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Abstract. An integral domain D is called a locally GCD domain if DM is a

GCD domain for every maximal ideal M of D. We study some ring-theoretic

properties of locally GCD domains. E.g., we show that D is a locally GCD

domain if and only if aD ∩ bD is locally principal for all 0 6= a, b ∈ D, and

flat overrings of a locally GCD domain are locally GCD. We also show that

the t-class group of a locally GCD domain is just its Picard group. We study

when a locally GCD domain is Prüfer or a generalized GCD domain. We also

characterize locally factorial domains as domains D whose minimal primes of

nonzero principal ideals are locally principal and discuss conditions that make

them Krull. We use the D + XDS [X] construction to give some interesting

examples of locally GCD domains that are not GCD domains.

Introduction

0.1. Motivation. Let D be an integral domain and D∗ = D \ {0}. An integral
domain D is called a GCD domain if for each pair a, b ∈ D∗, GCD(a, b) exists. We
say that D is a locally GCD domain if DM is a GCD domain for every maximal
ideal M of D. Since D is a Prüfer domain (an integral domain whose nonzero
finitely generated ideals are invertible) if and only if DM is a valuation domain
for all maximal ideals M of D, Prüfer domains can serve as celebrated examples of
locally GCD domains. Also, since a GCD Prüfer domain is Bezout and there are non
Bezout Prüfer domains, there are locally GCD domains that are not GCD. Another
example of a locally GCD domain is a locally factorial domain (an integral domain D

such that DM is factorial for each maximal ideal M of D). Let S be a multiplicative
subset of D, X be an indeterminate over D, and D(S) = D + XDS [X] = {f ∈
DS [X] | f(0) ∈ D}. The last-named author of this paper showed that D(S) is a
GCD domain if and only if D is a GCD domain and S is a splitting set [36, Corollary
1.5] and proved some results about D(S) being locally GCD. In this paper, we study
some ring-theoretic properties of locally GCD domains. We also characterize locally
factorial domains and indicate conditions under which a locally factorial domains
become locally factorial Krull domains. We use the D + XDS [X] construction to
give some interesting examples of locally GCD domains that are not GCD domains.

We show, in Section 1, that D is a locally GCD domain if and only if DP is a
GCD domain for every prime ideal P of D, if and only if aD∩bD is locally principal
for all a, b ∈ D∗. We also give some necessary and sufficient conditions for a locally
GCD domain to be a generalized GCD domain (i.e., aD ∩ bD is invertible for all
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a, b ∈ D∗) or a Prüfer domain. In Section 2, we study and characterize locally
factorial Krull domains. We show that D is a locally factorial Krull domain if and
only if every minimal prime of a nonzero principal ideal is locally principal and
a v-ideal of finite type, if and only if every minimal prime of a nonzero principal
ideal is invertible. Finally, in section 3, we study when D + XDS [X] is a locally
GCD domain. Among other things, we show that D + XDS [X] is a locally GCD
domain if and only if D is a locally GCD domain and the saturation of S in DP is a
splitting set of DP for every maximal ideal P of D with P ∩ S 6= ∅. As corollaries,
we have several interesting results: (i) if D is a locally factorial domain or a locally
GCD domain with dimD = 1, where dimD denotes the (Krull) dimension of D,
then D +XDS [X] is a locally GCD domain for each multiplicative set S of D; and
(ii) if S is a saturated multiplicative set of E, the ring of entire functions, generated
by infinitely many prime elements, then E +XES [X] is a locally GCD domain but
not a GCD domain.

0.2. Definitions and related results. As our work will take us into the territory
of the so-called star operations it seems pertinent to give the reader an idea of some
of the notions. Let D be an integral domain, K be the quotient field of D, and
F (D) (resp., f(D)) be the set of nonzero fractional ideals (resp., nonzero finitely
generated fractional ideals) of D.

A star operation ∗ on D is a function ∗ : F (D) → F (D) such that for all A,B ∈
F (D) and for all 0 6= x ∈ K

(i) (x)∗ = (x) and (xA)∗ = xA∗,
(ii) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B,
(iii) (A∗)∗ = A∗.

A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗ and a ∗-ideal of finite type
if A = B∗ for some B ∈ f(D). A star operation ∗ is said to be of finite character if
A∗ =

⋃{B∗ | B ⊆ A and B ∈ f(D)}. For I ∈ F (D), let I−1 = {x ∈ K | xI ⊆ D},
Iv = (I−1)−1, It =

⋃{Jv | J ⊆ I and J ∈ f(D)}, and Iw = {x ∈ K | xJ ⊆ I

for some J ∈ f(D) with Jv = D}. The functions defined by I 7→ Iv, I 7→ It and
I 7→ Iw are all examples of star operations. For a finite character star operation
∗, a maximal ∗-ideal is an integral ∗-ideal maximal among proper integral ∗-ideals.
Let ∗-Max(D) be the set of maximal ∗-ideals of D. Continuing with star operation
∗ of finite character, it is well known that a maximal ∗-ideal is a prime ideal; every
integral ∗-ideal is contained in a maximal ∗-ideal; ∗-Max(D) 6= ∅ if D is not a
field. The t-operation is of finite character and so is the w-operation. Moreover, t-
Max(D) = w-Max(D); Iw = ∩P∈t-Max(D)IDP for all I ∈ F (D); and IwDP = IDP

for all I ∈ F (D) and P ∈ t-Max(D). An I ∈ F (D) is said to be ∗-invertible if
(II−1)∗ = D. We say that D is a Prüfer v-multiplication domain (PvMD) if every
nonzero finitely generated ideal I of D is t-invertible, i.e., (II−1)t = D. A reader
in need of more introduction may consult [39], [20, Sections 32 and 34], or [22].

Let T (D) be the group of t-invertible fractional t-ideals of D under the t-
multiplication I ∗ J = (IJ)t, and let Prin(D) be its subgroup of nonzero principal
fractional ideals of D. Then Clt(D) = T (D)/Prin(D), called the t-class group of
D, is an abelian group, which was defined by Bouvier in [12], at the suggestion
of the last named author. Unlike the divisor class group which is defined only for



LOCALLY GCD DOMAINS 3

completely integrally closed integral domains, the t-class group is defined for a gen-
eral integral domain. However, it is interesting to note that for a Krull domain, the
t-class group is exactly the divisor class group and for a Prüfer domain or an inte-
gral domain of dimension one, the t-class group is precisely the ideal class group.
Here, the ideal class group of D is Inv(D)/Prin(D), where Inv(D) is the group of
invertible ideals of D under the ordinary ideal multiplication. The ideal class group
is also called the Picard group, so Pic(D) = Inv(D)/Prin(D). Clearly, Pic(D) is
a subgroup of Clt(D) because an invertible ideal is t-invertible.

An integral domain D is a GCD domain if and only if for every pair of elements
a, b ∈ D∗, we have that aD ∩ bD is principal. It is well known that D is a GCD
domain if and only if D is a PvMD with Clt(D) = 0 [12, Proposition 2]. A saturated
multiplicative subset S of D is called a splitting set of D if for every d ∈ D∗, d = st

for some s ∈ S and t ∈ N(S), where N(S) = {x ∈ D∗ | (x, s)v = D for all s ∈ S}.
We say that a multiplicative set S of D is a t-splitting set if for each d ∈ D∗, we
have dD = (AB)t for some integral ideals A and B of D with At ∩ sD = sAt for all
s ∈ S and Bt ∩S 6= ∅. Clearly, a splitting set is t-splitting, and if Clt(D) = 0, then
a t-splitting set is splitting. It is known that D is a weakly factorial domain if and
only if every saturated multiplicative subset of D is a splitting set [9, Theorem]. (A
nonzero element x ∈ D is said to be primary if xD is a primary ideal, and a weakly
factorial domain (WFD) is an integral domain in which every nonzero nonunit can
be written as a finite product of primary elements.) Following [36], we say that
D is a generalized UFD (GUFD) if D is a GCD domain whose nonzero nonunits
can be expressed as a product of finitely many rigid elements r with the following
property: for each nonunit h|r, there is an integer n ≥ 0 such that r|hn. Here
r ∈ D∗ is a rigid element if for all x, y|r we have x|y or y|x. Later, in [5, Theorem
10], it was shown that D is a GUFD if and only if D is a weakly factorial GCD
domain, if and only if D[X] is a WFD.

1. Locally GCD domains

We say that an ideal A of D is locally principal if ADM is principal for each
maximal ideal M of D. It is known that D is a GCD domain if and only if every
nonzero prime ideal of D contains an element a ∈ D∗ with aD ∩ xD principal for
all x ∈ D [10, Theorem 2], if and only if aD ∩ bD is principal for all a, b ∈ D∗.
Our first result is a locally GCD domain analogue of these two characterizations of
GCD domains.

Theorem 1.1. The following are equivalent for an integral domain D.

(1) D is a locally GCD domain.
(2) DP is a GCD domain for every prime ideal P of D.
(3) aD ∩ bD is locally principal for all a, b ∈ D∗.
(4) Every nonzero prime ideal of D contains an element a ∈ D∗ such that

aD ∩ xD is locally principal for all x ∈ D.

Proof. (1) ⇒ (2) This follows from the fact that if S is a multiplicative subset of a
GCD domain D, then DS is a GCD domain.
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(2) ⇒ (3) Let M be a maximal ideal of D. Then DM is a GCD domain, and
since (aD ∩ bD)DM = aDM ∩ bDM , (aD ∩ bD)DM is principal.

(3) ⇒ (1) Let M be a maximal ideal of D, and let 0 6= α, β ∈ DM . Then
α = a

s and β = b
t for some a, b ∈ D and s, t ∈ D\M , and hence αDM = aDM and

βDM = bDM . Also, as (aD∩ bD)DM = aDM ∩ bDM = αDM ∩ βDM , we conclude
that αDM ∩ βDM is principal.

(3) ⇒ (4) Clear.
(4) ⇒ (3) Let S be the set of elements a ∈ D∗ such that aD ∩ xD is locally

principal for all x ∈ D. To prove the implication, it suffices to show that S = D∗.
Let b, c ∈ S, and let x ∈ D. If M is a maximal ideal, then (bD ∩ xD)DM = byDM

for some y ∈ D. Hence, (bcD∩xD)DM = bcDM∩(bDM∩xDM ) = bcDM∩byDM =
b(cDM ∩ yDM ) is principal. Next, assume that d, e ∈ D∗ with d 6∈ S. Then there
is a z ∈ D such that dD ∩ zD is not locally principal. Hence, deD ∩ ezD is not
locally principal, and so de 6∈ S. Thus, S is a saturated multiplicative set of D. If
S 6= D∗, then as S is saturated, there is a nonunit α ∈ D∗ \ S, so αD ∩ S = ∅.
Again, since S is saturated, we can enlarge αD to a prime ideal P of D such that
P ∩ S = ∅ which is contrary to the assumption. ¤

Corollary 1.2. Let D be a locally GCD domain and let R be a flat overring of D

(e.g. a fraction ring of D). Then R is a locally GCD domain.

Proof. Let Q be a maximal ideal of R, and let P = Q ∩D. Then RQ = DP , and
hence RQ is a GCD domain by Theorem 1.1 because D is a locally GCD domain.
Thus, R is a locally GCD domain. ¤

Clearly, a GCD domain is a locally GCD domain, while a locally GCD domain
need not be a GCD domain. To give some examples, recall that D is a Prüfer
domain if and only if DM is a valuation domain for every maximal ideal M of D

(see, for example, [20, Theorem 22.1]), and a valuation domain is a GCD domain.
Hence, a Prüfer domain is a locally GCD domain. A good example of a Prüfer
domain is a Dedekind domain which can be characterized as a Noetherian Prüfer
domain. It is well known that Z[

√−5] is a non-PID Dedekind domain. Also, a
Dedekind domain that is a GCD domain is a PID. Thus, Z[

√−5] is a locally GCD
domain which is not a GCD domain.

Recall that D is an essential domain if there is a family {Pα}α∈Λ of prime ideals
of D such that D = ∩DPα and DPα is a valuation domain for each α ∈ Λ. The
family {Pα}α∈Λ may be called a defining family of valued primes of the essential
domain D. A PvMD D is essential because DM is a valuation domain for each
maximal t-ideal M of D and D = ∩M∈t-Max(D)DM . Since a GCD domain is a
PvMD, we conclude that a GCD domain is essential.

Lemma 1.3. Let {Dα}α∈J be a family of flat overrings of an integral domain D

such that D = ∩α∈ΛDα. If for each α ∈ Λ, Dα is essential then so is D.

Proof. Let {Pαβ}β∈Kα be the defining family of valued primes of Dα. Since Dα

is a flat overring of D, we get (Dα)Pαβ
= DP ′αβ

where P ′αβ = Pαβ ∩ D. Thus,
Dα = ∩β∈KαDP ′αβ

. Now if we set ∆ = ∪Kα, then D = ∩α∈ΛDα = ∩αβ∈∆DP ′αβ

and DP ′αβ
is a valuation domain for all αβ ∈ ∆. ¤
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Proposition 1.4. If D is a locally GCD domain, then D is essential.

Proof. Let M be a maximal ideal of D. Then DM is a GCD domain, and hence
DM is essential. Thus, by Lemma 1.3, D is essential because D = ∩DM where M

ranges over maximal ideals of D. ¤

As the definition of the t-class group hinges on the group of t-invertible t-ideals,
the nature of the t-class group of a locally GCD domains will be determined by
the nature of its t-invertible t-ideals. Let’s go a bit general on this. Recall that
an integral domain D is called a ∗-domain if (∩(ai))(∩(bj)) = ∩(aibj) for all
a1, a2, ..., am; b1, ..., bn ∈ D∗. It may be noted that the ∗-property is equivalent to
the property that for all a1, a2, ..., am; b1, ..., bn ∈ K \ {0}, where K is the quotient
field of D, we have (∩(ai))(∩(bj)) = ∩(aibj). The reason is that (i) D∗ ⊆ K \ {0},
and (ii) if ∗ holds, let a1, a2, ..., am; b1, ..., bn ∈ K \ {0} and let x, y ∈ D∗ such that
xai, ybj ∈ D, then by ∗, (∩(xai))(∩ybj) = ∩(xaiybj), and hence cancelling xy from
both sides gives (∩(ai))(∩(bj)) = ∩(aibj). This notion was introduced in [35].

Lemma 1.5. Let A be a nonzero fractional ideal of a ∗-domain D such that A =
Bv where B is finitely generated and suppose that A−1 = Cv where C is finitely
generated. Then A is invertible. Consequently, in a ∗-domain, every t-invertible
t-ideal is invertible, i.e., Clt(D) = Pic(D).

Proof. According to [34, Proposition 1.6], D is a ∗-domain if and only if for every
pair of nonzero finitely generated fractional ideals A,B of D, we have (AB)−1 =
A−1B−1 = (AvBv)−1. Applying this to our situation we get (AA−1)−1 = (BvCv)−1

= B−1C−1 = A−1A since B−1 = A−1 and C−1 = (A−1)−1 = A. But as AA−1 ⊆ D

and (AA−1)−1 ⊇ D, AA−1 = (AA−1)−1 implies that AA−1 = D. Now if A is a
t-invertible t-ideal, then A satisfies the requirements of the lemma. ¤

An integrally closed domain D is called a Schreier domain if for all nonzero
x, y, z ∈ D, x|yz implies that x = rs for some r, s ∈ D with r|y and s|z.

Proposition 1.6. If D is a locally GCD domain, then D is a ∗-domain, and hence
Clt(D) = Pic(D).

Proof. We know that a GCD domain is Schreier [14, Theorem 2.4] and a Schreier
domain is a ∗-domain [35, Corollary 1.7]; hence a GCD domain is a ∗-domain. Also,
recall that a locally ∗-domain is a ∗-domain [35, Theorem 2.1]. Thus, a locally GCD
domain is a ∗-domain, and hence Clt(D) = Pic(D) by Lemma 1.5. (The fact that
a locally GCD domain D satisfies Clt(D) = Pic(D) follows also from [3, Theorem
2.1] where it is shown that this equality can be tested locally.) ¤

As in [2], we say that D is a generalized GCD domain (GGCD domain) if aD∩bD

is invertible for all a, b ∈ D∗. It is known that D is a GGCD domain if and only if
every v-ideal of finite type is invertible [2, Theorem 1]. Clearly, a GCD domain is
a GGCD domain. Also, D is a PvMD if and only if aD ∩ bD is t-invertible for all
a, b ∈ D∗ [28, Corollary 1.8]. So by Theorem 1.1 and Proposition 1.6,

GCD domain ⇒ GGCD domain ⇔ locally GCD domain + PvMD.
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In [7, Corollary 1.3], it was shown that if D is of finite t-character, then D is a
GGCD domain if and only if D is a locally GCD domain. (D is said to be of finite
t-character if each nonzero nonunit of D is contained in only finitely many maximal
t-ideals of D.)

Corollary 1.7. (cf. [35, Corollary 3.4]) The following are equivalent for a PvMD
D.

(1) D is a GGCD domain.
(2) D is a locally GCD domain.
(3) Clt(D) = Pic(D).
(4) D is a ∗-domain.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) Proposition 1.6.
(3) ⇒ (1) Let a, b ∈ D∗. Then aD∩ bD is t-invertible because D is a PvMD, and

since Clt(D) = Pic(D), aD ∩ bD is invertible. Thus, D is a GGCD domain.
(2) ⇔ (4) [35, Corollary 3.4]. ¤

We next give some necessary and sufficient conditions for a locally GCD domain
to be a GGCD domain.

Lemma 1.8. Let a, b ∈ D∗. If the ideal (a, b) is not t-invertible, then there is a
maximal t-ideal M of D such that (a) ∩ (b) = Ma ∩Mb.

Proof. (a, b) not being t-invertible means that there is a maximal t-ideal M such
that ((a, b)(a, b)−1)t ⊆ M . Hence, (a, b)−1 ⊆ M : (a, b) = Ma−1 ∩ Mb−1 ⊆
(a, b)−1 = (a−1) ∩ (b−1). Multiplying by ab we get (a) ∩ (b) = Ma ∩Mb. ¤

Corollary 1.9. The following are equivalent for a locally GCD domain D.
(1) D is a GGCD domain.
(2) D is a PvMD.
(3) aD ∩ bD is t-invertible for all a, b ∈ D∗.
(4) aD ∩ bD is a v-ideal of finite type for all a, b ∈ D∗.
(5) (M((a) ∩ (b)))w = Ma ∩Mb for all a, b ∈ D∗ and for all maximal t-ideals

M of D.

Proof. (1) ⇒ (5) Let Q be a maximal t-ideal of D. Then DQ is a valuation domain
and hence a Prüfer domain. Moreover in a Prüfer domain every ideal is flat and
so MDQ is a flat ideal of DQ. Hence, (M((a) ∩ (b))DQ = MDQ((a) ∩ (b))DQ =
MDQ((a)DQ ∩ (b)DQ) = MDQaDQ ∩ MDQbDQ = MaDQ ∩ MbDQ = (Ma ∩
Mb)DQ. Thus, (M((a) ∩ (b)))w = Ma ∩Mb.

(5) ⇒ (2) Suppose that (a, b) is not t-invertible. Then by Lemma 1.8, (a)∩ (b) =
Ma∩Mb for some maximal t-ideal M of D. Note that (M((a)∩ (b)))w = Ma∩Mb

by assumption; hence (M((a) ∩ (b)))DM = (Ma ∩Mb)DM = ((a) ∩ (b))DM . This
gives MDM ((a) ∩ (b))DM = ((a) ∩ (b))DM . Since DM is a GCD domain we have
that ((a) ∩ (b))DM is principal. Cancelling ((a) ∩ (b))DM from both sides we have
MDM = DM which is impossible. So every nonzero two generated ideal of D is
t-invertible, and hence D is a PvMD.

(2) ⇔ (3) [28, Corollary 1.8].



LOCALLY GCD DOMAINS 7

(3) ⇒ (4) This follows because a t-invertible t-ideal is a v-ideal of finite type.
(4) ⇒ (1) By Theorem 1.1, aD ∩ bD is locally principal, and hence aD ∩ bD is

flat. Thus, the result follows directly from the fact that a flat v-ideal of finite type
in an integral domain is invertible [38, Proposition 1]. ¤

Remark 1.10. (1) By Corollary 1.9, if D is a locally GCD domain, then D is a
GGCD domain if and only if aD∩bD is t-invertible for all a, b ∈ D∗. So it’s natural
to ask if we can change “t-invertible” to “v-invertible”. However, the requirement
that (a) ∩ (b) is v-invertible for all a, b ∈ D∗ is already met by a locally GCD
domain, in fact, by any essential domain [18, Proposition 2.1].

(2) By Corollary 1.9, a locally GCD domain that is not a PvMD is not a GGCD
domain. It so happens that there are a lot of locally GCD domains that are not
PvMDs, and hence not GGCDs. A classical example can be found in [29, Example
2.1]. This example is a redo of an example given by Heinzer and Ohm [24] of an
essential domain that is not a PvMD. With some effort it was shown in [29] that
every quotient ring of the ring of [29, Example 2.1] was essential. Towards the end
of [29, Example 2.1], it was shown that the domain constructed in [24] is actually
locally factorial and so a locally GCD domain. This establishes the existence of
locally GCD domains that are not PvMDs. We shall encounter other examples of
non-PvMD locally GCD domains in Section 3, in connection with the D+XDS [X]
construction from locally GCD domains.

Corollary 1.9 tells us one way of deciding that a locally GCD domain is a GGCD
domain. Here is another.

Proposition 1.11. The following are equivalent for a locally GCD domain D.

(1) D is a GGCD domain.
(2) PDP is a t-ideal of DP for every maximal t-ideal P of D.
(3) For every prime t-ideal Q of D and for every multiplicative set S of D with

Q ∩ S = ∅, QDS is a prime t-ideal of DS.
(4) For all nonzero finitely generated ideals A of D and for every multiplicative

set S of D, we have (ADS)v = AvDS.
(5) For every a, b ∈ D∗ and for every maximal ideal M of D, we have ((a, b)DM )v

= (a, b)vDM .

Proof. (1) ⇒ (4) Since A is finitely generated, (ADS)−1 = A−1DS [33, Lemma 4].
Also, since D is a GGCD domain, A−1 is invertible, and hence finitely generated.
Thus, (ADS)v = (A−1DS)−1 = AvDS .

(4) ⇒ (3) Let Q be a prime t-ideal of D. Then, by (4), (QDS)t = ∪{AvDS |
(0) 6= A ⊆ Q is finitely generated } ⊆ QDS ⊆ (QDS)t. Thus, (QDS)t = QDS .

(3) ⇒ (2) Clear.
(2) ⇒ (1) Let P be a maximal t-ideal of D. Then PDP is a t-ideal of DP , and

since DP is a GCD domain (hence a PvMD) by Theorem 1.1, DP = (DP )PDP
is a

valuation domain. Thus, D is a PvMD, and so a GGCD domain by Corollary 1.9.
(4) ⇒ (5) Clear.
(5) ⇒ (1) Since DM is a GCD domain, (a, b)vDM = ((a, b)DM )v is principal.

Hence, (a, b)v is locally principal, and thus (a, b)v is invertible [38, Corollary 2]. ¤
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Recall that D is a GCD domain if and only if (a, b)v is principal for every
a, b ∈ D∗. Also, note that if (a, b) is principal, then (a, b)v = (a, b). Hence, a GCD
domain D is a Bezout domain if and only if (a, b)v = (a, b) for every a, b ∈ D∗. We
next give a locally GCD domain analogue of this result.

Corollary 1.12. The following are equivalent for an integral domain D.
(1) D is a Prüfer domain.
(2) D is a GGCD domain and (a, b)v = (a, b) for every a, b ∈ D∗.
(3) D is a locally GCD domain and ((a, b)DM )v = (a, b)DM for every a, b ∈ D∗

and every maximal ideal M of D.
(4) D is a locally GCD domain and M((a)∩ (b)) = Ma∩Mb for each maximal

ideal M and for all a, b ∈ D∗.

Proof. (1) ⇒ (3) The result follows from the fact that DM is a valuation domain
for all maximal ideals M of a Prüfer domain D.

(3) ⇒ (2) Since (a, b) is finitely generated, ((a, b)DM )v = ((a, b)vDM )v [33,
Lemma 4], and hence ((a, b)DM )v = (a, b)vDM = (a, b)DM . Thus, D is a GGCD
domain by Proposition 1.11 and (a, b)v = (a, b) [20, Theorem 4.10].

(2) ⇒ (1) Let a, b ∈ D∗. Then (a, b)v is invertible because D is a GGCD domain,
and thus (a, b) is invertible. Hence, D is a Prüfer domain.

(1) ⇔ (4) This follows from [1, Proposition 1] because a Prüfer domain is a
locally GCD domain. ¤

2. Locally factorial domains

Let D be an integral domain. As already mentioned, D is called a locally factorial
domain if DM is a UFD for each maximal ideal M of D. An essential part of being
a UFD or of being factorial is being Krull. So we start with a somewhat novel
characterization of Krull domains. Kang in [26, Theorem 3.6] proved that D is a
Krull domain if and only if every minimal prime of a nonzero principal ideal of D

is t-invertible. Using this result we prove the following lemma.

Lemma 2.1. An integral domain D is factorial if and only if every minimal prime
of a nonzero principal ideal of D is principal.

Proof. Indeed, as a nonzero principal ideal is invertible and hence t-invertible, so
by [26, Theorem 3.6], D is Krull. Hence, as in a Krull domain the minimal primes
of nonzero principal ideals are of height one, we have a Krull domain whose height
one primes are all principal which is a UFD. The converse is obvious. ¤

Using Lemma 2.1, we can state the following characterization of locally factorial
domains.

Proposition 2.2. An integral domain D is locally factorial if and only if every
minimal prime of a nonzero principal ideal is locally principal.

Proof. Let D be locally factorial and let P be a minimal prime of a nonzero principal
ideal of D. Then for any maximal ideal M, PDM is a minimal prime of a principal
ideal of DM and hence principal if P ⊆ M, otherwise PDM = DM . Thus every
minimal prime of a nonzero principal ideal is locally principal. Conversely, suppose
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that every minimal prime of a nonzero principal ideal is locally principal and let
M be a maximal ideal of D. Now let P be a minimal prime of a nonzero principal
ideal of DM . Then it is easy to see that P = PDM where P is a minimal prime
of a principal ideal. But then PDM is principal and so is P. As P is arbitrary, we
conclude, by Lemma 2.1, that DM is factorial. ¤

Proposition 2.2 shows that a number of results involving local factoriality can
be stated using minimal primes of nonzero principal ideals. This brings to mind a
celebrated characterization of UFDs from Kaplansky’s book [27, Theorem 178].

Theorem 2.3. Let R be an integral domain. The following three conditions are
necessary and sufficient for R to be a UFD.

(1) RM is a UFD for each maximal ideal M .
(2) Every minimal prime ideal in R is finitely generated.
(3) Every invertible ideal in R is principal.

With a great deal of hindsight, of course, we can restate Theorem 2.3 as follows.

Theorem 2.4. The following three conditions are necessary and sufficient for an
integral domain D to be a UFD.

(1) Minimal primes of nonzero principal ideals are locally principal.
(2) Every minimal prime of a nonzero principal ideal is a v-ideal of finite type.
(3) Every invertible ideal in D is principal, i.e., Pic(D) = 0.

Proof. By Proposition 2.2, (1) accounts for Theorem 2.3(1). In the presence of
(1), (2) accounts for Theorem 2.3(2), because a nonzero locally principal ideal I is
invertible if and only if I is of finite type [3, Theorem 2.1], and an invertible ideal
is finitely generated. ¤

Throwing out (3) from Theorem 2.4, we have the following characterization of
locally factorial Krull domains. Of course it is a well known result but we include it
here to show the ease with which it can be proven with the approach of this paper
and with Proposition 2.2.

Theorem 2.5. The following are equivalent for an integral domain D:

(1) D is a locally factorial Krull domain.
(2) Every minimal prime of a nonzero principal ideal is locally principal and a

v-ideal of finite type.
(3) Every minimal prime of a nonzero principal ideal is invertible.

Proof. (1) ⇒ (2) D being locally factorial implies that every minimal prime of a
nonzero principal ideal is locally principal. Also, D being Krull implies that the
minimal prime is a t-invertible t-ideal and hence a v-ideal of finite type.

(2) ⇒ (3) This follows from the fact that a nonzero locally principal ideal is
invertible if and only if it is of finite type [3, Theorem 2.1].

(3) ⇒ (1) We note that every minimal prime of a principal ideal being invertible
means it’s locally principal which implies that D is locally factorial. Again, as an
invertible ideal is t-invertible, that implies that D is a Krull domain. ¤
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Let’s note that (1) and (2) in Theorem 2.4 combine to give locally factorial
Krull domains and that seems to indicate that locally factorial domains and locally
factorial Krull domains are different. Indeed they are different and in the following
we give two examples which can be useful in many contexts. As these examples are
already amply discussed in literature we shall only give references to them.

Example 2.6. (a) Example 2.1 of [29] is given as an example of a locally factorial
domain that is not a PvMD. Since a Krull domain is a PvMD, this example is not a
Krull domain. Also, the ring D described in [29, Example 2.1], being an ascending
union of UFDs has the property that Pic(D) = (0).

(b) Almost Dedekind domains are integral domains D such that DM is a rank
one discrete valuation domain for every maximal ideal M of D. These domains,
discussed in Section 36 of [20], obviously pass as locally factorial domains. Using
[20, Theorem 37.2] one can conclude that an almost Dedekind domain is a Dedekind
domain if and only if it is a Krull domain. The first ever example of a non-Krull
almost Dedekind domain was due to Nakano [30]. Perhaps because this example was
steeped in algebraic number theory and in German, Gilmer who formally introduced
almost Dedekind domains in [19] chose to refer to this example as an example on
page 426 of Nakano’s paper. By [20, Theorem 36.7] one can always get a Bezout
almost Dedekind domain that is not a PID. Thus in this case too we can find a
non-Krull locally factorial domain D with Pic(D) = (0).

One reason why we have chosen to give somewhat elaborate treatment to Ex-
ample 2.6 is the following statement that one of the authors found in [40]. The
statement goes as: Proposition 3.16. R is factorial if and only if R is locally fac-
torial and Pic(R) = 0. Of course, as a locally GCD domain is integrally closed
and as a Noetherian integrally closed domain is Krull, the above statement would
be true if R is assumed to be Noetherian, but removed from that context it would
be false. So, perhaps, it would be safer to restate the above proposition as: R is
factorial if and only if R is locally factorial Krull and Pic(R) = 0.

Incidentally, for Noetheran domains, conditions apparently far less than locally
factorial imply the locally factorial property. We start with a generalization of
Noetherian domains that goes by the name of Mori domains to push the point
home. An integral domain is called a Mori domain if it satisfies the ascending
chain conditions on integral v-ideals. It is clear that Noetherian domains and Krull
domains are Mori domains; and D is a Mori domain if and only if every nonzero
ideal A of D is strictly v-finite, i.e., there is a nonzero finitely generated subideal J

of A such that Av = Jv [37, Corollary 1.2].

Lemma 2.7. A Mori domain D is a GCD domain if and only if D is a factorial
domain.

Proof. Let Q be a nonzero prime ideal of D. Then Q contains a prime t-ideal P

of D, and since D is a Mori domain, there is a finitely generated ideal I of D such
that Iv = P . Hence, if D is a GCD domain, then P = Iv is principal, i.e., P is a
principal prime ideal. Thus, D is a factorial domain [27, Theorem 5]. The converse
is clear. ¤
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An integral domain D is a π-domain if every nonzero principal ideal of D is a
finite product of prime ideals. It is known that

factorial domain ⇒ π-domain ⇒ Krull domain.

Also, D is a π-domain if and only if D is a Krull domain and minimal prime ideals
of D are invertible, if and only if D is a locally factorial domain of finite t-character
(cf. [20, Theorem 46.7]). Also, if D is a π-domain, then Clt(D) = Pic(D), and
hence a π-domain D is a factorial domain if and only if every invertible ideal of D

is principal (cf. [32, Theorem 1]).

Theorem 2.8. The following are equivalent for a Mori domain D.

(1) D is a locally factorial domain.
(2) D is a locally GCD domain.
(3) D is a GGCD domain.
(4) D is a π-domain.
(5) Every minimal prime of a nonzero principal ideal is locally principal.

Proof. (1) ⇒ (2) Clear.
(2) ⇔ (3) This follows from [7, Corollary 1.3] because a Mori domain is of finite

t-character [25, Proposition 1.4].
(2) ⇒ (4) Let M be a maximal ideal of D. Then DM is a GCD domain that is

a Mori domain by (2) and [31, Théorème 2], and hence DM is a factorial domain
by Lemma 2.7. Thus, D is a π-domain because D is a locally factorial domain of
finite t-character.

(4) ⇒ (5) Let P be a prime ideal of D minimal over a principal ideal. Since D is
a π-domain, P must be a height-one prime ideal, and hence P is invertible. Thus,
P is locally principal.

(5) ⇒ (1) Let M be a maximal ideal of D, and let Q be a nonzero prime ideal of
DM . Then Q∩D 6= (0), and so there is a prime ideal P of D such that P ⊆ Q∩D

and P is minimal over a principal ideal. Hence, PDM is a principal prime ideal by
(5) and PDM ⊆ Q. Thus, DM is factorial [27, Theorem 5]. ¤

We have already characterized locally GCD domains saying that D is locally
GCD if and only if for all a, b ∈ D∗, aD∩bD is locally principal. In some cases there
are some conditions on ideals that end up giving something more than locally GCD
property. The first such condition that comes to mind is GD: For all A,B ∈ F (D),
(AB)−1 = A−1B−1. This condition was first studied in [34] (see also [8]) and
domains with GD were called generalized Dedekind domains (G-Dedekind domain)
in [34] and pseudo-Dedekind domains in [8]. Now, as it was shown in [34, Theorem
1.1], D is a G-Dedekind domain if and only if Av is invertible for each A ∈ F (D). In
particular, in a G-Dedekind domain D, Av is invertible for each finitely generated
ideal which is a characterizing property of GGCD domains which are locally GCD
domains, as we already know.

The next result appears in [34, Theorem 1.10] that is a number of equivalent
conditions for an integral domain to be a π-domain. Indeed these indicate that
a Krull domain becomes locally factorial under conditions that are apparently far
less than the locally factorial property.
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Theorem 2.9. The following are equivalent for an integral domain D.

(1) D is a G-Dedekind Krull domain.
(2) D is a G-Dedekind domain and Mori.
(3) D is Krull and locally factorial.
(4) D is Krull and a ∗-domain.
(5) D is Krull and, for all a, b, c, d ∈ D \ {0},

((a) ∩ (b))((c) ∩ (d)) = (ac) ∩ (ad) ∩ (bc) ∩ (bd).

(6) D is Mori and locally factorial.
(7) D is Mori and a ∗-domain.
(8) D is Mori and GGCD.
(9) Every t-ideal of D is invertible.

(10) Every associated prime ideal of D is invertible.
(11) D is Krull such that the product of any two v-ideals is again a v-ideal.
(12) D is G-Dedekind, every quotient ring of D is G-Dedekind and every rank

one prime ideal of D is invertible.

An integral domain D is said to be a TV-domain if every t-ideal of D is divisorial,
i.e., It = Iv for all I ∈ F (D). TV-domains were studied in [25] where it was shown
among other results that a Mori domain is a TV domain. Also, recall that a
prime ideal minimal over a proper nonzero ideal of the form (a) :R (b) is called an
associated prime of a principal ideal. Associated primes of principal ideals were
studied in [13]. It can be shown that the minimal prime of a principal ideal is
a t-ideal [23]. So in a TV-domain every associated prime of a principal ideal is
divisorial. Now according to [25, Theorem 2.3], D is a Krull domain if and only if
every associated prime of D is t-invertible.

Theorem 2.10. The following are equivalent to each of the conditions in Theorem
2.9.

(13) D is a Krull domain and a locally GCD domain.
(14) D is a TV-domain that is also G-Dedekind.

Proof. (3) ⇒ (13) Clear.
(13) ⇒ (4) This follows from Corollary 1.7 because a Krull domain is a PvMD.
(2) ⇒ (14) This follows because a Mori domain is a TV-domain.
(14) ⇒ (10) Note that an associated prime is a t-ideal which is divisorial in a

TV-domain. Now take an associated prime P in D. Because D is G-Dedekind, Pv

is invertible. But P being divisorial Pv = P and so in D every associated prime of
a principal ideal is invertible, which is (10). ¤

Next, while for a locally factorial domain D to be Krull, D has to be Mori but
there are simpler looking conditions that will make a locally factorial domain into
locally factorial Krull.

Theorem 2.11. Let D be a locally factorial domain. Then D is locally factorial
Krull if and only if there is a family {Pα} of prime ideals of D such that D = ∩DPα

and the intersection is locally finite.
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Proof. If D is Krull then {Pα} can be taken to be the family of height one primes.
Conversely, if there is a family {Pα} of prime ideals of D such that D = ∩DPα and
the intersection is locally finite, then each of DPα is factorial and hence a Krull
domain. Also, a locally finite intersection of Krull domains is a Krull domain. ¤
Corollary 2.12. The following hold for a locally factorial domain D.

(1) D is locally factorial Krull if D is of finite character.
(2) D is locally factorial Krull if and only if D is of finite t-character.

We can prove several routine results for locally factorial domains. For instance,
if D is locally factorial then so is DS and so is D[X] as we did in the locally GCD
case. Also one may wonder if a locally GCD domain is of t-dimension one. The
answer is no. Example 2.1 of [29] is not a PvMD and so must have t-dimension
greater than one, for if a locally factorial domain is of t-dimension one, it must
be a PvMD as D is a PvMD if and only if DM is a valuation domain for every
maximal t-ideal M. This leaves us with the question: Is there a non-Krull locally
factorial domain of t-dimension one that is not Prufer? The answer is yes, take a
non-Dedekind almost Dedekind domain D and X an indeterminate then D[X] is
such an example.

3. The D + XDS [X] construction from locally GCD domains

Let D be an integral domain, S be a multiplicative set in D, X be an indeter-
minate over D, and D(S) = D + XDS [X], i.e.,

D(S) = {f(X) ∈ DS [X] | f(0) ∈ D}.
Let’s elaborate on the importance of the D + XDS [X] construction. This con-
struction was studied in [15] as a way of constructing examples. It was shown in
[15, Theorem 1.1] that D + XDS [X] is a GCD domain if and only if D is a GCD
domain and GCD(d,X) exists for all d ∈ D∗. This result later developed into
“D + XDS [X] is a PvMD if and only if D is a PvMD and (d,X) is a t-invertible
ideal for all d ∈ D∗” [6, Theorem 2.5]. So we can ask: when D + XDS [X] is a
locally GCD domain, given that D is locally GCD ? In this section, we study some
necessary and sufficient conditions for D + XDS [X] to be a locally GCD domain.

Clearly, the map ϕ : D + XDS [X] → D, given by ϕ(a + Xf) = a, is a retract,
i.e., ϕ is a ring homomorphism such that ϕ(a) = a for each a ∈ D. Our first result
shows that if D + XDS [X] is a locally GCD domain, then so is D.

Lemma 3.1. Let A ⊆ B be an extension of integral domains having a retract
ϕ : B → A.

(1) If B is a GCD domain, then so is A.
(2) If B is a locally GCD domain, then so is A.

Proof. (1) is well-known: If aB ∩ bB = cB with a, b ∈ A and c ∈ B, then we derive
easily that aA ∩ bA = ϕ(c)A.

(2) Let P be a maximal ideal of A and Q = ϕ−1(P ). It follows easily that
Q ∩ A = P . Then ϕ induces the ring homomorphism q : BQ → AP given by
q(b/s) = ϕ(b)/ϕ(s) for b ∈ B and s ∈ B \ Q. It follows that q is a retract of
AP ⊆ BQ, so part (1) applies. ¤
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The next result is already known [36, Corollary 4.2], but we give its proof for
the completeness of this section.

Lemma 3.2. D is a locally GCD domain if and only if D[X] is a locally GCD
domain.

Proof. (⇒) Let M be a maximal ideal of D[X], and let P = M ∩D. Then DP is a
GCD domain, and hence DP [X] is a GCD domain. Thus, D[X]M is a GCD domain
because D[X]M = (DP [X])MP

. (⇐) This follows directly from Lemma 3.1(2). ¤

Remark 3.3. Let A ⊆ B be an extension of integral domains. According to
[16], B is called a locally polynomial ring over A if for every prime ideal P ⊆ A,
BP = B⊗AAP is a polynomial ring over AP . It is easy to adapt the proof of Lemma
3.2 to show that if A is a locally GCD domain and B is a locally polynomial ring
over A, then B is a locally GCD domain. For example, let D = Z[{X/pn, Y/pn}n],
where {pn}n is the set of prime numbers. Then D is a locally GCD domain (cf.
[16, Introduction]), while D is not a PvMD [11]. Thus, D is not a GCD domain.

It is known that D+XDS [X] is a GCD domain if and only if D is a GCD domain
and S is a splitting set in D. We next give a locally GCD domain analogue which
has many interesting applications. To do this, we first recall that a splitting set S

of D is an lcm splitting set if sD ∩ dD is principal for all s ∈ S and d ∈ D. It is
known that if S is an lcm splitting set, then D is a GCD domain if and only if DS

is a GCD domain [21, Theorem 3.1]. The proof of (2) ⇒ (1) of the next theorem
is almost the same as in [36, Proposition 4.1], except that the proof is a bit more
streamlined.

Theorem 3.4. The following are equivalent for a multiplicative subset S of D.

(1) D + XDS [X] is a locally GCD domain.
(2) D is a locally GCD domain and the saturation of S in DP is a splitting set

in DP for every maximal ideal P of D with P ∩ S 6= ∅.
(3) D is a locally GCD domain and aDS ∩ D is a locally principal ideal for

every a ∈ D∗.

Proof. (1) ⇒ (2) By Lemma 3.1, D is a locally GCD domain, and hence we need
only prove that the saturation of S in DP is splitting for every maximal ideal P of
D with P ∩S 6= ∅. Let M = P +XDS [X]. Then M is a maximal ideal of D(S) with
M ∩S 6= ∅ [15, Theorem 2.1]. Now as D\P ⊆ D(S)\M we conclude that (D(S))M is
a ring of fractions of (D(S))D\P = DP + XDS(D\P )[X]. Next D(S)\M = {a + Xf |
a ∈ D\P and f ∈ XDS [X]}. So (D(S))M = (DP + XDS(D\P )[X])D(S)\M = (DP +
XDS(D\P )[X])W , where W = {u+Xf | u is a unit in DP and f ∈ XDS(D\P )[X]}.

Note that (i) DP + XDS(D\P )[X] is a Schreier domain [15, Remark before The-
orem 1.1] because DP is a GCD domain and (ii) each of 1 + Xf is a product
of atoms which generate height one primes. Hence, W is an lcm splitting set of
DP +XDS(D\P )[X], once we note that every element g of DP +XDS(D\P )[X] can
be written as g = h(1 + Xf) where h is not divisible by any of the members of W

and 1 + Xf ∈ W. Thus (DP + XDS(D\P )[X])W is a GCD domain if and only if
DP + XDS(D\P )[X] is a GCD domain. But DP + XDS(D\P )[X] is a GCD domain
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if and only if the saturation of S in DP is a splitting set (as S is a multiplicative
set of DP and DS(D\P ) = (DP )S).

(2) ⇒ (1) Let M be a maximal ideal of D + XDS [X]. Then there are three
possibilities: (i) M ∩D = (0), (ii) M ∩D 6= (0) but M ∩S = ∅, and (iii) M ∩S 6= ∅.

(i) If M∩D = (0), then (D+XDS [X])M = ((D+XDS [X])D∗)MD∗ = K[X]MK[X]

is a valuation domain, where K is the quotient field of D.
(ii) If M∩D 6= (0) but M∩S = ∅, then (D+XDS [X])M = ((D+XDS [X])S)MS

=
(DS [X])MDS [X] is a GCD domain because DS [X] is a locally GCD domain, by
Corollary 1.2 and Lemma 3.2.

(iii) Finally, assume M ∩ S 6= ∅, and let M ∩ D = P . Then P is a maximal
ideal of D and M = P + XDS [X] [7, Lemma 2.1]. Now (D + XDS [X])M ⊇
(D + XDS [X])D\P = DP + XDS(D\P )[X] which is a GCD domain [36, Corollary
1.5] because DP is a GCD domain and the saturation of S (hence of S(D \ P )) in
DP is a splitting set by assumption. Now as (D + XDS [X])M is a ring of fractions
of the GCD domain DP + XDS(D\P )[X], we have that (D + XDS [X])M is a GCD
domain.

(2) ⇒ (3). Let a ∈ D∗ and P be a maximal ideal of D. If P ∩ S = ∅, then
(aDS∩D)DP = aDP is principal. If P∩S 6= ∅, then (aDS∩D)DP = aDS(D\P )∩DP

is principal [4, Corollary 1.3].
(3) ⇒ (2) This follows from [4, Corollary 1.3]. ¤

The next result is a locally GCD domain analogue of the fact that if D is a UFD
and if S is any multiplicative set in D, then D + XDS [X] is a GCD domain [15,
Corollary 1.2].

Corollary 3.5. If D is a locally factorial domain, then D + XDS [X] is a locally
GCD domain for each multiplicative set S of D.

Proof. Let P be a maximal ideal of D such that P ∩S 6= ∅. Then DP is a UFD, and
hence every saturated multiplicative subset of DP is a splitting set [9, Theorem].
Thus, by Theorem 3.4, D + XDS [X] is a locally GCD domain. ¤

Corollary 3.5 can be put to use immediately to get various examples of locally
GCD domains from locally factorial domains. What is interesting is that if we
start with a locally factorial domain D, we end up with a locally GCD domain
D + XDS [X] for any multiplicative set S of D. Also, if D is a locally factorial
domain that is not a UFD, then D + XDS [X] is not a GCD domain for some
multiplicative set S of D. This is because D + XDS [X] being a GCD domain
for every multiplicative set S of D forces D to be a GUFD and a locally factorial
GUFD is a UFD.

The t-dimension of an integral domain D is defined by

t-dimD = sup{n | P1 ( P2 ( · · · ( Pn is a chain of prime t-ideals of D}.
Hence, t-dimD = 1 if and only if D is not a field and every prime t-ideal of D

is a maximal t-ideal. As already pointed out, D is called an almost Dedekind
domain if DM is a local PID for every maximal ideal M of D. Obviously, an
almost Dedekind domain D is a Prüfer domain (see Gilmer [20] for basic material
on this type of Prüfer domains and [17] for some factorization properties of almost
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Dedekind domains), and it is a Bezout domain if and only if Pic(D) = 0. Also,
Dedekind domains are almost Dedekind and the (Krull) dimension of an almost
Dedekind domain is one.

Corollary 3.6. Let D be an almost Dedekind domain but not a field.

(1) D + XDS [X] is a locally GCD domain for every multiplicative set S of D.
(2) D is a Dedekind domain if and only if D + XDS [X] is a GGCD domain

for every multiplicative set S of D.
(3) D is a PID if and only if D + XDS [X] is a GCD domain for every multi-

plicative set S of D.
(4) t-dim(D + XDS [X]) = 2 if and only if D[X] ( D + XDS [X].

Proof. (1) This is an immediate consequence of Corollary 3.5, because an almost
Dedekind domain is a locally factorial domain.

(2) Recall that an almost Dedekind domain D is a Dedekind domain if and only
if D is of finite character (i.e., each nonzero nonunit of D is contained in only finitely
many maximal ideals of D) [20, Theorem 37.2], if and only if every multiplicative
subset of D is a t-splitting set [6, p. 8]; a locally GCD domain is a GGCD domain
if and only if it is a PvMD (Corollary 1.9); and D + XDS [X] is a PvMD if and
only if D is a PvMD and S is a t-splitting set [6, Theorem 2.5]. Thus, by (1), D

is a Dedekind domain if and only if D + XDS [X] is a GGCD domain for every
multiplicative set S of D.

(3) This result is an immediate consequence of the following two facts: (i) D is
a weakly factorial GCD domain if and only if D + XDS [X] is a GCD domain for
every multiplicative subset S of D [36, Theorem 3.1] and (ii) an almost Dedekind
domain is a PID if and only if it is a weakly factorial domain [20, Theorem 37.2].

(4) This follows from the facts that dim(D + XDS [X]) = 2 [15, Theorem 2.6],
t-dim(D[X]) = 1, and if P is a prime ideal of D with P ∩S 6= ∅, then P +XDS [X]
is a prime t-ideal if and only if P is a prime t-ideal [7, Lemma 2.1]. ¤

As in [36], we say that a prime ideal P intersects a multiplicative set S in detail
if for all nonzero prime ideals Q ⊆ P , Q∩S 6= ∅. It is easy to show that P intersects
S in detail if and only if DS(D\P ) = K, the quotient field of D.

Corollary 3.7. (cf. [36, Proposition 4.1]) Let S be a multiplicative set in D such
that M intersects S in detail for every maximal ideal M of D with M ∩ S 6= ∅.
Then D is a locally GCD domain if and only if D + XDS [X] is a locally GCD
domain.

Proof. Let M be a maximal ideal of D such that M ∩ S 6= ∅. Then M intersects
S in detail, that is, DS(D\M) = K; so, in this case, the saturation S of S in DM is
DM \ {0}. Hence, S is a splitting set of DM . Thus, the result follows directly from
Theorem 3.4. ¤

As remarked in [36, p. 104], Corollary 3.7 is hard to apply. But in some cases, it
delivers locally GCD domains that are not PvMDs. Of these, [36, Example 2.6] is
a very easy example of a locally GCD domain that is a non-GCD Schreier domain
and hence a non-PvMD.
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Remark 3.8. (1) Let S be a multiplicative set of D such that D ( DS ; so there is
a nonunit s ∈ S of D. Clearly, X · ( 1

s )n ∈ D + XDS [X] for all integers n ≥ 1, but
1
s 6∈ D + XDS [X]. Hence, D + XDS [X] is not completely integrally closed, while
a locally factorial domain is locally completely integrally closed, and so completely
integrally closed. Therefore, D + XDS [X] is not a locally factorial domain even
though D is factorial.

(2) Let D be a locally factorial domain with dimD ≥ 2 that is not factorial, and
let M be a maximal ideal of D. Choose 0 6= a ∈ M , and put S = {an | n ≥ 0}.
Then D +XDS [X] is a locally GCD domain and S ∩M 6= ∅. But, since dimD ≥ 2,
we may assume that DM is a factorial domain of dimDM ≥ 2. So there is at least
one prime ideal P of D such that P ( M and P ∩ S = ∅. This shows that the
assumption about S of Corollary 3.7 is not necessary for D + XDS [X] to be a
locally GCD domain.

Corollary 3.9. Let K be the quotient field of D. Then D is a locally GCD domain
if and only if D + XK[X] is a locally GCD domain.

Proof. Let S = D∗. Then S is a multiplicative set of D that satisfies the condition
of Corollary 3.7 and D + XK[X] = D + XDS [X]. Thus, the result follows directly
from Corollary 3.7. ¤

Let S be a multiplicative set of D. Clearly, if P is a height-one prime ideal of D

intersecting S, then P intersects S in detail. Hence, if dimD = 1, then every prime
ideal of D intersecting S intersects S in detail; so by Corollary 3.7, we have

Corollary 3.10. Let D be a locally GCD domain of dimD = 1. Then D+XDS [X]
is a locally GCD domain for every multiplicative set S of D.

Let E be the ring of entire functions, and let S be the multiplicative set of E

generated by the principal primes of E. It is well known that E is a Bezout domain
in which every principal prime ideal is a maximal ideal of height-one [20, Exercise
19 on p. 147]. Hence, by Corollary 3.7, E + XES [X] is a locally GCD domain [36,
page 95].

Example 3.11. Let E be the ring of entire functions, and let S be a saturated
multiplicative set of E generated by prime elements.

(1) E + XES [X] is a locally GCD domain.
(2) If E + XES [X] is a GGCD domain, then E + XES [X] is a GCD domain.
(3) E+XES [X] is a GCD domain if and only if S is generated by finitely many

prime elements.

Proof. (1) If M is a maximal ideal of E with M ∩ S 6= ∅, then M is of height-one,
and hence M intersects S in detail. Thus, by Corollary 3.7, E+XES [X] is a locally
GCD domain because E is a Bezout domain (and so a locally GCD domain).

(2) Since a GGCD domain is a PvMD, E + XES [X] is a PvMD, and hence S is
a splitting set [6, Theorem 2.5] because Clt(E) = 0. Thus, E + XES [X] is a GCD
domain [36, Corollary 1.5].

(3) Let z be a prime element of E and 0 6= d ∈ E. It is well known that there
is an integer n = n(z) ≥ 0 such that zn|d but zn+1 - d in E; z - d if and only if
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(z, d) = E; and for any set {zi} of prime elements, there exists a nonzero x ∈ E

such that zi|x for all zi. Hence, S is finitely generated if and only if S is a splitting
set. Thus, by [36, Corollary 1.5], E + XES [X] is a GCD domain if and only if S is
finitely generated. ¤

References

[1] M.M. Ali, Generalized GCD rings IV, Beitrage zur Algebra und Geom. in press.

[2] D.D. Anderson and D.F. Anderson, Generalized GCD domains, Comment. Math. Univ. St.

Pauli 28 (1979), 215-221.

[3] D.D. Anderson, Globalization of some local properties in Krull domains, Proc. Amer. Math.

Soc. 85 (1982), 141-145.

[4] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, II, J.

Algebra 152 (1992), 78-93.

[5] D. D. Anderson, D. F. Anderson, and M. Zafrullah, A generalization of unique factorization,

Boll. Un. Mat. Ital. A(7) 9 (1995), 401-413.

[6] D.D. Anderson, D.F. Anderson and M. Zafrullah, The ring D +XDS [X] and t-splitting sets,

Arab. J. Sci. Eng. Sect. C Theme Issues 26 (2001), 3-16.

[7] D.D. Anderson, G.W. Chang, and M. Zafrullah, Integral domains of finite t-character, J.

Algebra 396 (2013), 169-183.

[8] D.D. Anderson and B.G. Kang, Pseudo Dedekind domains and divisorial ideals in R[X]T , J.

Algebra 122 (1989), 323-336.

[9] D.D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisibility, Proc.

Amer. Math. Soc. 109 (1990), 907-913.

[10] D.D. Anderson and M. Zafrullah, On a theorem of Kaplansky, Boll. Un. Mat. Ital. (7) 8-A

(1994), 397-402.

[11] J.T. Arnold and R. Matsuda, An almost Krull domain with divisorial height one primes,

Canad. Math. Bull. 29 (1986), 50-53.

[12] A. Bouvier, Le groupe des classes d’un anneau intégré, 107ème Congrès National des Sociétés
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[31] J. Querré, Intersections d’anneaux integres, J. Algebra 43 (1976), 55-60.

[32] M. Zafrullah, On a result of Gilmer, J. London Math. Soc. 16 (1977), 19-20.

[33] M. Zafrullah, On finite conductor domains, Manuscripta Math. 24 (1978), 191-203.

[34] M. Zafrullah, On generalized Dedekind domains, Mathematika 33 (1986), 285-296.

[35] M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra 15 (1987), 1895-1920.

[36] M. Zafrullah, The D + XDS [X] construction from GCD domains, J. Pure Appl. Algebra 50

(1988), 93-107.

[37] M. Zafrullah, Ascending chain conditions and star operations, Comm. Algebra 17 (1989),

1523-1533.

[38] M. Zafrullah, Flatness and invertibility of an ideal, Comm. Algebra 18 (1990), 2151-2158.

[39] M. Zafrullah, Putting t-invertibility to use, in Non-Noetherian Commutative Ring Theory,

pp. 429–457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.

[40] http://people.fas.harvard.edu/˜amathew/chfactorization.pdf.

(Chang) Department of Mathematics, Incheon National University, Incheon 406-772,

Republic of Korea.

E-mail address: whan@incheon.ac.kr

(Dumitrescu) Facultatea de Matematica si Informatica, University of Bucharest, 14

Academiei Str., Bucharest, RO 010014, Romania

E-mail address: tiberiu@fmi.unibuc.ro, tiberiu dumitrescu2003@yahoo.com

(Zafrullah) Department of Mathematics, Idaho State University, Pocatello, ID

83209, USA

E-mail address: mzafrullah@usa.net, http://www.lohar.com


