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Splitting sets and weakly Matlis domains
D. D. Anderson and Muhammad Zafrullah

Abstract. An integral domain D is weakly Matlis if the intersection D = N{Dp |P € t-Max(D)}
is independent of finite character. We investigate the question of when D[X] or Dy is weakly Matlis.
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Call an integral domain D a weakly Matlis domain if D is of finite ¢-character and
no two distinct maximal ¢-ideals of D contain a nonzero prime ideal. Recently Gabelli,
Houston and Picozza [13] have studied polynomial rings over weakly Matlis domains
and have shown that in some cases a polynomial ring over a weakly Matlis domain
need not be weakly Matlis. The purpose of this paper is to indicate the use of splitting
sets and ¢-splitting sets in the study of polynomial rings over weakly Matlis domains.
‘We show for instance that if X C L is an extension of fields and X an indeterminate
over L, then the polynomial ring over K + X L[X] is a weakly Matlis domain.

Let D be an integral domain with quotient field K and let F(D) be the set of
nonzero fractional ideals of D. A saturated multiplicative set S of D is said to be a
splitting set if for all d € D\{0} we can write d = st where s € S and tDNkD = tkD
for all £ € S. (When ¢,k € D\{0} are such that tD N kD = tkD we say that ¢ and
k are v-coprime, because in this case (¢, k), = D.) Splitting sets and their properties
important for ideal theory were studied in [1]. Splitting sets have proved to be useful
in many situations (see [20]). A saturated multiplicative set S is said to be a t-splitting
set if for each d € D\{0} we can write (d) = (AB); where A and B are integral ideals
such that A, NS # ¢ and (B, s); = D for all s € S. Here the subscript v (resp., t)
indicates the v-operation (resp., t-operation) defined on F(D) by A+ A, = (A~1)~!
(resp., Ay = U{F,| F a finitely generated nonzero subideal of A}). We shall freely
use known facts about the v- and t-operations. A reader in need of a quick review on
this topic may consult sections 32 and 34 of Gilmer’s book [14]. Let us note for now
that a proper integral ideal maximal with respect to being a ¢-ideal is a prime ideal
called a maximal t-ideal. We note that if S is a splitting set or ¢-splitting set, then any
prime t-ideal P intersecting S intersects S in detail, i.e., every nonzero prime ideal
contained in P also intersects S (see [5, Proposition 2.8] and [2, Lemma 4.2]). Thus
a splitting or ¢-splitting set induces a bifurcation of ¢-Maxz(D), the set of maximal
t-ideals, into those that intersect S (in detail) and those that are disjoint from S. The
aim of this article is to show how the splitting sets and ¢-splitting sets can be used to
prove useful results and provide interesting examples. Our focus will be on proving
results about and providing examples of weakly Matlis domains which, as defined in
[4], are domains D such that every nonzero nonunit is contained in at most a finite
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number of maximal ¢-ideals and no two distinct maximal ¢-ideals contain a common
nonzero prime ideal. Indeed, as any nonzero prime ideal contains a minimal prime of
a principal ideal which is necessarily a t-ideal, one can require that in a weakly Matlis
domain no two maximal ¢-ideals contain a prime t-ideal.

A domain that satisfies ACC on integral divisorial ideals is called a Mori domain.
In [13] Houston, Gabelli and Picozza give an example of a semiquasilocal one dimen-
sional Mori domain (and hence a weakly Matlis domain) D such that the polynomial
ring D[X] is not a weakly Matlis domain. They also show that if D is a t-local domain
(i.e., a quasilocal domain with maximal ideal a ¢-ideal) or a UMT domain (i.e., uppers
to zero are maximal ¢-ideals, or, equivalently, ¢-invertible), then D is a weakly Matlis
domain if and only if D[X] is. One aim of this paper is to give a class of examples
of one dimensional Mori domains D such that the polynomial ring D[X] is a weakly
Matlis domain. We do this by proving Theorem 1. We also provide a family of ex-
amples of non-UMT weakly Matlis domains such that polynomial rings over them are
again weakly Matlis.

Theorem 1. Let K C L be an extension of fields and let T be an indeterminate over
L. The domain D = K + TL[T] is a one dimensional Mori domain such that the
polynomial ring D[ X| is a weakly Matlis domain.

To facilitate the proof of this theorem we shall need a sequence of lemmas, which
will find other uses as well.

Lemma 2. Let S be a splitting set of D. If B is an integral t-ideal of D, then BDg is
an integral t-ideal. In fact, for a nonzero ideal A of D, AyDs = (ADg). If E is an
integral t-ideal of Dg, then E N D is a t-ideal of D. Consequently a maximal t-ideal
of D that is disjoint from S extends to a maximal t-ideal of Dg, and every maximal
t-ideal of Dg contracts to a maximal t-ideal of D. Hence t-Max(Dg) = {PDg|P € t-
Max(D) and PN S = ¢}.

Proof. Only the “consequently” part is new. (See [1, section 3] for the other parts of
the proof.) Thus suppose that P is a maximal ¢-ideal of D such that PNS = ¢, so PDg
is a proper t-ideal. Suppose that PDg is not a maximal ¢-ideal. Let () be a maximal
t-ideal of Dg that properly contains PDg. Thus @ N D 2 P, but by the earlier part
of the lemma, @) N D is a t-ideal which contradicts the maximality of P. Further, if @
is a maximal ¢-ideal of Dg, then @ N D = P is a prime t-ideal of D. If P is not a
maximal ¢-ideal, then P is properly contained in a maximal ¢-ideal M. There are two
cases: M NS = ¢and M NS # ¢. In the first case M Dg is a maximal ¢-ideal properly
containing () which contradicts the maximality of (). In the second case, let s € M NS
and let p € P\{0}. Then since S is a splitting set, p = s;¢ where s; € S and ¢ is
v-coprime to every element of S. Since PN S = ¢,t € P. But then t,s € M; so
M D (t,s), = D, contradicting the assumption that M is a proper ¢-ideal. O

Note that the proof of Lemma 2 shows that the set t-Max(D) is bifurcated by the
splitting set .S into two sets: those disjoint from S and those that intersect S in detail.

Lemma 2a. Let S be a splitting set of a domain D with the following properties:
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(1) Every member of S belongs to only a finite number of maximal t-ideals of D,

(2) Every prime t-ideal intersecting S is contained in a unique maximal t-ideal of D.
Then Dg is a weakly Matlis domain if and only if D is.

Proof. Let D be a weakly Matlis domain and consider Dg. Take a nonzero nonunit
x € Dg. Then since S is a splitting set we conclude that zDgs N D = dD a principal
ideal [1]. Now dDg = xDg. Since every maximal ¢-ideal of Dg is extended from a
maximal ¢-ideal of D disjoint from S, and because D, being weakly Matlis, is of finite
t-character, we conclude that d and hence z belongs to only a finite number of maximal
t-ideals of Dg. Since x is arbitrary, Dy is of finite ¢-character. Next suppose that there
is a prime ideal P of Dg such that P is contained in two distinct maximal ¢-ideals M,
and M, of Dg. Then PN D C M; N D, M, N D, two distinct maximal ¢-ideals of D,
contradicting the fact that D is a weakly Matlis domain.

For the converse, suppose that Dg is a weakly Matlis domain and let d be a nonzero
nonunit of D. Then d = sr where s € S and r is v-coprime to every member of S.
Now s and r being v-coprime do not share any maximal ¢-ideals. Next the number
of maximal ¢-ideals containing s is finite because of (1) and the number of maximal
t-ideals containing r is finite because Dg is weakly Matlis (and by Lemma 2). Next let
P be a prime t-ideal of D such that P is contained in two distinct maximal ¢-ideals M
and N. Then P NS = ¢ by (2). But then both M and N are disjoint from S (for if
they intersect S, they intersect S in detail) and so the prime ¢-ideal PDg is contained
in the two maximal ¢-ideals M Dg and N Dg contradicting the assumption that Dg is a
weakly Matlis domain. O

Proposition 2b. Let X be an indeterminate over D and let D be of finite t-character.
Then D and D[X] are weakly Matlis if and only if for every pair of distinct maximal
t-ideals P and Q of D, P[X] N Q[X] does not contain a nonzero prime ideal.

Proof. We know that D is of finite ¢-character if and only if D[X] is [17, Proposition
4.2] (while this is stated for D being integrally closed, their proof does not use this
hypothesis). Also, every maximal ¢-ideal M of D[X] with M N D # (0) is of the
form P[X] where P is a maximal ¢-ideal of D [16, Proposition 1.1]. Suppose that for
every pair of distinct maximal ¢-ideals P and Q of D, P[X]| N Q[X] does not contain
a nonzero prime ideal. Let us show that D[X] is weakly Matlis. For this we must
show that no two maximal ¢-ideals of D[X] contain a nonzero prime ideal. Now the
complement of the set of maximal ¢-ideals used in the condition is the set of maximal
t-ideals that are uppers to zero and these are height-one prime ideals. But if at least one
of a pair of maximal ¢-ideals is of height one, then obviously the condition is satisfied.
So no pair of maximal ¢-ideals contains a nonzero prime ideal. The condition clearly
indicates that D is also weakly Matlis. Conversely if both D and D[X] are weakly
Matlis, then the condition is obviously satisfied. O

There are examples of weakly Matlis domains D, such as weakly Krull domains,
with the property that for every multiplicative subset S the ring of fractions Dg is
weakly Matlis. Recall that an integral domain D is a weakly Krull domain if D = NDp
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is a locally finite intersection of localizations at height-one prime ideals of D. A Krull
domain is a weakly Krull domain such that the localization at every height one prime
ideal is a discrete rank one valuation domain. Now recall from [3] that D is a weakly
factorial domain (i.e., every nonzero nonunit is a product of primary elements) if and
only if every saturated multiplicative subset of D is a splitting set, if and only if D is a
weakly Krull domain with zero ¢-class group. The ¢-class group is precisely the divisor
class group for a Krull domain and a Krull domain with a zero divisor class group is
a UFD, and there exist Krull domains that are not UFD’s. So, in general, a saturated
multiplicative set in a weakly Krull domain is not a splitting set. In other words there
do exist weakly Matlis domains D such that Dg is a weakly Matlis domain while S
is not a splitting set. There are other examples of weakly Matlis domains D that have
nonsplitting saturated multiplicative sets S such that Dg is weakly Matlis. Now the
question is: Is there a weakly Matlis domain D such that Dg is not weakly Matlis?
The example below answers this question.

Example 2c. Let X and Y be indeterminates over the field of rational numbers Q and
let T = Q[[X,Y]]. The ring R = Z,) + (X,Y)Q[[X, Y]], p a nonzero prime of Z, is
an integral domain of the general D + M type [7] and obviously a quasilocal ring with
the maximal ideal a principal ideal. Let K be the quotient field of R and let T" be an
indeterminate over K. Then the ring S = R + TK([[T]] = Z,) + (X,Y)Q[[X, Y]] +
TK][[T]] is a quasilocal ring with the maximal ideal a principal ideal. Since a principal
ideal is a divisorial ideal and hence a t-ideal, we conclude that S is a ¢-local ring and
hence is a weakly Matlis domain. Butif N = {p"}2°, then Sy = Q[[X, Y]|+TK]|[T]]
is a GCD domain such that every nonzero prime ideal of Sy contains TK[T]; so Sy
cannot be a weakly Matlis domain.

A splitting set S of D is called Icm splitting if every element of S has an lcm with
every member of D\{0}. A splitting set generated by prime elements is obviously an
lem splitting set. This gives us a Nagata type theorem for weakly Matlis domains.

Lemma 3. Let S be an lcm splitting set of D generated by primes. Then Dg is a weakly
Matlis domain if and only if D is.

Proof. Note that S satisfies (1) and (2) of Lemma 2a since a nonzero principal prime
ideal is a maximal ¢-ideal. O

Proposition 4. Let D be an integral domain that contains a splitting set S generated
by primes such that Dg[X] is a weakly Matlis domain. Then D[X] is a weakly Matlis
domain.

Proof. The proof follows from the fact that if S is an lcm splitting set in D then S is an
lem splitting set in D[X] [5, Theorem 2.2] and of course that Dg[X] = D[X]s which
in turn makes the proof an application of Lemma 3. O

Proof of Theorem 1. The proof depends upon the fact that T'L[T] is a maximal ideal of
D = K+ TL[T) of height one and every element of K + T L[T|\T L[T] is an associate
of an element of the form 1+7f(T") which being common to both L[T'| and K +TL[T
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is a product of primes which are of height one and maximal [12]. From this it follows
that S =K + TL[T]\TL[T| is an lcm splitting set generated by primes. Also, because
Dy is a one dimensional local domain, Ds[X]| = D[X]s is a weakly Matlis domain,
[6, page 389]. Now Proposition 4 applies. O

It is shown in [13] that if D is a UMT domain or a t-local domain, then D is a
weakly Matlis domain if and only if the polynomial ring D[X] is. Now a PVMD being
an integrally closed UMT domain we conclude that for a PVMD and hence for a GCD
domain D being weakly Matlis is equivalent to D[X] being weakly Matlis. We shall
use t-splitting sets to bring to light the behind the scenes goings on, in this matter, later.
For now we shall show, that even a weakly Matlis domain that is neither ¢-local nor
UMT can have a weakly Matlis polynomial ring. The example has already appeared in
section 2 of [19]. So we shall briefly describe this example and let the reader check the
details.

Example 5. Let V' be a valuation domain of rank > 1 and let ) be a nonzero non-
maximal prime ideal of V. The domain R = V + T'Vy[T] is a non-UMT weakly Krull
domain such that R[X] is a weakly Matlis domain.

Before we start to illustrate this example let us recall that an element « in D\{0} is
called primal if for all r, s € D\{0}, z|rs in D implies that z = wv where u|r and v|s.
An integral domain D is a Schreier domain if D is integrally closed and every nonzero
element of D is primal. Schreier domains were introduced by P.M. Cohn in [10] where
it was shown that a GCD domain is Schreier and that every irreducible element in a
Schreier domain is a prime. It was noted in [11, page 424] that if D is a GCD domain,
S a multiplicative set in D and X is an indeterminate over Dg, then D + X Dg[X] is a
Schreier domain.

Illustration: That R is a Schreier domain that is not a GCD domain (and hence
not a UMT domain) can be checked from [19, section 2]. Following [19] let us call
f € R\{0} discrete if f(0) is a unit in V. Now according to Lemma 2.2 of [19] every
nonzero nonunit f of R can be written uniquely up to associates as f = gd where d
is a discrete element and g is not divisible by a nonunit discrete element of R. Indeed
it is also shown in [19] after Lemma 2.2 that every discrete element is a product of
finitely many height-one principal primes. So the set S = {d € R|d is discrete} is an
lcm splitting set generated by primes. Next, as shown in Lemma 2.4 of [19] M = R\S
is a prime t-ideal of R such that M R), is a prime t-ideal. So, Ry; = Rg is t-local
and according to [13] Rs[X] = R[X]s is a weakly Matlis domain. Now Lemma 3
facilitates the conclusion that R[X] is a weakly Matlis domain.

Let us do some analysis here. Our main tool in Lemma 3 is the fact that we can split
every nonzero nonunit z of D as a product x = st where s is a finite product of height-
one principal primes (coming from an Icm splitting set .S) and hence is contained in a
finite number of maximal ¢-ideals and ¢ is not divisible by any such primes, i.e., ¢ is
coprime to every member of S. So, if we can show that each ¢ for a general = belongs to
at most a finite number of maximal ¢-ideals such that no two of those maximal ¢-ideals
contain a nonzero prime ideal we have accomplished our task.
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Following Theorem 4.9 of [2] we can prove the following lemma similar to Lemma
2.

Lemma 6. Let D be an integral domain and S a t-splitting set of D. If B is an (integral)
t-ideal of D, then BDg is an (integral) t-ideal of Dg. In fact, for a nonzero ideal A of
D, AyDgs = (ADg);. If E is at-ideal of Dg, then END is a t-ideal of D. Consequently,
if P is a maximal t-ideal of D with P NS = ¢, then PDg is a maximal t-ideal of Dg.
Hence t-Max(Dg) = {PDg|P € t-Max(D) and PN S = ¢}.

Indeed the “consequently" part of Lemma 6 can be handled in precisely the same
manner as we did in the proof of Lemma 2. For the other parts of the proof the reader
may consult [2, Theorem 4.9].

Let S be a t-splitting set of D and let 7 = {A;Ay--- A, | A; = d;Dg N D} be
the multiplicative set generated by ideals that are contractions of dDg to D for each
nonzero d € D. Call 7 a t-complement of S. Also, let D, be the 7-transform, i.e.,
D, ={z € K|zA C D for some A € 7}. Itis easy to show that D = Dg N D, and as
shown in Theorem 4.3 of [2], Dg = NDp where P ranges over the maximal ¢-ideals
Pof Dwith PNS = ¢ and D, = NDg where () ranges over the maximal ¢-ideals @
of D with () intersecting .S in detail.

This discussion leads to the following result.

Lemma 7. Let S be a t-splitting set of D, FF = {P € t-Max(D)|PNS = ¢} and
G ={Q € t-Max(D)|QN S # ¢}. Suppose that Dy is a ring of finite t-character and
every nonzero nonunit of D belongs to at most a finite number of members of G. Then
D is a ring of finite t-character. If in addition Dg is a weakly Matlis domain and no
two members of G contain a nonzero prime ideal, then D is a weakly Matlis domain.
Moreover, if S is a t-splitting set and D is a ring of finite t-character (resp., weakly
Matlis domain), then Dg is a ring of finite t-character (resp., weakly Matlis).

Let D be an integral domain, X an indeterminate over D, and S = {f € D[X]|(Af),
= D}. It is easy to check that the set S is multiplicative and saturated. Our next result
gives an alternate proof to parts of Lemma 2.1 and Proposition 2.2 of [13]; also see
Corollary 3.5 of that paper.

Proposition 8. Let D be an integral domain, X be an indeterminate over D, and S =
{f € D[X]|(Ay), = D}. If D[X|s is a ring of finite t-character (resp., weakly Matlis
domain), then D[X] is a ring of finite t-character (resp., weakly Matlis domain) and so
is D. Moreover, if D[X] is a ring of finite t-character (resp., weakly Matlis domain),
then so is D[X]s.

Proof. Ithas been shown in [8, Proposition 3.7] that S is a ¢-splitting set. So all we have
to do for the first part is to check that the requirements of Lemma 7 are met. For this
set F = {P € t-Max(D[X])|[PNS = ¢} and G = {Q € t-Max(D[X])|Q NS # ¢}.
Now every nonzero nonunit of D[X] belongs to at most a finite number of members
of G, because every nonzero nonunit of D[X] belongs to at most a finite number of
uppers to zero. The other requirement is met automatically because the members of G
are all height-one primes. O
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The bifurcation induced by the ¢-splitting set S = {f € D[X]|(A;), = D}

does indeed shed useful light on the construction D[X]x, where N, = S = {f €
D[X]|(Af), = D} by B.G. Kang [18]. For details the reader may consult [8] and [9].
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