ASSOCIATED PRIMES OF PRINCIPAL IDEALS

J. W. BREWER ano W. J. HEINZER

If A is an ideal of the commutative ring R, then there are several ways of
associating prime ideals of B to A. There are compelling reasons, however,
why the “weakly” associated primes of Bourbaki are the most natural and in
accord with Lazard [10; p. 92], “Cela (weakly) nous semble Inutile, car, dans
le cas noetherian, elles redonnent les notion classiques, et, dans le cas général,
Jes notion classiques ont trés peu d'interét.” we shall call these primes the
associated primes of A. Thus, a prime ideal P of R is said to be an associated
prime of A if there exists b © R\A with P a minimal prime of A : bR. This
paper is concerned with the associated primes of principal ideals of R and of the
polynomial ring R[X]. We shall prove that associated primes of regular ele-
ments, that is, nonzero-divisors, are well-behaved; for an integral domain D,
using the representation D = /M {Dp. | P, is an associated prime of a principal
ideal of D}, we prove a theorem on the finiteness of the ideal transform. It s
also shown that the associated primes of regular elements of R[X] are closely
tied to associated primes of regular elements of R. This enables us to prove the
stability under polynomial extension of a noetherian-like property of integral
domains which is then used to obtain a result about “locally polynomial rings”.

R will always denote a commutative unitary ring. A prime ideal P of R is
called a mazimal prime of the ideal A if P 1s maximal within the zero-divisors
on R/A [9; p. 3]. A prime ideal @ of R is called a prime divisor of A if there
exists a multiplicative system S in R such that QR s is a maximal prime of AR .
The maximal primes of A are precisely the maximal elements of the set of
prime divisors of 4 [12; p. 19].

Our notation will be essentially as in [9].

We list here some facts we shall need and begin with perhaps the most useful
fact about associated primes. They behave well under localization.

‘ Leama 1 [11; p. 17, Proposition 5]. Let A be an ideal of R with P a prime
ideal of R. Assume that S is o multiplicative sysiem in R and that P M\ 8 = &.
1? [ P is an associated prime of A, PR s is an associated prime of ARs . Conversely,
if PRy is an associated prime of ARp , then P is an associated prime of A.

1t:.can happen that P is a maximal prime of an ideal A but PRy does not
consist of zero-divisors on ARy (14], [3], and thus PRp is not a maximal prime
of AR, . However, if we assume that an ideal has only finitely many associated
primes, then the prime divisors and the associated primes coincide.
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Lemma 2(7; p. 281, Proposition 3.5].  Lei A be an ideal of B and assume that A
has only a finite number of associated primes. Then the set of prime divisors
of A is precisely the set of associated primes of A.

We come now to the first key result about associated primes of principal
ideals.

THEOREM 3. Let P be g prime ideal of R and assume that P is an associated
prime of a regular element x & E. Then P is an associated prime of each regular
element contained in P.

Proof. By localizing at P we may assume that B is quasi-local with maximal
ideal P. There exists z & R such that P is a minimal prime of zR : 2R. Since P
Is maximal, P = /(xR :zR). Thus, if y € P, there exists a, positive integer n
so that 4" € 2R : zR and we may assume that # has been chosen meinimally.
There exists d € R such that y"z2 = zd and if Y is a regular element,
then yR : dR = R. By [12; p. 40, (12.2)], P D [yR CdR] = [xR " T2R] D
[zR : 2R] and it follows that P — V(YR : dR). Q.E.D.

We remark that “associated prime” cannot be replaced by “maximal prime”
n the statement of Theorem 3 for Hochster [8] has given an example of a quasi-
local domain D with maximal ideal M containing nonzero elements = and Y
such that M is a maximal prime of D but M is not a maximal prime of yD.

Both regularity assumptions of Theorem 3 are also essential. For this, let
K be a field with X, and X, indeterminates. Set R = K{[X, , X,))/(X,%.
Then (X, , X,)/(X i) is the maximal ideal of R and since (X, , X,%) is primary
for (X, , X,) in K[[X, , X,]I, M consists of zero-divisors on X, + (X,%) in R.
From Lemma 2 and [12; p. 20, (7.5)] it follows that in a noetherian ring the prime
divisors and associated primes of an ideal coincide. Thus, M is an associated
prime of X, + (X%, a regular element of R. However, M is not an associated
prime of the zero-divisor X 1 + (X\°) since X, + (X,%) is not a zero-divisor on
X, + (X\%). Now let X, and X, be two additional indeterminates over K and
consider (K(X, , X, , X, » Xal) xy X0 xa. %0 - Taking an appropriate homomorphic
image and using the method of Gulliksen (5], one can show that an easy calcula-
tion yields an example of a local (noetherian) ring with maximal ideal M such
that 3 is an associated prime of a zero-divisor but there exists a regular element
7 & M such that M is not an associated prime of 7. (In fact, in conjunction with
P. Montgomery, we have used Gulliksen’s method to construct an example of the
following kind. For each positive integer n there exists a local Macaulay ring R,
with maximal ideal 3/  Such that the dimension of R,isnand M, is an associated
prime of a principal ideal.)

Theorem 3 has the following useful application.

Prorosition 4. Let D be an wdegral domain with {P,) the collection of asso-

ciated primes of principal ideals of D. Then D = na Dp, . Assume further
that each principal ideal of D has only a finite number of associated primes. Then
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p =\ Dr.150 locally finite intersection. M oreover, if S is a multiplicative
system of D, then Ds = (o (Dpo | Pa S = 1.

Proof. Clearly, D & N\« Dr. . Suppose that /b & M. De. - Tt suffices
to show that bD : oD = D. Assuming that bD : aD < D, let P be a minimal

~ prime of bD : oD. By definition, P is an associated prime of bD and so a/b € Dp.

Since b divides a In Dy , bDp : aDp = Dp which is impossible since PDp 2
D :aDDp = bDp :aDp .

Under the assumption that principal ideals of D have only a finite number of
associated primes, leb z & D, z # 0. By Theorem 3, if x € P, for some v,
then P, is an associated prime of x. Since x has only finitely many associated
primes, it follows that z is a unit in all but a finite number of the Dp,, .

Tinally, by the first part of the proposition, Ds = N {(Ds)pops | PyDs 18
an associated prime of a principal ideal of Ds} = M {Dp, | P, NS = &f and
P, is an associated prime of a principal ideal of D} by Lemma 1. Q.E.D.

1t is shown in [9; p. 34] that an integral domain D can also be represented as
D=MN{Dp, | P.lsa maximal prime of a principal ideal of D). If principal
ideals of D have only finitely many associated primes, then the maximal primes
of principal ideals are associated primes of principal ideals and so in this case
the first part of Proposition 4 follows from the above representation. However,
if one uses only the maximal primes in the representation of D, then the good
behavior under localization is lost. For example, if D is a two-dimensional
non-Macaulay local domain, then the maximal ideal of D is an associated prime
of a prineipal ideal, and therefore the representation in terms of maximal primes
is just D = D. But as we shall demonstrate in the sequel, the good behavior
under localization of the associated prime representation has some utility.
On the other hand, the representation in terms of maximal primes has the
following nice property.

ProposiTion 5. Assume that each principal ideal of the integral domain D
has only a finite number of maximal primes and that each maximal prime of @
I_”‘T'H-(‘i'pal ideal 15 an associated prime of a principal ideal. (This holds, for example,
tf principal ideals have only finitely many associated primes.) Then the repre-

ﬁr”"mh-m D =N {Dp. | Puisa mazximal prime of a nonzero principal ideal
s rredundand.

Proof. Let P be a maximal prime of the principal ideal zD, » # 0. By
!_".\'Dothesis, zD has only finitely many maximal primes, so let @, -~ Q. be
its maximal primes distinct from P.  Choose dc PANAJ" Q) and lety & D\eD
be Su(l:h that dy € zD. Note that zD : yD @€ Q. for each i. ButzD :yD s
%mtamed in some maximal prime of zD and hence must be contained in P.
PY Theo_rem 3, y/x €& N {Dp, | Patsa maximal prime of a principal ideal,
D;i = P} for y/xr = d,/d some d, & D and y/x € Dp, if P, isnot a maximal

me of 2D and d,/d & Dp, if Po = Qi for some . Q.ED.
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The somewhat contrived hypothesis in Proposition 5 that each maximal
prime of a principal ideal be an associated prime of a principal ideal appears
to be necessary in view of the example of Hochster mentioned above.

We give now the promised application of the localization property of Proposi-
tion 4. Recall that if D is an integral domain with quotient field K and if 4 is
anideal of D, then T = \UJ,.," 4™ = {z & K | A" C D for some n} is called
the A-transform of D. The A-transform of D is said to be finite if T is a finitely
generated ring extension of D. Finiteness of the A-transform of D was studied
by Nagata in connection with his work on Hilbert’s 14-th problem. Nagata
showed in [13; p. 199] that for D a pseudo-geometric (noetherian) integrally
closed domain and 4 a nongero ideal of D, the A-transform of D is finite if and
only if the AD ,-transform of D, is finite for each maximal ideal M of D.
The following theorem is an extension of this result.

TuEOREM 6. If D s a noetherian domain and A ts a nonzero ideal of D,
then the A-transform of D 1s finite if and only if the AD y~transform of Dy s
fintte for each maximal ideal M of D.

Proof. Let T denote the A-transform of D and let M be a maximal ideal
of D. Bince A is finitely generated, T p\u is the AD y-transform of Dy . From
this it follows immediately that if the A-transform of D is finite, then the
ADytransform is finite. To prove the converse it will suffice to show that
for each maximal ideal M of D there exists s & D\M such that T[1/s] is a
finitely generated ring extension of D[1/s]. Since T p\s is a finitely generated
ring extension of D, , we can choose t,, ---,{ & T such that Tpa =
Dylt,, --- ,t). IfD[t,, ---,t] = R, then R is noetherian and hence B =
N {Rp, | P, is an associated prime of a principal ideal of R}. Let a be a nonzero
element of 4; then T € D[1/a] € R[1/a]l and so T € Rp, if P, is not of the
finite number of associated primes of aR. Let Py, --- , P, be those associated
primes of aR having the property that T & Rp,. Weobservethat P.M\ D & M,
for P, N\ D C M implies that Dyl[t,, - -+ ,t.] & Rp.and Tpur = Dults, - -+, &,
s0T C Rp,. Thus, P,, ---, P, are precisely the associated primes of principal
ideals of R such that 7 € R p, and we can choose s & (P, M --- M P, M DA\M.
It follows that T < R[1/s] = {\s {R»; | Ps is an associated prime of a principal

ideal of R and s ¢ P,}. Hence, T[1/s] = R[1/s] = D[1/s, &, --- , t]1s a
finitely generated ring extension of D[1/s], which completes the proof of the
theorem. . QED.

We now turn our attention to polynomial rings. 'Thus, let X denote an
arbitrary collection of indeterminates.

TuEOREM 7. If P is an associated prime of (0) in R[X), then P = Q[X] for
some assoctated prime Q of (0) in R.

Proof. Let Q = P M R. By localizing at R\Q we may assume that R is
quasi-local with maximal ideal Q. But then P cannot properly contain Q[X 1,
for no element in R[X]\Q{X] can be a zero-divisor. As for the second assertion,
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first observe that P = A/ ((0) : hR[X]) for some nonzero polynomial A & R[X].
To see this, there does exist b & R[X\(0) such that P is a minimal prime of
(0) : hR[X]. Moreover, if P, is a minimal prime of (0) : AR[X], then P, is an
associated prime of (0) by definition. By the first part of the theorem, P, =
Q.[X] for some prime ideal @, of R. But Q. € Q and so @,[X] € Q[X] = P.
From this it follows that @ = /([(0) : RR[X]] N\ R). Let o be a nonzero
coefficient of k. Then @ 2 (0) :aR 2 [(0) :hR[X]JN R andsoQ = V((0) : aR).
Thus, @ is an associated prime of (0). Q.E.D.
Note that the corresponding statement is not valid for maximal primes.
To prove this it suffices to find a quasi-local ring R having a maximal ideal M
such that M consists entirely of zero-divisors but some finitely generated ideal
of R has zero annihilator. Forleta,, - - ,a, & M be such that Ann (@, -, 0a)
= (©0). Thena, + aX + -+ +aX" € M[X] is a regular element of RE[X] Cod
and so no maximal prime of (0) in R[X] can lie over M. But M is the unique
maximal prime of (0) in R. To exhibit the R, consider (K{X, Y)x.vy = D, o
I = (X, Y) and proceed as in [9; pp. 62-63, Ezxercises 6-7], viz., let E be the
D-module @ {D/P | P is a rank one prime of D}. Then I is the set of zero-
divisors on E and if one takes R to be the idealization of E, R provides the
desired example.

CoROLLARY 8. Suppose that P is an associated prime of a regular element of i
R[X]and let Q = P M R. If Q contains a regular element, then P = Q[X] and '
Q is an associated prime of a regular element. Thus, 1f R = D is an inlegral :
domain and P is an associaled prime of a monzero polynomial in D[X}, then :
PND=(0)or P =P ND)XJand PN\ Disan associaled prime of a principal z
ideal. i

Proof. Leta € Q, a regular. Then e € £ and by Theorem 3, P is an asso-
ciated prime of a. Thus, there exists h & R[X] such that P is a minimal prime
of aR[X] : hR[X]. So, in R[X1/aR[X] = (R/aR)[X] the image of P, say P, is an
associated prime of (0). By Theorem 7, P is the extension to (R/aR)[X] of an :
associated prime of (0) in R/aR, say P is the extension of Q/aR, @ prime in R, s
From this we have that Q is an associated prime of af and that P = @Q{X]. [ )

CoroLuary 9. Let D be an integral domain and let X be a collection of nde-
terminates over D. If principal ideals of D have only finitely many associated
primes, the same 1s true of D[X].

Proof. Let f € D[X]\(0) and let P be an associated prime of f. If Q@ =
P ™ D = (0), then P is the contraction of an associated prime of f in K[X 1,
‘f'h‘el‘ﬁ‘ K denotes the quotient field of D. Since K[X] is a UFD, { has only
ﬁ’lltﬂy many associated primes in K[X]. If @ 5 (0), then P = QiX] where @
Is an associated prime of one, and hence all, of its regular elements. If a is a
nonzero coefficient of f, then a € Q\(0) and so @ is an associated prime of a.
But by hypothesis, there are only finitely many such §’s. Q.E.D.
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If D C R are integral domains, then following [2] we shall say that R is
locally a polynomial ring over D if for each maximal ideal 37 of D, R\, is a
polynomial ring over D,, . Even if the transcendence degree of B over D is
one, then R locally a polynomial ring over D does not imply that R is a finitely
generated ring extension of D; for example, as in [2; p- 425], let D be the ring of
integers and let R = D[{X/ P | p is a prime integer}], with X an indeterminate.
In this example R is not even contained in a finitely generated ring extension
of D. However, if D is a noetherian domain and R 1s locally a polynomial ring
over D which is ¢ontained in a finitely generated ring extension of D, then R
itself is a finitely generated ring extension of D [6; p. 377]; moreover, as remarked
in [6; p. 379], the noetherian assumption on D in this result can be relaxed to
the condition that polynomial rings over D have the properties of Proposition 4.
Therefore, Corollary 9 yields the following.

PropositioN 10. Let D be an integral domain having the property that principal
tdeals in D have only finitely many associated primes. If R is locally a polynomial
ring over D and is contained in a Jinitely generated ring extension of D, then R is
a finitely generated ring extension of D.

It would be nice if Proposition 10 were true under the assumption that for
each maximal ideal M of D, R,_,, is merely a finitely generated ring extension
of Dy rather than a polynomial ring over Dy, . If the noetherian-like condition
on principal ideals assumed in Corollary 9 were preserved under finitely generated
ring extensions, then this could be shown. However, the condition need not
be preserved as the following example shows. .

Exomple. We present an example of a unique factorization domain D (and
thus a domain in which principal ideals have only a finite number of associated
primes) and a finite integral extension R of D such that some principal ideal
of B has an infinite number of associated primes. Let & be a field of characteris-
tic 0 and let X and Y be indeterminates. There exists an algebraic field exten-
sion L of k(X, ¥) such that the integral closure, D, of k[X, Y, X', Y "in L
has the following properties. D is a non-noetherian, two-dimensional unique
factorization domain such that for each maximal ideal M of D, D, is a two-
dimensional regular local ring and MD,, = (M N k[X, Y])D) . One way to
realize this is to take D to be the group ring over £ of a nonfinitely generated
torsion-free abelian group of type (0,0, - --) and rank 2 [1], [4]. Since D is not
noetherian, some maximal ideal M of D is not finitely generated. But MD,,
is finitely generated, and so M cannot be the radical of a finitely generated ideal.
Hence, there must exist infinitely many maximal ideals of D lying over M N
kX, Y] = (a, B)K[X, Y]. Therefore, D is a two-dimensional UFD having
elements a, 8 such that the ideal (a, B)D is contained in an infinite number of
maximal ideals of D and for each maximal ideal P of D which contains (a, B)
we have that («, §)Dr = PDp. Let R = D[a}g, 8, «**]. Then the principal
ideal *R has an infinite number of associated primes. For g!R : o!8'R contains
(e, B), is contained in each maximal ideal of R lying over (a, 8)k[X, Y], and
therefore has an infinite number of minimal primes.
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