of XKrull domains, This m&

e

be demonstrzated once more by the introduction of the

t-class group which is defined as follows . The %t—opexration
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on P(R) is defined as Ar>a, =y B, where B ramges over
finitely generated fractionmal ideals contained in A. An

ideal X € F(R) is said to be t—invertible if there is ¥ in

-

F(R) with (X¥), = B . In this case I, =Y = X! and X

and X' are both v-ideals of finite type (cf.[3] ). Denote
by T(R) the set of all v—ideals of R which are t—inverti-
ble. Then it is easy to establish that T(R) is a group
undetr v-multiplication for any integrzal domain R. Cleaxiy
the set P{R) of prineipal fractional ideals of R is & sub-~
&roup of T(RE). We call the quotient group CT(R) = T(R)/P(R)

the t~class group of R. Noting thet 2 EKrull domain R is &

FPVMD in which every v—ideal is of finite *ype we comclude
that for R Krull T(R) = H(R) = div(R) and consequently for
B Krudl CT(R) = CI(R) the divisor class group.This result
follows from the fact that R is a FVMD if and only if every
finitely generated ideal of R is i~imvertidle (cf.[3] ). So
for a PVID aiso, T(R) = H(R). Noting also that =z FVID is 2
GCD—domain if and only if every t—invertible v-ideal of R

o

is principal ([7] Proposition 6.7) we conclude that a TVID

vial

}

is a GCD-domain if and only if its t—class group is Uz
Thus for R a PViD CT(R) measures how far is R from being a
GCD—~domain. Now it ig easy to see tnat = FvilD with a tor—
sion t—class group is an aimost GCD-domain. We show that an
integrally closed genexel zimest UFD is a ring of finite

chexacter callied an independent ring of Krnll type (cf. {21

with torsion t—class group. We also study the conditions
undexr which an atomic inbtegrally closed gemeral AUERD

becomes an almost factorial ring or fastfaktoriell ring of

Storch [11] . Here R is atomic if every ncn—~zero non~unit of
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R is expressible as a product of Ffinitely many irreducidvle
elements. In what follows we shall use the ftexrm almost
UFD* to mean ‘gemeral almost UFD' and when we heve to men-—
tion the exdsting rdotion Gue to Storch we snalil call it

fastfaktoriell rimg. ¥e do this to economise on space.

This article is split into five sectionms, apart from
this rather lengthy introduction. In the first section we
study the notion of g prime block and define almost UFD's
(AUFD's).In section 2 we study the properties of AUFD's
which enable us to degcxribe their structure. For example we
show that an AUFD is an AGCD-domzin and that an AGCD—Comain
R is an AUFD if and omly if every non-zerc nop~unit of R
belongs to finitely meny maximal t-ideals of R and no paixr
of maxdimal t—ideals of R contains a non—zero prime ideal.
Also in this section we comstruct sxn example to show that
2n AUFD may not necessarily be infegrslly closed. In sec—
tion 3 we study integxrally closed AGCD—domains and show
that an integrally closed AGCD-dcmsin is a FVID. In seciion
4 we study integrally closed AUFD's and establish their
relationship with fastfzktoriell rings. Fipally in secvion
5 the usual ring formations from integrally closed AGCD-
domeins. Indeed we show that if R is an integrally closed
AGCD—-domain Then so is R{X} . Using the notion of t~cliass
groups we can state this result as: for R integrally closed
R is a PVMD with torsion %t—class group if and only if the
polynomial ring RIZ] is.

Tinally. for intreduction, if I am fto gain ary »osi-
tive credit for writing this article. part of it should go

to Profesgsor Ulrich Krause whe wrote [4] and {6] and then
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asked me if there waa a general theory of factorization of
this kind. In fact, although my German is extremely DpOOT,

[6} belped foxm the theory of almost factoriality described

above -~ in one way or another.

1. PRIME BIOCKS

Iet R be a ccmmutative integrel domain with 1. and let
X be its field of fractions. Two elemenis 2.0 € R — {O} are
called v-coprime if aR (bR = abR. We denote v—coprimeness
of a,b by (afb)v = 1. When 2R /) bR #£ abR we write (a,b)vg?n
The idea of = vtcoprime pair comes from the notion of -
v—operation which is defined in the following lines-

Iet F(R) denote the set of fractional ideals of R.Then

=1 _ 4

¥

the function from F(R) to F(R) defined by Ar— (A~
is called the v—operation om R. The v—operation has the
following properties. For A,B € F(R}

(1} if A is principal A, = &, (AB)V = AB_,
(2) A= A, and if A< B then A, C 3B,
(3) () = &,

Moreover if 4,B € F(R) then (AB), = (A B}, = (A B, ). For

details on the v—operation see sections 32 and 34 of 17 -

Poxr our purposes we refer the reader %o the introduction

. . —1. . ~1 ~%
and note in addition that A 'is a v-—ideal, (Av) = A and
AT = R if and only if A, = R.

In this section we study those prcperties of prime
blocks which lead to the definmition of an AUFD.Using the
zbove definitions we indicate some properties of v—coprime-
ness via the following lemma.

TEAMA 7.1. Iet 2,b & R. Then the following hold
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(1) 2,b are v—coprime if and only if (2,b); = R,

(2) if (psq), =1 znd p|xq then p|x (u} v= u divides v),

(3) if (a,b)v_= T and xfe, y{ b then (x,y)_ =1,
ha - X
(4) (a,®)_ = 1 if and only if (2.¥")_ =1 for all m€ W,

(5) (a=b)v = 1 if and only if fan,b)v

1 for 211 né€ N.
PROOF. (1).If (a,'b}_v_ = R then (a,b)q = ga?f‘i (b) =R

which gives (a) M (b) = (ab). Conversely if (a)fib(b)z(ab)

then R = (a) 0 (b) = (a.n)”" and so (a,b)_ = &' = E.
ab
(2). Here p |xq and obviously g |} xg. But DRN gR = pcR

requires that pg | xg vhich gives the resuli.

(3).Iet z € xR yR. Ve show that xy{ z. Since x| a and yjb
we have a = X and b = sy. Now comsider rsz . Simce X| z we
have a | rsz and since 7 | z we have b | rsz. But as (a,b)7=’t .

ab { rsz or. rxsy [ rsz which gives x| =.

(4). Suppose 2R bR = abR. Consider z € aRf) bCR, Then as

N

a.lz we have z = 2z, . Now bml z and it is sufficient To

. L L . i Ay =
show that b 1-21- But this can be done by using (2) for
single powers of b. The converse follews from (3).

(5). This can be proved in %he same way as (4).

block if for 2ll %,y € R with (:{,p)v A1 and (¥;p)..
there exist n € N and 4 € R such that (x°,7y )& GR with
(1ﬁ/d,P)X= 1or (7/&p)y = 1-

PROPOSITION 1.3. Let p ¢ R be z prime block. Then for

any m € N and for all x.¥ | o° there exists n(x,¥) € N such.
;b_}_za._‘s_xn!yngyn!:{n,

PROQF. Tet p be a prime block =nd let X,¥ | P for some
m € N. If any one of X,y is a2 uni®v we have nothing ©o

prove. If not then PR N xR # pxR and pR) ¥R £ pyR. By the
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definition (x*,y") € dR such that (xn/d,p)_v_ =1 or

"/a,p), = 1. If (£*/&,p) = 1 then /d must be a unit
because x° divides P™. Similarly we deal with the case
when (yn/d,p)v = 7 and from both we draw the conclusion

thet 22 [ y2 or 2| x°.

DEFINITION 7.4, Two prime blocks b..b, will be cailed
- - A _[
similar if b,R {1 b, R # b b, R.

2
and only if for some ¢ € N, b?i\ b'gg_}: b’é;b?
PROOF. Clearly b,RM bR £ b:fR and bR N bR £ b b,R.

Since 'b1 is a prime block Tthere exigst m € N and d € R such
that bl/d, b,/d € R and one of v5/d is v—coprime to b,. If
(b3/d,b,), = 1 then 7/d is a wnit and so B | bh. S0 W
suppose that (br;/a,b? ).# 1. Then (brzl/d,bT ). = 1 and we

elaim %hat bg] oﬁl For h = brzl/d and 4 both divide bﬁ and as

b2 is a prime block there exis®ts m such that n™| % or

2| nP(cf. Proposition 1.5). Now if #°| d® then as d% | o

and (h,b1 )v = ] we conclude that h is a unit. But then
bg ibl,}l. Tinally dml n? is imposgiblie because then (hm,.b‘:‘}
#Z 1 which contradicts (h,b1 )v =1 by (4) and (5) of

hvd
Iemma 1.1. The converse of couise is obvious.

COROLLARY 1.6. The relation " is gimilar fof in %the

set of prime blocks of an integral domein R is an eguiva-

lence relation.

PROOY. Reflexivity and symmetry of the relation fcellow
from Propesition 1.5. For tramsitivity we proceed as
follows. Iet ~~ denote similarity and jet p~g and ¢~ 1
where p,g and T are prime blecks. Then by Proposition 1.5

. ” m, _m my _m n;
there exist m,n such that p g or g } v and g fI‘uor
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™| ¢®. This gives 72 | & or @ 7™ and ¢ ™ or
2] ¢™, Prom this arise the following four cases.

(1) 7™ ¢ end @™ 7™, (11) ™™ and 72| ™,

(1i1) ™| 7™ and 0 B, (iv) ™2} 7™ and 2| B,
Cases (i) amd (iv) are similar and iz both p ~ r follows
from Proposition 1.5. In case (ii)} by Proposition 1.3 there
exists k such that pmnk’ r:m_k or rm:m, Pmnk and by Propo-

# 1 which by

sition 1.5 p~rr. In casze (iii), (7%, ")

I<}

Iemma 1.7 means that (p.r)_ £ 1. Hemce in =il +the cases
. ¥

P ~ T as reguired.

2 prime block is 2gain a prime blockK.

PROOI'. Iet p be 2 prime block and let for some n & N,
x | p~ where x is 2 non-unit. Then x2 ) 2R # xaR and
%R N bR £ xbR implies P°R N aR £ 0 aR and p°R /N bR £ p bR
which means that pR ) aR £ paR and pR M bR £ pbR. Now by
the definition there exist n ¢ N and 4 € R such that
a/a,0%/a € R, and (a°/4,p)_ = 1 or (v%/d,p), = 1. Fow
(1‘-;15).‘. = 1 impiies (h,pn)_v_ - 1,07 (4) of Iem_;a 1.1, and
this Zmplies (n,x), =1 8; (3) of Temma 1.7. Putting
n=2a/dorhs= bn7d completes the proof.

CORCLIARY 1.8. The product of iwo similar prime blocks

is again 2 prime block.

PROCYF. Iet 'b,l,b2 be two similar prime blocks. Then by

5!

.,
ci

e - s - - SH o F R
Proposition 1.7 there exists m such that b, fp5 or B, | v5-

n)

In each case (b,‘bz)z1 l b?n where i=1 or
THEOREM 1.9. Iet x ¢ R be expressible as a finite pro-

diact of mutually v-coprime prime blocks then this

expressicn is unigque up fo zssociaies.

36
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PROOP. Iet x = :{,'112.,.}:1,l whers X, are matueldy
v—-coprime prime blocks and suppose that x = KNSR 21506
where yj are mutually v-—coprime prime blocks. Then
F¥oer -V = XyXpe-aXy- Now y,'[ XqnnaX - Since x; are
mutually v—coprime and since ¥y is a prime plock 1% camnow
be similar to two different x, (ef. Corollary i.6.). So
% g ij £ y,'ij for at most one . By (2) of Iemma 1.1
y.zj Xj for some j. Usin : similar reasoning we show that
xj‘ ¥, o- So ¥y and :cJ are associates.The remaindexr of the
proof is routine.

DEFINITION 1.71C. An integral domain R is an almost

unique factorization domein (AUFD) if for every non-zer

non-unit x € R there is m € N such that = is expressible

as a product of finitely meny mutwally w—coprime prime

blocks.

1.8 it is sufficient

REMARK 1.11. In vie

4
I8,
Q
g
o
D
£

to say that R is an AUFD if every nom—zero non-unit of R is

o —

expressible as a product of finitely many prime blocks.

2. ATMOST UFD's

Tn this section we study the ideal theory of AUFD’s .
Here we study the prime t—ideals and maeximal t-ideals of

AUTD's and their comnection with prime blocks.We show that

n

in an AUTD every maximal t~idezl is of the fype

‘%('b) = {x £ R ; ‘(x,b}T F4 ’x} where b is a prime block.
We alsco show that am AC-CB~doma:;.n R is an AUFD if and only
if (i} every nom—zero nom~unit of R belongs to only 2
finite number of maximal t~ideals of R and (2} ne two maxi~
mal t-ideals of R comtain 2 common non-zero prime ideal.

Thus we esteblish, without stating it, that in an AUFD a
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maximal t-ideal has the same status 2s a principal prime
has in a UFD. Then in the end we use s simple D + M const—

ruction to comstruct an example of an AUFD which is nof

integrally closed.

Recall from *the introduction +that R is an almost GCD-
domain if for all x.y¥ € R there exists n € N such that
xnﬁﬂy‘nR is principal. Clearly a GCGD-domain is an AGCD-do-
main. We show via the following proposition that an AUFD is
an AGCD-domain.

PROPOSITION 2.1, Iet x,¥ € R be such that each of X,y

is expressible zs a finife product of prime blocks. Then

there exists n € N such that ¥R N ¥R is principal.
PROOF. By Corollary 1.8 we can write %,y as products
of mutually v—coprime prxime blocks. If (x,y)v = 1 then

-

'R = xyR. So let (x,y)_ # 1 and let

xR N

X = DPiPp~--Prdq---9g 3 ¥ = P{P5--.Pl2425...2, Where p;,Df

=

are similaer prime blocks and P;ra and a o 2Fe all muvtuadly

3r‘i1 31 There-
s

—
=]
o

2

4]

X . bel
v—coprime. Now for some 1. :P;
i

n

. . _ .1A. Ao - o .1
fore if n = N0y, . -0, e have X RN 3y R =Py Py Ey

n n - 1 R o ST v
Fara P . 3 o3 or Do [
where P.= je) o p. i accoraing as p_: i pP. o P l 1Y

TIHEOREM 2.2. An integral domain R is an AUFD if and

only if every non-zerc prime ideal of R contains a prime

b 1 QCK .
Lo rove 'G-D_S cneorem we eed e [2) OV Ilb' ST ~
& < pes LIl f 11 1I1E 1

IREIA 2.3. If x € R divides z product of finitely many

. T T . A
prime blocks then for some n € I1 X is expressible a5 2

product of finitely many prime blocis.
PROOF. Iet v be a produwct of finitely many prime

blocks. Tne ¥ can be expressed as a product of mutually
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v—coprime prime blocks. Now Jet y = »;P
mutually v-coprime and let x | p. Dy---D.. Without loss of
generality we may zssume that (x,pi ), #1 for i= 1,2,...r.

Fow as xRN p R #£ xp;R and p;R M D R ,:!'p%i there exist
n

n,€ Nand g, € R such tha%(xn",p?”}g; g;R such that x 7/g?
Ty | -
or p, /g,! is v~coprime *o p;. Because x |y we have x /g1
n

. - 1 5 : : 5 \
v—-coprime to Pq- Thus x = 048, where &; is a prime block

and (h1,g1 )Z = 1 Eecause (h;,p, )Z= ;.
Now as h, | x | which divides y 'and h, R/ p,R £ h,D,R

we use the above procedure to get h,f2 = h2g2 where &, is a

prime block similar to p,. This gives ¥0182 - p 5, (g, e

Proceeding in this way we ultimateiyv get

DTy - aly ) -

x = g49p--+9;, ¥here g; are orime blocks.
COROLLARY 2.4. A set SS R generated multiplicatively

Drime blecks is

Pbe

by elements whose powers are products of
saturaied.

PROOF OF THECREL 2.2, Suppose that every prime ideal

of R contains 2 prime block. If R is nct a field then there

is at Jleast one prime blcck inm R. Iet S be multiplicatively

renerated by elements x such that for some n € K, x~ is a
Y

product of prime blocks. Now all the prime blocks beiong to

S and by Corollary 2.4 S is saturated. Ve claim that

0

= R - {O)z . For if not then R ~ S contains z prime ideal
P which must contain a pxrime block, a contradiction.
Conversely if R is an AUFD and x ¥ O belongs %o a
prime P then for some n £ N,;cn = PqPoe--Po where p; are
prime blocks and of these at least one must belong to 2,

We now study prime ideals of multiplicative impor-

o]

tance in AUTDfs. These zre prime t—ideals, meximzal t—ideals

39
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and associated primes cof principal ideals; all of which

reduce to principal primes in & UFD. For the sake of com~—
pleteness we defire these notions.

An ideal A € P(R) is said to be a t—ideal if A:UBv
where B ranges over fimitely generated E-—submodules of A. A
prime ideal which is aiso 2 t-ideal is c¢alled 2 prime t-
ideal and an integral ideal maximel w.x.v. being a t-ideal
of R is called = maxima' t-idesl. According to[ 3] = mexi-
mal t~ideal is a prine ideal. Finslly a prime ideal P
minimal over amy ideal of +the 4ype (a):(b) (¥ R) is caliled
an associated prime of 2 principzl ideal or simply an as5s0—

ciated prime of R. Using ILemmas 4 a2nd 6 of [13] it can be

R

established that an associated prime is a t-ide

THECREM 2.5. Iet b € R be 2 prime block znd let

‘?;(b) = { x€ R| xRN R £ xbRJZ . Then Q_‘,(b) is 2 maximal

t-ideal and b belongs to no other maximal t—ideal.

PROOP. If x.¥ € ?(b) then by definition %here exist

n e Nand d€ R such that x /&,y /d€R, and (xX7/&,p), = 1

or (yn/d,b)__ = . Since both %,y are non v—coprime to b we
v

. e - N
conclude that (d’b)v £ 1 thet is d€ T.(v). From this it

follows that (x + y)zn € E/;(b). By (5) of Iemma 1.1
((:'c+y)2n,b)v # 1 implies that ({x+7).d), £ 4. Thus %,V &
£(b) implies x+y€ <(v). Further, obviously, for all re R
and x € f/(b) . ITX € f‘/(b)*

Now suppcse that (b’}:)v = 7 = (‘a,fy')v. Then
R = ((b,x) (0,5),), = ((2,%)(0,5)), = (02,07, 0%, 77);

= (‘o(‘o,y)V,‘o}:,J:;r)v = (“r>,.bx,:<:y-)v = (b,;Qr)V. That is

v

(b,x)_ = 1 end (b,y)_ = 1 implies tnat (b.xy)_ = 1 and s0
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xy € é(b) implies that x & é(b) or ¥ & ?(b)_ So ?z(b)
is 2 union of prime ideals. Therefore it is itself prime
as it is.an ideal .
Further let PR . 6{:@(13) then as PRIV xR £ bx.R
pY 1 i
there exis?%, by the definition of 2 prime block, n. € N
B. . *  n,
P f s 5 = - - =
and d;€ R such that (x;,b M) < 4;R& ‘%:,(p).. Here 4| &
and if we select m = max {u.{ then for all i, &,|b . Now
- whe 8
by Proposition 1.5 there exist Uy such %ha® d;ijld?'ij
uij Uz = - _. LD Bt D :
or &%H3[ g%, [T u,. then ¥ a® or aP}a? for a13
T dg [61 Ifp ﬂals hen Q_JQJ or dj?di for 231l
i.j = 1,2,...,r. From this it follows that There exigts =

% ey - ~ - - A
4, such that a,ﬁfai for all i = 1,2,...r. Consequantly

P n.
BT o 5 ¢ P =
dlpc [ s (because Qigx ) and 2s m = ma:»:’,‘_ni} dE}x‘_—‘;"“ for
2ll i. From this it is easy to work out +that
rom 5 2 P _ ATTm
(x1,x2...xr) . (ak) C Y(b)‘ But then ((}:?,...,}.r} ).

< (4,) €% (b) end from this it follows that

A
)RS ((xyre0e,x )™P) S £(b). But 2s Pb)

((j.c‘l’”"xr v

is 2 prime ideal we conclude that (:-:1, ‘”’xr)v < fy(b}-

) - - - - . - = - z &
From this it follows that ‘6(0) is a t—ideai. That /IKJ'/(O) is
2 maximal {t-ideal follows, now, from ifts cefinition and the
same comment z2bout b belonginmg to no other maximal t—ideal.

DEFINITION 2.6, For b a prime block we call

§(») = { xeR[ xR N bR £ xbR! the prime ideal zssociated
with b.

THEQREM 2.7. Iet P be a maximal t-—ideal of an AUID.

Then %here exists a2 prime block b suck that P 1s asscciated

with D.

N
mn

PROOF. Iet P be a maximal t-idezl. Then by Thzcrem

P contains a prime block b say. Because P is a t—ideal, for

=
=

ry

all x,y ¢ T (x.¥)_ # R and sc for every elemen®t X
S
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ya
(x,b),. #1. Whence it follows that P = (o).

COROLLARY 2.8. In an AUFD, R evexy prime t—ideal is

contained in 2 unique maximal t-ideal.

PROOF. Ie®t P be 2 prime t—ideal. Them P is comntained
in a maximal t-ideal PT' By Theorem 2.Tr P1 = {/(b,') where
b‘i is a prime block. Suppose that P is also contained in a
maxinal t-ideal P, = f/(bz). Tuen if P, # 2,, b. and b, must
be v~coprime. Now P beinsg a2 prime ideal comtains, by
Theorem 2.2, a prime block c. 4s P & ?“’1)’ ¢ is similar
to b, and as P & $(b,), ¢ is similar to b,. Now by
Coroliary 1.6 ’loT is similar to b2 znd so P,’ = Ty-

Trom the above result it followg that if R is am AUFD
then (1) every meximal t—ideal is of +he #ype f‘s,(‘o) where b
is a prime bleock.(2) every non-zerc non-unit of R belongs
to only a2 finite number of maximal t-ideals, (3) mo two
maximal t—~ideals contain a commoen non—-z2ro prime ideal and
{4) R is an almost GCD-domain. As wsuel in Mathematics we
ask," If R satisfies (1) ~— (4) is it an AUFD 7?7 The auswer

is indeed yes but to suppozrt it we need the following

lemmas .-

®

IEMMA 2.9. Zet R be an AGCD—domain and Iet P be 2

prime t-ideal of R.Then for 211 x.v¢ P there exist de P aund

. n
neXN such thet (% ,yn)v = (d}.
PROOF. Iet P be a prime t—idezl and le% x,y € F. Then
as R is AGCD there exists n such that x°R/) ¥R is primci-

fo ome G £ R-Trom

H
Ul

pal. This implies that (:Cn,yn)v = (d)
this it follows that (x/d,y7/d ), = R and so a% least one

of ¥2/a,¥"/d is not in Pi;because T is a t—ideal. This imp—

lies that 4 € P as required.
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IEMMA 2.10. Iet R be z2n AGCD—domain and let P te a

maximal t-ideal of R. If x &R such that x€ P and x belongs

%o no other maximal t-ideal of R then X 1s 2 prime block.

~h

PROOF. Iet x and P be as given then foxr all n =znd for
2]l non-units a[x" the element a velongs %o P and o no

other maximal t—-idezl of E. Now because P is a t~1i

s

a
element of P is v—coprime to x. Further if (h.x)_ £ 1 then

as R is AGCD,there exist @€ P and n €N such that (".x)__

= (d) (cf. Temma 2.9 ). Thus he P if amd only if (h,x)_<£ 1-

Now let z,y be such that zR M xR £ zxB and yRMNxR £ yxR.

o

A,

Then z,y & F and there are né § and de R with (z_‘,yr‘)vzf‘?.
which gives z°/d £ P or y°/d f P; mezping that (z"/d.x)_=1

o (yn/d,x)v:: 7. This indeed gives that x is a prime btlock.

LEMMA 2.11. Iet R be an AGCDdomain such that every

non-zero non-undit of R belongs to 2t most a finite number

of maximal t-ideais. Then every maximeal T-~ideal P of R is

b is 2 prime block.

of the form ;{b) vhere b is
PROOCF. Iet P be 2 maximal t—-idezal of R and let 04k € P.
Parther let{ P,‘,”.,Prf be the zet of 211 other maximal
t—ideals containing x- Comsider X € r - 131 then there
. . . s e S S ¥} -1 - d T -
exists n such that for some d ¢P (x )X ), = dR. Clearly
q° Now Jet EQ,‘, SN ?st be the set of maximal
t—ideals, other than P, which conftain 4. Tnean,,,...,Q,_g

aer -

A

S
(_:‘_;{PZ,...,Prg . Following this procedure we get 2 d,€ P —Q
which divides a powexr of 4, and hexce of x. Continuing this
vyrocess of exclusion of primes we Teach 2 non~zerc b€ P
such that b divides a power of x and b € Py»r---2P. Clearly
b belongs to P and to mo other maximal t-ideal. Now using

Temma 2.10 we conclude that b is 2 pdrime block and that



P = %),
THEOREM 2.12. 1et R be an AGCD-domain. Then R is an

AUFD if and only if the following hold.

(1) Every non-zero non-unit of R belomgs to at most 2

finite number of meximsal t-ideals.

(2) iIf two maximal t-ideals P, and P, have 2 nom-zeIo prime

jdeal in common then they are sgual.

PROOF. The necessgity is clear from eaxiier remarks.
Poxr sufficiency we show that every nom~zexo prime ideal of
R contains a prime block. We noie that by (1) and Iemma
2.17, every maximal t—ideal contains a2 prime block. Fow let
D be a prime t-ideal. Then by (2) p is contained in a
unique maximal t-ideal P. Now let x¢ 3. Them by (1) them
axre at the most a finite number of maximal t-ideals PT?“M.,
P such that x€ p,P,,...,P - Since p is 2 t-ideal =nd REP;
we can use a modification of the precedurs used in[12] and
in Temma 2.11 to show thet there is a factor d of a power
of x such that de p - Pi (i= Tye-waT)n t then by lemma

=

2.10, d is a prime block. Now because a minimal prime of z

L

-~

principal ideal is an associated prime and hemce a T-idezl
we conclude that every prime ideal of R contains & prime
block.

Theorem 2.12 gives 2 critericm which helps in recogni-
zing an AUFD.Clearly a UFD is an AUFD and considering that
fastfaktoriell rings of Storch (11] are AGCDKrull domains
we conclude that non—-GCD fastfaktoriell rings axe & zcod
example of AUFD's which are not UFD's. Boih of these

examples are integrally closed. In the following we censt—

ruct an example of a not integrally closed AUIND.
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EXAMPIE 2.13, An AUFD which is not invegrally closed.
Iet XK be a field with characteristic p £ 0 aund let &

be 2 purely inseparable extension of X such that Pe g

(cf.[5] Theorem 100 for a simple example with p = 2). Cons—

i

e

n 2
truet R = K + XL[x]=1{ &, +};aix3{aoexana a € T

¥ e

"L

note that K[X]C R and that if £(X)E€ R then £= af+f afxX'P
€ K[x] . Since KfX ] is a PID, for every two h(z),k(i)e I
there exists 4(X)€ X[X] such that (R(X))PR{X]+(k(X))Px(X]
= d(X)K[x]. From this it follows that(n(X))PR+(k(Z))PR=AR
and this impliies that (a(X))PRM (x(X))PR is prinecipal.
Thus R is an AGCD-domain. Further let f(X)€ R. Then f&X{X
and hence is = product of prime powers in K[XJ. Thus

P = qrra-2B where each of g is a prime power in KE;],
We show that each of 8; is a prime block in R. Tor this Jet
h.k€ R be such that for some *,hRfngR £ hg. R and KR/ 1g;R
P kg, R. Then bP,xP¢ k{X] and clearly b¥ and kP are nom
caprime with the prime power gi(in K[X] }. So we have

ax[X] = vPx(x] + ¥Px(x] . Now as this equation extends to R
we have dR = hPR+kPR and this gives d €R such that h*/d and
kp/a beleng to R 2nd one of them is v—coprime %Tc g. because
one of them is coprime %o g; in K{Xj . Thus we conclude
that each of g; 1s 2 prime block. That R is not integrelly
closed is obvious.

3. ATMOST GCD-DOMAINS

The existence of a2 not integralily closed AGUD-Comain
raises questions like (1) what is the relation between an
AGCD~domain and its integral closure ? (2) what are the
integrally cliosed AGCD—domzins like 7 In this section we

provide the fellowing answers to these guesticns. We show
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that if R is an AGCD-domain then so is its integral closuxre
R' and that an integraily closed AGCD—Comzin is a PVMD.

THEOREM 3.7. Iet R be an AGCD-domain with guotient

field K. Then x€ K — {0f is integral over R if and omly if

¢ R for some m< N.

PROOF. Iet X = uw/vreX. If (w/~)2¢ R then u/v is integ-
ral over R. Conversely suppoce that /v is indegral over R
and let n be such that -."BNV R = &R where d € R. Then thers
is t € R such that (un,vn)_; = tR and so (u/A)2 = O/ = h/k
where h ahd k are v—coprime. Now as u/v is imtegral over R,
so is(u/~)® = h/k. But 25 h and k are v-coprime h/k is in—
tegral over R if end only if k is a2 umit. Whence it follows
that if w/~ is integral over R then Toxr some néN (a/~ )% R.

COROLLARY 3.2, Iet R be integralily closed and let

X.¥€ R such that for scme néN,xng . Then x|y in R.

PROOF. If X7~ then (y/x)"¢ R waich means that x/¥ is
integral over R. But R is integraliy closed.

COROLLARY 3.3. LZet R be integrally closed znd let

d,a;,-..,2 € R De such that dfey for ail i=1,...,r. Then
n, o n_
d]a 'a 2...a*1Thez*en+n tenaadl = D-
1 72 r — 7172 r
n, N n . b
= g e 1 0 : S
PROOF. Fote that (a, a22-..a.r* » = (a?) cee(al) "
n. . 5 0.y I
o - - i 1E n _
Since dia? ve have 4 3“} (ag) + or {(d) N (a*i) * or
n ni n Oy
a “ﬂ(ai ¥ or, by Coroliary 3.2;d4 S ﬂai .

We proceed next to indicate the relation petween sn
AGCD-domain R and its integral closure RF.

THEOREM 3.4. If R is an AGCD-domain and R' ifs in

ral clogure then R’ is 2iso an AGCD—domain.

To facilitate the proof of this theorem we inciude the
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following two lemmas.

LENMMA 3.5. Iet R be an AGCD—domain aznd let 2.b be

v—coprime in R. Then 2.b are v-coprime in the integral

closure R' of R.

PROOF. Since (z,b)_ = 1 in R we have a2RN DR = =bR. Now
suppose that x€ aR'M "CP:: then X = 2ar = bs where r,sc H'.
Because R' is the integral closure of the AGCD-domain R
there exists ne N such shat ©= a°r= = b g c R. But +hen
for some m e N,x°¢ a2uNbPPR = 2b™R. Thus =/ (2™%)€ RCR*.
But then ablx in R'. Hemce aR'/) PR’ =2bR' and from this

it follows that aR'Y) bR' = 2bR'.

IEMMA 3.6. If in an AGCD-Gomain R, X°RNy R = dR then
22 N 2R = 4%r.

PROOF. From xR} 7R = 4R we comnclude that there is b
in R such that (xn,yn)v = hR. Clearly b is the GCD of xPamd
v2. But then ¥ ¥ = &h. Raising this equation %o the power
n end noting that (x/k,7/h)_ = 1, and hence
(xmn/nm,:ym/hm)v = 1, we get t;e result.

PROCF 0QF THEOREM 3.4. Iet x,y€ R'. Then there z2x2 p,;q

in ® such that xp,yqé R. So there exists m = pg sucn That
xm,-ymé R. Now as R is AGCD there are n€ N and 4 € R such
that 0RO ¥°PR = dR. Now let a¢ X °r'() y""R’. Then
2 = ¥80r = ymns; r,s€R'. If rw,s.ZeR then there is k = wz
such that a5 = KK L 0K 2 Byt then
K€ R N YPIEp  pccording to Temme 3.5 this gives
ak/dké R & R®. That is a/d is integral over R and df a in
R'. But then xR () ¥™™R*® = dR'.

In the remainder of this section we establish that an

integrally closed AGCD-domain is a Prufer v-multiplication
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domain of a special type. Foxr this we recall that an jideal
A e F(R) is t-imnvertible if there exists Be F(R) such that
(AB)t = R. A t-invertible v-ideal is a v-ideal of finite
type (ef. Griffin [3] ). If both A and B are of finite type
it is easy to establish that (AE)t: (AB)V. According to[3]
R is a PVMD if amnd only if every two—gemerated idezl of R
is t—invertible. We use this result in the sequel to estzb-
1ish that an integrally closed AGCD—domain is =2 FVID.
THEOREM 3.7. Iet R be an integraily closed AGCD-dc-

n
mzin. Then for a,be& R there exists n &N such that((z2.b) )_
exisvs sucn toet .

is principal.
PROOF. ILet a,b€ R. Then there exists n€ N such that

2"RNYPR is principal. Or equivalently (an,bn)v = dR for

-r. T
{22 T for

some 4 € R. Now as c‘x]an,bn,by Corolilary 3.3, 4
211 integrel r from O to n end so (z,b)’< dGR. Now (29,9%)

< (a,b)c dR. But then dR = (2,b°) < ((a,‘o)n}vc aR-

0]

COROLLARY 3.8. Iet R be zn AGCL—domain. Then Tk

following are egquivalent.

(1) R is integrally closed,

(2) for all x,y€R , x| v implie

mn
v

.{ 7.

(3) for all =,b€R, ((a,'b)n)\r is principal for some n € N,

e

(4) R is a FViD.

PROOF. We note that (1) = (2) follows from Cerollaxy
3.2 and (2) is used to prove Crollary 3.3 which in turn is
used to prove Theorem 3.7 that gives (3). Moreover (4)=r(1)

=

because it is well kmown that = PVID is integrally closed.
So to prove the equivalence it remains to show that
(3)=>(4). For this let a.b€ R and suppose that for some

né N and for some 4 € R, ((2.D)?)_ = 4R. Then

v
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((a,b)(a,b)n“1/d)_ =R Ifn =1 them (2,b), = 4R 2nd
R z((a,b)R/d) = ((a,b)E/a) . Parther if n> 1 +thexn (a,b)n'?

is finitely gemerated and so BR= ((2,D)( a.zb}n~1 )=

T
)]

{(a,p) (2, b)n—7/d),_. Thus every vvo—cenex‘atea ideal of h
t—invertible and this establiishes the implication.

It is easy %o note that (3) =>(4) does not need the
assumption that R is an integralily closed AGCDComzin. In
fact, as we shall see below, (3) implies that R is a PVD

and an AGCD—domain.

THEOREM 3.9. In z commutafive integral domain R the

following are equivalent.

(1) R is an integrally closed AGCD-domain,

(2) R is integraliy closed and for 2ll 2,b€ R there

i

n(a.b)e N such that (2°,%" ), is principal,

(3) for 211 a;b€ R there is n< N suck that ((a. b)“) is

principal.

{£) R is integrally closed ané for all Xy 3XnseansX £ R

there is n(xj,‘_,,xv) € N such that (x?,...,x?,)_f is prineci-
Laere 1is . such rhat 15 princi

=

(5) for all Xys+--,X. € R there is n¢ N guch that
_— A

({x;,-+-»x)") is principal,
-~
(6) R is integreliy closed and for 21l Kyeennr X € R there

is n€ N such tha?’ x’nﬁ N }:‘SR A...0 xﬁR igs ®rineival.
PROOF. We first establish (1)&¥(2)&=(3) and (4)=(5)
then we show that (1),(2),(3) ={({(4)=(5))=(6)=(7).
Now (1)e(2) is obvious znd {2)=(3) is Theor=m 3.7-
For (3)=>(2) we note that (3) mekes R a2 PVMD (cf. Corollary
3.8). Now according to [1] (Theorem 24.3) and according to

the rule for translating results from Prufer domains to
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PVMP's given in [15] (Theorem 3.1 ), in a DVMD
((x,l,..‘,xr)n),\r = (x?_.,..,xr)v and putiing © = 2 we get (2).
(4)=> (5).Pixinge © = 2, R is an AGCD-domain. By Corollary
3.8 R is a PVMD and as in (3)2(2) («F,....x0) = d®
implies ((x,‘,...,xr) ), =aR.

(5)=>(4).Fixing r = 2, R is a PVMD by the proof of
(3)="(4) of Corollary 3.6 and as in the proof of (3)=(2)
((x.],...,xr)n)_ dR imllies (*{,,”.,xn)_v_ = dR.

Further. (6)=* (1) is obviocus and to complete the
cycle we need to prove that (3)=>(4) and (5)==(6),
(3)=(4). 1et X :--+:X_ € R. Then thers exists a, (x,},xz)
in N such that «x1,x2)n1)v - (x1n7 ‘2) = G,R. Further,
there exists 32(3:3,&,‘) such that ((d s¥q )n2) _(d“2.xq 2)1_

4R, Fow(@?)= (a32) = ((((x;.x, n' )__)n2)v=(<,c,,,x2>‘1n2>v
e PN nTAAZ "1 Il n__nz)

It

n1n2 D.1 :

= (x1 ,’xz L)-.\r" So(dz) = (}\-1 An.; 31

Farcher

3 hull

.,
since by(3), R is a PVMD we have (\x,,xz,xv) 1 2)" = (d?)s
This establishes an induction procedure., on the basis of
which we conclude that for X,.X,. --.,X_ER there exist n€N

and d € R such that ((x,,.,..x )B}__ x?,...,zq‘;)v = (d).

(5)= (6). Iet Xyo-es:X €R and let T, =illj"xj . Then there
exists n such that (“'n;.n.“'in) = (d). Or
(1/x,...}fj)(‘"?,.-n,lr)v = | a/;x,.-, ) which Zives thzat

(1/52, .., 1/22), is principal.But then (T/k?,.,a?i/kﬁ)—1is

principal which gives the resuit.

- o A3

RETJ.AP._K 3- nO. Let R be a;l AGCD—comain a:u% let B @ the

~ rexyl x 291 e ;| l‘}r &N
1*1tegra_L c‘iosuré of R 'ﬂne'l far eve 7| X E R tng,.e 1\3 \‘L)”

vy

|
1 \ 3 |
such \‘ that X € R.\If R ;éﬁ‘ uﬂé; avcomlng vo “&‘gat ( \

must hawe bha:'ac’de lstié\ p £ o or n'(é.uq hence 'R) =h _Ld
(‘" 7 7 5 B é‘."){_"fj ,PI{’{{ £ .

\ ; I el M
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be alg‘eoralc QVer a Linite A£ield.Se if chér R= 0 and? an

AGCD—aoma;n Wnlch is not alﬁeb O“er a f;nlv? fleid B
. Falae: See 4@1 ﬁl?l - TINNY) L’)e«aw/
then B =R ] paiins” . Algbin /fzc)/'w/wvf fC‘?’

& o ouua¥ & ﬂ< S fla
4.INTEGRALLY GIOSED AUFD's 2 A“‘ o [

In this section we show that an integrally closed

AUFD is a ring of finite character of a special type(rings

of finite character are éofined below).After this we dis-
cuss the comnection of integrally closed AUFD's with fast-.
faktoriell rings of Storch. That is we state the comdivions
under which an atomic AUFD is = Xxull domain.

Rings of finite character are defined as folliows.Ilet
F= {Vi} je 1 be 2 family of valuation overrings (rings bet-

ween R and its field of fractions K) such that R = [?3 V
RS =%N
Py

Then R is a ring of finite characiter if every non—zero

-

non-uait of R is 2 non—unit in at most 2 finite nuwmbhexr of

incomparable members of F. If each V. is essential,i.e. a

~

quotient ring of R,then the ring of finitfe chaxacter is

called a ring of Krull type . Thus if R has a fanily { i}

of prime ideals such that (1) R :fﬁ?RP ,(2) For each iRy,
i i
is a valuation ring and (3) every non—zerc non-unit of R
belongs to a finite number of distinet P& then R is a ring
of XKrull type. According to Griffin 12] a ring of Xrull
type is a TVMD and the family of primes may be selected to
be maximal t-idezls. It may be recalled (cf. [3] ) that B
is a PVMD if and only if for every maximal t-ideal P.R; is

oK g

2 valwation domein. PFinalily 2 ring of Krull type defiped by

1j ieT

a fam¢Ly{ 1 of maximz1 t-idezlis is ezalled an indepen-—
dent ring of Krull type (IXT) if P

P. £ P. implies that
1 J
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Pi{] P, does not contain a non—zerc prime ideal. With this
o
introduction we prove the following theorem.

THEOREM 4.1. An integrally cliosed AUFD is an IKT.

PROOF. We note that an integraliy closed AUFD is a
PVMD. Now Theorem 2.12 amd related definitions make the
procf a simple matter.

The simplest foxm of an independent ring of XKrull %ype
is of course a valuatiou ring. The following result may be
of interest.

PROPOSITION 4.2. An integrally closed integral domain

R is 2 valuation ring if and only if for =231 x in the guo-

tient field K there is n sguch that x"¢ R or T/ine K.

We reczil that v ¢R is a rigid element if for all
X,¥yir: x|y or y]x. In a valuation domain every non-zerc non
unit is rigid. In [14) it was shovm that a GCD-domain is an
independent ring of Xrull type if and only if every non
zero non-tnit of 1t ig a product of finitely many risid
elements. This gives rise to the guestion,™ Do the rigld
elements have significance for the AUFD's?" In the follow-

ing we show that they do. Indeed in an inbegraily closed

V]
’Eé
[l
<
9]
<
Q
+h

AUFD some power of every non—zero non~unit is
finitely many rigid elements. We establish this result via
the following Propositions.

LEMMA 4.3. In an integrally closed integrzl domain R 2

prime dlock is a rigid element.
- - . . . - .
PROOT. Tet b be a prime block, let m €N and let x.y|D-
, . i s i = : N n;_n
Then by Proposition 1.5 there is né N such that x |y ox
B . e B o e B
¥ Ix . Now as R is integraily closed, by Corollary 3.2.X}y

or y}x. Putting m = 7 the result follows.
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PROPOSITION 4.4. Iet R be em imtegrally closed AUFD.

Then for every non-gero non-unit x of R there is n€N such

that ¥ is semirigid i.e. & produci of finitely memy rigid

elements.

PROOF. The proef is immediate from Iemma 4.3.

A Krull domain is obviously an independent ring of
Krull type and as fastfaktoriell rings of Storch (lecc cit)
are Krull AGCD—domains we conclude that the thecry of
AUFD's is a generalization of thav of fastfakbtoriell xings-
How we proceed to establish the necessary and sufficient
conditions under which an atomic AUFD iz a Xrull domain.
Hers, an irreducible element is calilesd an atom and zn
integral domain whose Ton-~zero non—~units are expressiblie as
products of atoms is callied atcmic. Te give a betber idea
of the notioms involved we first note a negative result.

LEMFA 4.5. Iet R be an integrally closed AUTD znd le¥d

j2s]

ig

=

212

P be 2 prime t~ideal of rauk more vhan cmne in R.

no+v atomic.
PROOT. Iet F.C P, be twec non—zero prime ideals con—
VL . == J

tained in P.Then zs R is an AUFD there exists a prime block

- P, end n< N, we

L

Ty € P1. Now by selecting =z suivable x ¢ >

can have (r?,xn)" = rzs;P2 - P1_ Since 1, and x, are cleax—
v 4 =

1y simiier there is m €N such that LT]*Z oxr rgjr? waich

gives fg]r?;because TH€ PZ - F.. Fow oy Coxrelliarxy 3.2,r2§rf

© +then rg is a prime block which is similar ¢ r, and by

the above reasoning rgjri. This contradicts the assumpition
that Ty is 2n atom. Hence if R contains a prime t-idezal of

renk more than ome R czannot be atcmic.

o]

}S 1
Fh

From the above proof it follows that
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rally closed atomic AUFD then every maximal t—ideal of R is
of rank one and it contains a prime biock p which is an
atom. Because every prime block in an integrally closed
AUFD is wigid , every prime block,similar %o p,in the
atomic case,will be a power of p. From these comsiderations
follows the proof of the lemma below.

LERIGA 4.6. et R be an integraily ciosed atomic AUFD

and let p be The atomic prime piock of 2 given maximal

t-ideal P. Then for all x€ P — 0f there exist n,r €N such
o = 1

that x° = apr where (a,p

IEMMA 4.7. Let R,P znd p be as in Iemma 4.6 and let vp

ke the valuation of The guotient Lield K of R centered at

P. Then for x€P - {Oz( p{x if 2nd onl

[eheNin's

l i
<
lae]
-
P
et
W
<
d
—~
i

PROOF. By Iemma 4.6 x° = ap’ where (a.p)_ = 1. Now
-.rP(x) Z'VP(p) if end only if nvP(::) 7 nvp(p) i-e. if and
only if rvP(p) 2 nv?(p) i.e. if and only if T » n. But if
r 7 n then pnf x¥?. Now R being integrally closed this
gives p| x .

THEOREM 4.8. An integrally closed atomic AUFD R 1s

I

Krull domein if and only if for every meximal t~ideal P

<t

and associated valunatior v

with atomic rigid elemen

ry

1Y
there exists x€P with p/d x such that for every ¥ with

N

pf 7, voly) £ vplx).

PROOF. Iet R be a Xxull domain then for p& P. zs de-

i

fined above. VP(p) r say and there exists z €R such that

-1

z is +the required element. Con—

it

vp(z) = 1 and so x
versely suppose that R is zm integrally closed AUFD which
is atomic and suppose that the given condition neolas. Con—

sider the ideai A& = (p):{x) = (,;:‘6—1“\ r}:e(p)j , where X
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has the property indicated in the statement. We claim +that
A ig a prime ideal. Because if uveE A then p{uvx and so
vP(p) £ VP(uvx). Now suppose that pfvx then by the condi~
ticn vP(vz) 5;VP(K). From this it follows that VP(V) = 0;
which means +that (v,p)v = 1, Hence by (2) of Iemma 1.1
plux - Thus A is a pri;e ideal. Being = guotient of two
ideals A is a v— and hernct2 a t—ideal 2nd it is easy to see
that A = ?. Further zs HP is z valuzation ring 2nd as PRP
= ((p):(x))RP = PEp xRy is principal we conclude that for
every maximal t-ideal 2. EP is a discrete rank cne valua-
tion ring and this is sufficient ¥o show that R is a Krull

domain.

We ghall restrict our attention t¢ quovient rings and
to polynomial ring formation. For guovient rings we note
that (fn)fW(gn) extends nicely to The ring of fractioms and
so the gquovien®t rings of an AGCD<domain are AGCD-domains.
For polynomial rings we go slightly comprehensive and
include a concept which will be of use in future studies of
AGCD—-domains and ¢f AUFD's. This concept is an emaiocgue of

=

the divisor class group, of a2 Kxulli domain. for RPVED's.

This concept is the t—class group which has been treated
properly-in the introduction.

In this section we show, using simple fechniques. that
if R is integrally closed +then R is 2 PVMD with torsion
CT(R) if and only if R[X] has this property. ¥e recall from
the introduction that if R is 2 Xxull demain CT(R) is just

the divisor class group of R. FPurther, because an inverti-

bile ideal is t-invertible if R is Prufer then CT(R) is just
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the class group of R. A study of some aspects of fthe
t-class group has been carried out in collaberztion with
Alain Bouvier and will appear in due course of time. For
the purposes of the present article we note that foxr a
PWD R CT(H) is torsiom if and omiy if ig an AGCI—dGomain
(cf. 3.7 ~ 3-2). So we can refer to PVMDfs which are AGCD:
as PVMD'’s with torsion t—class groups.

We proceed to show that if R is =2 PVMD with torsion
t-class group and X is an indeterminate over R then R[X]
alsoc has torsion t—-class group. For this we note tThat
according to {i0] Iemma 1, if R is integrally closed and
£(X),g(X) € K[X] then (Afg)v = (Ang)v where Ao denotes the
content of £{X).

THECREM 5.1. An integrally clesed integral domain R

=)
Hh
Q
E‘
%)
L
)
Q
e
y
54
M
jas)
=
>4
N

is an AGCD-domain if l
(£(X))? = aH(X) for some n € N,d€ R and H(X)€ R{X] where
A}I)v =R

DROCF. Sufficiency. Suppose that for all £(X)e€ R[X]

(£(X))® = qH(X) with f,n,d,H as described in the hypothe-—

sis. Then for every finitely generated ideal A —(ao..-.,an)

we can find £(X) such that he = & 2nd so for some nEN

(), =((a)%), = (An), = (hg), = alby), = (d). That is,

W

by Theorem 3.9, R is an AGCD~domailxn-

)

Necessity. let R be an AGCD-domain and let £(X)€ r{x) -j0¢f.
Then as R is also integraily closed, for some n€ N
PR ¢!

every coefficient of (£(X))" is divisible by d. Dividing

v = (d). or (d) = (Afn)_. From this it follows that

hY

out by 4 we get (£(X))* = GH(X). It is easy to show that

( Ay )v = R.
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Now if R is a FVAMD with torsion t-¢iass group then
R{Z] is at least 2 PVMD and so to show that R(X] has 2
torsion t-class group we need omly show that for £(X).g(X}
in R[X] there is n€N such that (£%)/ 1 (g") is principal.
For this we prove the following leumma.

LEMMA 5.2. Iet R be a PVMD with torsion ft-class group

and et X be an indetemminate over R. If f(X)€ R[X] with

(A‘F)v = R then there exists ne N such that

(£(X))2 = P; (X)...pr(x) where each p.(X) is 2 prime block
such that ¥ p,(X) = P, is a prime ideal with ./ & = (0).

PROOF. Let £{X) be as given in the statement. Then
every pxime idezl minimal over (£(%)) is a t-ideal. Because
R is a PVMD, =zccording to f‘n4] {(Proposition 4 ) every minimal

prime P, of (£(X)) is auch that Pin B = (0). Since X{X]) is

i

a UFD, £(X)K[X] (L (Y)) '.-. (J.*(X)> rz{gn , where it can

be assumed that £ () € r{x] and that £y (X) are mutuaily

non-associated primes in AfA]

4.

Now f(X) = (a/'b)(; (X)) ' .{f_(X))F for some 2,0€ R.

o'

Because R is 2 PVMD with torsicom t—class group. b¥
Theorem 5.7, for each i there exists m. such that
n. m. -
((£.(X)) 1) * = a.H.(X) where (A, ). = R. Fow let Ii =
i 3 3 rii v

Ty e eall and Mi = Mi/m; . Then
0. I, i
A

(£(x))E - <a/a>“<ﬂ<4.<x>>ni>““‘ = BT @) B D)

<H

(a/b)h‘ﬂ g ( ))z . Purther, as (A°¢ _ = R and

v

[

. e T TN Y i
{Af)V = R. we have (a/b) (ﬂ di ) = 1. Comseguently (£(X))
= i1 (Hi(X) )Mi where for each i there is a prime ide2l =
such that (H, (X))ME{x] =P, "ix{x

Now each of (Hi (X)) belongs to Pi and to nec other
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prime t-ideal. This is because every prime t—ideal P in
B{X} containing (% (X)) has the property that P/ R = (0)
(c£. 4] ) ana ('Hi(x‘))MiKIX] is a power of P,k[X]. Now
putting p; (X) = (H, () P4 we get the result.

DEFINITION.5.3. If p(X) is a polynomial in R(XJ such

= = —

that (Ap)‘v = R and p(X) has a single minimal prime P with

PNR = (0) we call »(X) =2 Primery polynomial.

LEMMA 5.4.Fet R be any integral domain and let 2,b € R.

Then a2 2nd b are v—coprime if and omly if they do not share

any associafed prime.

PROOF. We note that a 2nd b are v—coprime if and only
Ff (a,b)v =R (ef. (1) of Temma 1.1). Now using Iemmz 6 of
[14]we get the result.

COROLLARY 5.5. Let R be 2 FVED and let R[] be a

polynomial ring over R then the followins hold.

-

(1) I£ £(X)€ RIX] such thet (A;), = R then for all
a€R - {0}, (a.5)_ = rlx],

(2) If £(X) =20d g(X) are two primary polynomials then

flg or glf or £ and g are v—covrime.

PROOF. The proof of (1) foiiows from the fact that for
a PVHD R all the associated primes of R[X] that combain f
intersect R trivially (cf. [14] Proposition 4) and all those
which contain a intversect trivially with the set
S = zf(X) & rizl Ir(Af)v = R}because they are of the +ype
P{X] whers P is em associated prime of R. From this it
follows that a and £ do not share any asscciated prime of
R[X] and hence they are v—coprime. For (2) we note That
either £ and g velong to the same zssociated prime or they

belong to two different associated primes. Inm the latder
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case the proof of paxt (1) applies whereas in the former it
is sufficient to note that they belong to a unigue prime P
which has the property that (R{X] }P is 2 valuation domain.

THEOEEM 5.6, Iet R be sn integrally closed imtegral

domain amd let X be an indeferminate over R. Then R is a

PVMD with torsiom t-class group if and only if R{X] has the

same propexrty.

PROOF. Iet R be a “VID with forsion t-class group.
Then, it is well knovm that, R[X] is = PVMD. To show that
R(ZX] nas torsion t-class group we have +0 show that for all
f,g€ R[XJ there is n €N such that (£71) (M {g%) is principal.
For this we note fron Theorem 5.7 and Iemma 5.2 that there
is n € N such that £77 = dF where d € B,  (Ap), = R and
¥ is a2 product of primzry polyromizis. Similarly +there is

n.€ N such that g2 = eG where o €R. (hc)y = R amd G is

2
product of primeary polynomials. Now if for some Ay:
d™3R N e™3R 1s principal then so is &P3R[XIM P3RIZ] .

Now let 271 = 4

ke

and £%2= oG where d,e,F
1313, a2, 10 2.1
described above. Then £ | 2 = d °F 2 and 2

Because R has torsion t—class group there exists n

>

n, n n, n
i 4 T4 , G B .
that (d 2) () (e ') ¥ is principal in R and henc

S Bya4, n eWed n,n, n.n
So (€T 2HN(g T 2% < (424 Ne Tt )

[

n.n pogiyel .1 .0
(@ 25 D@ 25N Thnw@ ) ( vecause

(dyF)v =1 = (e,-G’)v>

"N

n,-\né n.n 0 .n
(G2 N (T NNUE TS N (@174, Noting that

., n.n,
(FZ2HNETH)

is pripncipal. because products of
0 n.n
; .- . - s S
primary polynomiais zre invoived, and that {d 2 4)m(e }

is principal and finally that The gbove two ideals axe
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are v—coprime we comclude that (£7) M (&) is prineipal.
Conversely,suppose that R(X] is a PVMD with a2 torsion
t—class group. Then it is easy to establish that R is =2

PViD. Moreover for any finitely generated ideal B of R[X]

11 . " s & - 5 S
(B )v is principal. So if B = A[X] where A is a finitely
generated ideal of R then B° = (&Y[X] and according to [91

(B%), = (&%) [x]. ¥hence it follows that if R[X] is a PVMD
with torsion t—class group then for every finitely sene—
rated ideal A of R (An)v is principal for some m € K.

We have already noted that in a Prifer domain the
t—class group coincides with the ideal class group. The
following corollary adds to this information in an inte—
resting way.

CORCLLARY 5.7. Iet R be a Driufer domain with torsion

ideal class group then R[X] is 2 PVMD with torsion t—class

:

This corollary highlisghts the similarity between the
PVID's and +the Prufer domzins, and at the same +time it
highlights the connection of the t—class groups with the
ideal class groups. This leads us to look into Prafexr
domeins with torsiom ideal class groups once again. These
integral domzins have been extensively studied because of
their special propexty that their overxrings are gquetient
rings. This property is cziied the Qf property. Im Lrull
domains we can find an anaiogue of the QR property: which
states that a Kxuil domzin R hes torsion divisor class
group if every flat overring of R is a2 guovient ring. It

4

would be interesting fto prove a2 similer resuli for IVADfs.

It may be noted tha®t if R has the QR property then R is a
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Prufer domain but may not have torsion class group. So the
possible result menticned akhove would read as: If R is a
PVMD with torsion ideszi class group then every flat

overring of R is a guotient ring.
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