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In this paper, we study several factorization properties in an integral domain
which are weaker than unique factorization. We study how these properties behave
under localization and directed unions.  © 1992 Academic Press, Inc.

INTRBDUCTION

In this paper, we continue our investigation begun in [1] of various
factorization properties in an integral domain which are weaker than
unique factorization. Section 1 introduces material on inert extensions and
splitting multiplicative sets. In Section 2, we study how these factorization
properties behave under localization. Special attention is paid to multi-
plicative sets generated by primes. Section 3 consists of “Nagata-type”
theorems about these properties. That is, if the localization of a domain at
a multiplicative set generated by primes satisfies a certain ring-theoretic
property, does the domain satisfy that property? In the fourth sec¢tion, we
consider Nagata-type theorems for root closure, seminormality, integral
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closure, and complete integral closure. In the final section, we investigate
how these factorization properties behave under directed unions.

We first recall the various factorization properties in addition to unique
factorization which we will study here. Throughout, let R be an integral
domain with quotient field K. Following Cohn [5], we say that R is atomic
if each nonzero nonunit of R is a product of a finite number of irreducible
elements (atoms) of R. We say that R satisfies the ascending chain condition
on principal ideals (ACCP) if there does not exist an infinite strictly
ascending chain of principal integral ideals of R. The domain R is a
bounded factorization domain (BFD) if R is atomic and for each nonzero
nonunit x € R there is a bound on the lengths of factorizations of x into
products of irreducible elements (equivalently, there is a bound on the
lengths of chains of principal integral ideals starting at xR). Following
Zaks [17], we say that R is a half-factorial domain (HFD) if R is atomic
and each factorization of a nonzero nonunit of R into a .product of
irreducible elements has the same length. Following Grams and Warner
[12], we say that the domain R is an idf-domain (for irreducible-divisor-
finite) if each nonzero element of R has at most a finite number of
nonassociate irreducible divisors. An atomic idf-domain will be called a
finite factorization domain (FFD); these are precisely the domains in which
each nonzero nonunit has only a finite number of nonassociate divisors
(and hence, only a finite number of factorizations up to order and
associates). BFDs and FFDs were introduced in [1]. These factorization
properties have also been studied in {2]. In general,

HFD
7 N
UFD= FFD = BFD = ACCP = atomic
A y
idf-domain

Examples given in [1] show that no other implications are possible.
General references for any undefined terminology or notation are
[7,9,13]. For an integral domain R, R* is its set of nonzero elements,
U(R) its group of units, R’ its integral closure, and R its complete integral
closure. By an ideal, we always mean an integral ideal. For nonzero «,
beR, (a, b)=1 means that ¢ and b have no nonunit common factors. We
also make the two harmless assumptions that all our multiplicative sets do
not contain 0 and are saturated. A multiplicative set S is generated by
T<Rif S={ut,---t,|ue U(R) and t;e T}. Throughout, Z, @, and R
denote the integers, rational numbers, and real numbers, respectively.
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1. INERT EXTENSIONS AND SPLITTING MULTIP

LAH

LICATIVE SETS

Following Cohn [5], we say that an extension of rings 4 < B is an inert
extension if whenever xye A for nonzero x, ye B, then xu, yu~'e€ A4 for

some u € U(B). Our first lemma is

LemMMA 1.1. Let A < B be an inert extension of inte
irreducible element of A is either irreducible or a unit

Proof. Let ae A be irreducible and suppose that
If a=xy for x, yeB, then xu, yu='ed for s
a= (xu)(yu="') in A implies that either xu or yu~"' is g
X or y is a unit in B. Hence a is irreducible in B. |

Easy examples show that either case may occur in

ae A may be irreducible in B, but not irreducible in
is an inert extension and U(B)n A= U(A), then an

2gral domains. Then an
in B.

a is not a unit in B.
ome ue U(B). Hence
1 unit in A. Thus either

Lemma 1.1. Also, an
A. However, if Ac B
ac A is irreducible in

A if and only if it is irreducible in B. It is easily seen that none of our

factorization properties need ascend or descend fq
A < B of integral domains.

We next define a special type of multiplicative set
plicative subset S of R is a splitting multiplicative
x =as for some a€ R and se S such that aRntR=a
ae S if and only if ae U(R).) Similar types of multip
studied in [10, Sect.3; 14, Sect. 4]. (This should
splittable sets as defined by Zaks in [17,18].) W
Proposition 4.17])

LemMMmA 1.2. Let R be an integral domain and S a
Then the following statements are equivalent for x, y

(a) xRsnR=yR.

Proof. (a)=-(b) We may assume that x and y
x=ys for some se R since xe xR¢n R=yR. Also
reR and t'eS. Thus xr=yt, so sr=te€S. He
saturated. We next show that yRn ¢tR = ytR for all
sion is clear. Conversely, let ze yR N tR. Then z = ya
Thus yas = tbs, and hence ax = ths. Thus b= x(a/(s1
b= yc for some ce R. Hence z = ytce ytR. Thus
and we have equality.

(b)=>(a) Let x=ys with se S and yRntR=
xRs=yRg, so we need only show that yRsn R=y

the “

r an inert extension

A (saturated) multi-
set if for each xe R,
tR for all te S. (Thus
icative sets have been
not be confused with
e first have (cf. [14,

multiplicative set of R.
e R: '

(b) x=ys for some s€ S and yRNtR=ptR for all te S.

are nonzero. We have
. y=x(r/t') for some
nce se€S since S is
teS. The “>” inclu-
= tb for some a, be R.
))exRsn R=yR, so
<” inclusion holds

vtR for all te S. Then
R. The “>” inclusion
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is clear. Conversely, let ze yRgn R. Thus z= y(r/t) for some re R and
teS. Hence tz=yre yRNtR=ytR, so ze yR. Hence the “<” inclusion
holds and we have equality. |

COROLLARY 1.3. A multiplicative set S of an integral domain R is a
splitting multiplicative set if and only if principal ideals of Rg intersect to
principal ideals of R.

COROLLARY 1.4. Let R be an integral domain and S a splitting multi-
plicative set of R. Let xe R be nonzero and x=as with ae R, s€ S, and
aRnNtR=atR for all teS.

(a) Ifx=a's' witha'eR,s'eS, and d RNntR=d'tR for all te S, then
a and a' are associates and s and s’ are associates.

(b) If y=>bt with beR, teS, and bBRN'R=Dbt'R for all '€ S, then
abRNt'R=abt'R for all ¢ € S. Hence the decomposition for xy is (ab)(st).

(c) x is prime (resp., irreducible) in R if and only if a is prime (resp.,
irreducible) in R.

(d) Each prime (resp., irreducible) element in R is an associate in R
of a prime (resp., irreducible) element in R.

Proof. (a) This follows directly from Lemma 1.2. (b) This follows
because  abt’'R=b(aRN'R)=abRNb'R=abRN"BRNI'R=abRNI'R.
(c)If xis prime in Ry, then a is prime in R since aR=xRsn R. The
converse is clear. If a is irreducible in R, then x is irreducible in R by
Lemma 1.1 (and Proposition 1.5) since se U(Rg). Conversely, if a=a,a,
with neither factor a unit in R, then 4, and hence x, is not irreducible in
R;. (d) This follows easily from (c). |}

In general, localization need not yield an inert extension Rc< Rg.
However, we next show that this extension is inert when S is a splitting
multiplicative set. In Proposition 1.9, we show that R = Ry is also an inert
extension when S is generated by primes.

PROPOSITION 1.5. Let R be an integral domain and S a splitting
multiplicative set of R. Then R < Ry is an inert extension.

Proof. Let xye R for nonzero x, y € Rs. Then x = (as)/t and y = (bu)/v,
where a, be R; s, t, u, ve S; and aRnt'R=at'R and bR 'R = bt'R for all
t'eS. Thus absu=rtv for some re R. Since bRNvtR=>bvtR, we have
asu = cvt for some ce R. Hence w=u/ve U(Rs) and xw, yw~'e R. Thus
Rc Rg is an inert extension. |

In this paper, we are mainly interested in multiplicative sets generated by
prime elements. Such multiplicative sets are always saturated, but need
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not be splitting multiplicative sets (cf. Examples 1.8 and Example 2.3);
precisely, we have

PrOPOSITION 1.6. Let R be an integral domain and S a multiplicative set
of R generated by primes. Then the following statements are equivalent.

(a) S is a splitting multiplicativé set.

(b) N p"R=0 for each prime pe S and (\ p,R=0 for all sequences
{p.} of nonassociative primes in S.

(c) For each nonzero nonunit x€ R, there is a positive integer n(x)
such that whenever p,---p, | x for primes p;e S, then n<n(x).

(d) Principal ideals of Rg intersect to principal ideals of R.

Proof. Clearly (b) and (c) are equivalent, and (a) and (d) are
equivalent by Corollary 1.3. Suppose that (b) holds. For a nonzero nonunit
xeR, x=as, where aeR, seS, and no prime peS divides a. Thus
aRntR=atR for all teS. Hence S is a splitting multiplicative set.
Conversely, suppose that (a) holds. For a nonzero nonunit xe R,
x=ap,---p, for some ae R and primes pq, ..., p, €S such that no prime
pe S divides a. Hence (¢) holds with n(x)=n. ||

COROLLARY 1.7. Let R be an atomic integral domain. Then any
multiplicative set of R generated by primes is a splitting multiplicative set. In
particular, this holds if R satisfies ACCP.

Proof. Let x be a nonzero nonunit of R. Since R is atomic, x =x, --- Xx,,
for irreducible x,, ..., x,€ R. Thus any prime p of R which divides x must
be an associate of some x;. Hence (c) holds with n(x)=n, so S is a splitting
multiplicative set. |1

We remark that () p"R =0 for a prime p if and only if pR has height one
(cf. [13, p. 7, Exercise 5]). Also, if R is an atomic integral domain and S
is the multiplicative set of R generated by all primes of R, then by
Corollary 1.4(d), Rs has no primes (Example 1.8(a) shows that it is
necessary to assume that R is atomic). We next give four examples of
multiplicative sets generated by primes which are not splitting multi-
plicative sets and a nontrivial example of a splitting multiplicative set
which is not generated by primes. (Note that S= R* is always a splitting
multiplicative set of R.) '

ExaMPLES 1.8. (a) Let V' be a two-dimensional valuation domain
with principal maximal ideal M = pV and height-one prime P. Then the
multiplicative set S generated by p is not a splitting multiplicative set since
() p"V = P is nonzero. Moreover,  may be chosen so that V,=V[1/p] is
a DVR.
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(b) (cf. [16, p.264, (First) Example].) Let F be a field, X and ¥
indeterminates over F, R=F[X, {Y/X"|n>0}], and S the multiplicative
set generated by the prime X. Then Rg=F[X,X ' Y] is a UFD.
However, S is not a splitting multiplicative set since Ye () X"R.

(c) Let R=Z+XQ[[X]] and S=Z*. Then R is a Bézout domain
[9, p. 286, Exercise 13], S is a multiplicative set of R generated by primes,
and Rg=Q[[X]] is a UFD, but R is neither atomic [ 1, Proposition 1.2]
nor an idf-domain [1, Proposition 4.3]. Note that .S is not a splitting
multiplicative set since ()p"R=XQ[[X]] for each prime peS and
N p.R=XQ[[X]] for each sequence {p,} of nonassociate primes in S.

(d) Let FE be the ring (Bézout domain) of entire functions and S the
multiplicative set generated by all primes of E. Then [} p"E=0 for each
prime p € E. However, while the intersection of all nonzero principal prime
ideals of E is zero, () p,E may be nonzero for a sequence {p,} of
nonassociate primes of E. Thus S is not a splitting multiplicative set. (cf.
[9, page 147, Exercises 16-21].)

(¢) Let V be a nondiscrete one-dimensional valuation domain with
quotient field F, X an indeterminate, and R=V[X]. Then S=V* is a
splitting multiplicative set of R which is not generated by primes and
Rg=F[X] is a UFD. In fact, in this example V" may be replaced by any
GCD-domain which is not a UFD.

Even though a multiplicative set S of R generated by primes need not be
a splitting multiplicative set, we next show that R < Ry is always an inert
extension. Note that this need not be true if S is merely assumed to be
generated by irreducible elements. Indeed, if R is atomic, then each
(saturated) multiplicative set of R is generated by irreducibles. Moreover,
while a multiplicative set generated by primes is always saturated, a
multiplicative set generated by irreducibles need not be saturated. .

PropPoSITION 1.9. Let R be an integral domain and S a multiplicative set
of R generated by primes. Then R < R is an inert extension.

Proof.  Suppose that xye R for nonzero x, ye Rg. Then x=a/s and
y=>b/t, where a, be R; s, te S; and (a, s)= (b, t)=1. Thus st | ab in R, so
s|band t|ain R since s and ¢ are each products of primes. Let u=s/te
U(Ry). Then xu, yu"'e R, so R< Ry is an inert extension. J

2. LOCALIZATIONS

It is well known that the localization of a UFD is a UFD. However, in
[1], we gave examples to show that the localization of an atomic domain

14
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(resp., domain which satisfies ACCP; BFD, idf-domain, or FFD) need not
be an atomic domain (resp., satisfy ACCP, BFD, idf-domain, or FFD). We
next show that if Rc Ry is an inert extension of integral domains, then
each of these factorization properties, except the idf-property (see
Example 2.3), does ascend from R to Rg. In particular, by Proposition 1.9
these properties are all preserved by localizing at multiplicative sets
generated by primes. Thus, in some sense, the UFD case should not be
viewed as exceptional since any (saturated) multiplicative set of a
UFD is generated by primes. It is interesting to note that although these
factorization properties need not be preserved by either localizations or
inert extensions, they are preserved by the combination of the two.

THEOREM 2.1. Let R be an integral domain and S a multiplicative set of
R such that Rc Ry is an inert extension. Then Rg is atomic (resp., satisfies
ACCP, a BFD, a FFD, or a UFD) if R is atomic (resp., satisfies ACCP, a
BFD, a FFD, or a UFD).

Proof. Suppose that R is atomic. Let x =r/se Rg be a nonzero nonunit
with reR and seS. Then r=r,---r, with each r,e R irreducible. By
Lemma 1.1, each r; is either irreducible or a unit in Rg. Hence x is a
product of irreducible elements in Ry and so Ry is atomic. Next, suppose
that aRy is properly contained in #Ry. We may assume that a, b € R. Hence
a=b(r/s) for some reR and seS. Thus bu, (r/s)u"'eR for some
ue U(Rg). Let b’ =bu. Then bRy=b'Rg and aR is properly contained in
b'R. Thus if R satisfies ACCP (resp., is a BFD), then Ry satisfies ACCP
(resp., is a BFD). Finally, suppose that R is a FFD. Let y be a divisor of
a nonzero nonunit x in Rg. Thus x=yz for some ze Rg. We may assume
that xe R. Hence yu, zu—'e R for some ue U(Ry). Let x4, .., x, be the
nonassociate divisors of x.in R. Then y=uvx; for some ve U(Rg) and
1<i<n Hence R is a FFD. The UFD case is well known. |

COROLLARY 2.2. Let R be an integral domain and S a multiplicative set
of R which is either generated by primes or a splitting multiplicative set. Then
Ry is atomic (resp., satisfies ACCP, a BFD, a FFD, or a UFD) if R is
atomic (resp., satisfies ACCP, a BFD, a FFD, or a UFD).

We next give an example to show that the idf-property need not be
preserved by localization at a multiplicative set generated by primes, and
hence need not be preserved by localizations which are inert extensions.
This failure is essentially because an idf-domain need not be atomic, and
hence a multiplicative set generated by primes need not be a splitting multi-
plicative set. (Note that in Corollary 2.2 any multiplicative set generated by
primes is a splitting multiplicative. set since R is atomic.)
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ExampLe 2.3. Let R=7Z,+ XR[[X]]. Then R is an idf-domain [1,
Proposition 4.3] which is not atomic [1, Proposition 1.27] and 2 is prime
in R. However, R[1/2]=Q+ XR[[X]] is atomic [1, Proposition 1.2],
but is not an idf-domain since R*/Q* is infinite [1, Proposition 4.2(a)].
Note that () 2"R=XR[[X]], so 2 does not generate a splitting multi-
plicative set of R.

We do not know if the localization of a HFD is again a HFD or if
HFDs are preserved by inert localizations. However, for splitting multi-
plicative sets we do get a positive result for both idf-domains and HFDs.

THEOREM 2.4. Let R be an integral domain and S a splitting multi-
plicative set of R.

(@) If R is an idf-domain, then R is an idf-domain.
(b) If Ris a HFD, then Rg is a HFD.

Proof. (a) Let xeRg be a nonzero nonunit and yeRg be an
irreducible divisor of x in Rg. We may assume that xe R, ye R, and
YR sR=ysR for all seS. By Corollary 1.4(c), y is irreducible in R. Now
x=y(r/t) for some re R and te S. Thus xt=yr=yta for some aeR.
Hence y is an irreducible divisor of x in R. Since R is an idf-domain, x has
only a finite number of nonassociate irreducible divisors in R. Thus x has
only a finite number of nonassociate divisors in Rg. Hence Rg is an
idf-domain. ' , ‘ .

(b) By Corollary 2.2, Rg is atomic. Let x;---x,=y---y,, be two
products of irreducible elements in Rg. By Corollary 1.4(c), each
x;=(a;s;)/t; and y;= (b;u;)/v;, where each a;, b;€ R is irreducible; s;, t;, u,
v;€S; and a,RnsR=a;sR and b;,RnsR=>b;sR for all seS. Let
a=a,---a, and b=5b,---b,,. Then as= bt for some s, t€S. By Corollary
1.4(a) and (b), a and b are associates in R: Hence m=n since Ris a HFD.
and thus Rsis a HFD. |

COROLLARY 2.5. Let R be an integral domain and S a multiplicative set
of R generated by primes. If R'is. a HFD, then R is a HFD.

Proof. Since a HFD is atomic, by Corollary 1.7 any multiplicative set
of R generated by primes is a splitting multiplicative set. [

3. NAGATA-TYPE THEOREMS

In [15], Nagata showed that if an integrai.domain R is Noetherian and
S is a multiplicative set of R generated by primes, then R is a UFD if Rg
is a UFD. With the Noetherian hypothesis replaced by ACCP (as in [13,.:
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Theorem 177]), this result is usually called Nagata’s Theorem. Gilmer and
Parker [10, Theorem 3.27] generalized this to the case in which S is a. split-
ting multiplicative set generated by primes (also, cf. [14, Corollary 3.3]).
Other versions relating divisor class groups of Krull domains are given in.
[7, pp.35-36]. The examples given in Examples 1.8 show that some
restrictions are necessary on R and S. In particular, Nagata’s Theorem
does not extend to an arbitrary splitting multiplicative set since for any
integral domain R, S= R* is a splitting multiplicative set and Rg= K. Our
next theorem is the Nagata-type theorem converse of Theorem 2.1. The
ACCP case is also due to Gilmer and Parker [10, Theorem 3.2].

THEOREM 3.1. Let R be an integral domain and S a splitting multi-
plicative set of R generated by primes. Then R is atomic (resp., satisfies
ACCP, a BFD, an idf-domain, a FFD, or a UFD) if Rg is atomic (resp.,
satisfies ACCP, a BFD, an idf-domain, a FFD, or a UFD).

Proof. First, suppose that Rg is atomic. Let x € R. Then x = as, where
ac R, se S is a finite product of primes, and no prime p € S divides a. Now
a=a, ---a, with each a,e R irreducible. Since no prime in S divides a, we
may assume that each a;€ R and hence each g, is irreducible in R. Thus x
is a product of irreducibles in R, and hence R is atomic. We have already
observed that the ACCP case has been proved in [10, Theorem 3.2]. Next,
let. Rg be a BFD. Let x€ R and suppose that x=x, ---x, is a product of
irreducibles in R. Suppose that x;, , .., X,, are the irreducible factors in S.
(and hence each is prime). Let a=x,---x;, and s=x,.,:--X,. By
Corollary 1.4, in any factorization of x as a product of irreducibles
X=¥,+ Vn, the product of the y’s nat in .S is an associate of a and the
product of the y/s in S is an associate of s. Since Rg is a BFD, there.is an
integer k£ such that any factorization of a in R has at most k irreducible
factors. The number of prime factors in s is always n—i. Hence any
factorization of x in R has at most k + n — i irreducible factors. Thus R is
a BFD. Suppose that Ry is an idf-domain. Let x € R be a nonzero nonunit.
Then x=ap, --- p, with each p,;e S prime and no prime p € S divides a. In
Rg, a has only a finite number of nonassociate irreducible divisors,
a,, .., a,. We may assume that each a4, R and hence by Corollary 1.4(c),
each a, is irreducible in R. Let y € R be an irreducible divisor of x in R. If
y €S, then y is an associate of some py, ..., p,. If y¢ .S, then y is irreducible
in Rg by Lemma 1.1, and hence y =a,;(s/t) for some s, te S and 1<i<n.
Since neither y nor q; is in S, s/t e U(R), Thus ay, .., a,,, Dy, -, P, are the
nonassociate irreducible divisors of x in ‘R. Hence R is an idf-domain. Thus *
if Rgis.a FFD, then so is R since.a FFD is. an atomic idf-domain. As-
mentioned earlier, the UFD case was proved by Gilmer and Parker in [10,
Theorem 3.27. |} .



FACTORIZATION IN INTEGRAL DOMAINS, II 87

Note that by Corollary 1.7, we could just as well assume in Theorem 3.1
that R is atomic and S is generated by primes. (For the UFD case, this has
been observed by Heinzer, see [11; p. 3257].) However, Examples 1.8 show
that Theorem 3.1 does not hold for either ‘an arbitrary splitting multi-
plicative set or a multiplicative set generated by primes. Moreover, note
that if S’ is a multiplicative set of R generated by primes and Rj satisfies
any of the factorization properties in Theorem 3.1 except the idf-property,
then R satisfies that property if and only if S is a splitting multiplicative set.
We next give another case where R being a UFD implies that R is a UFD.
(This result also follows directly from Theorem 3.1, Proposition 1.6, and
Corollary 1.7, or it may be proved using primary decomposition.) Recall
that a nonzero fractional ideal I of R is a t-ideal if J, = I for each nonzero
finitely generated fractional ideal J<= I.

PrOPOSITION 3.2 Let R be an integral domain and S a multiplicative set
of R generated by primes such that Rg is a UFD. Then R is a UFD if and
only if principal ideals of R intersect to principal ideals of R (i.e., S is a
splitting multiplicative set).

Proof. Suppose that R is a UFD. Let I be a nonzero principal ideal of
Rg. Thus I is a t-ideal of Rg, and so'J=1In R is also a t-ideal of R. Hence
J is principal since R is a UFD and each r-ideal in a UFD is principal.
Conversely, suppose that principal ideals intersect to principal ideals. We
show that each nonzero prime ideal P of R contains a nonzero principal
prime ideal. If P intersects S, this is clear. Otherwise, Py is a nonzero prime
ideal of the UFD Ry and so contains a nonzero principal prime ideal Q.
Then Q N R is a nonzero principal prime ideal contained in P. Hence R is
a UFD by [13, Theorem 5]. |

Our next theorem is the Nagata-type theorem analogue for HFDs.

THEOREM 3.3. Let R be an integral domain and S a splitting multi-
plicative set of R such that Rg is a HFD. Then R is a HFD if and only if
each element of S is a product of irreducibles and whenever s, ---s,, =1, -1,
for irreducible s;, t,€ S, then m=n. In particular, if S is a splitting multi-
plicative set of R generated by primes, then R is a HFD if and only if Rg is
a HFD.

Proof. 1If R is a HFD, then certainly each element of S is a product of
irreducibles and any two such products of irreducibles in S have the same
length. Conversely, suppose that each element of S is a product of
irreducibles and.any two such products have the same length. We first
show. that R is atomic. Let xe R. Then x=as with ae R, seS, and
aRntR=atR for all teS. Since Ry is atomic, a=a,---a, with each
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a,€ Ry irreducible. By Corollary 1.4, we may assume that each a;€ R and
is irreducible in R. Since s is a product of irreducibles, x is thus a product
of irreducibles. Hence R is atomic. Suppose that x=a,---a,=b,---b,,
with each a;, b;e R irreducible. Thus each factor c=a,, b; either is in §
or cRnt'R=ct'R for all ¢ eS. Suppose that a,eS for i+1<k<n and
byeS for j+1<k<m. Let a=a,---a;, b=b,---b;, s=a;,,,---a,, and
t=b;, - -b,. Then each a, .., a;, b,, ..., b; is irreducible, and s and ¢ are
units in Rg; so i=j since Ry is a HFD. By Corollary 1.4(a) and (b), s and
t are associates in R, so n—i=m — j. Thus n=m and R is a HFD. The “in
particular” statement follows from Corollary 2.5 and the fact that any two
prime factorizations of a given element have the same number of prime

factors. ||

Several other Nagata-type theorems are given in [8, 10, 11, 14, 16]. For
example, the GCD and Mori (ACC on integral divisorial ideals) properties
are investigated. Also, Mott and Schexnayder [14] relate several of these
concepts to groups of divisibility.

4. CLOSURE PROPERTIES

In this section, we consider a few other properties and their relationship
to localization. We show that Nagata-type theorems also hold for
integrally closed, n-root closed, root closed, and seminormal integral
domains. We recall that an integral domain R with quotient field K is
n-root closed for a positive integer n if xe R whenever x"€ R for some
x e K; R is root closed if it is n-root closed for all n > 1; and R is seminormal
if xe R whenever x? x’€ R for some xe K. It is well known that each of
these properties is preserved by localization. We show that the converses
also hold when the multiplicative set S is generated by primes. Note that
we do not need to assume that S is a splitting multiplicative set for these
properties. The case for complete integral closure is more subtle. Recall
that R’ and R denote respectively the integral closure and complete integral
closure of R.

PROPOSITION 4.1. Let R be an integral domain and S a multiplicative set
of R generated by primes. Then
~ (a) R is seminormal if and only if Rg is seminormal.
(b) R is n-root closed if and only if R is n-root closed.
(¢) R is root closed if and only Ry is root closed.

Proof. We prove (b); the proof of (a) is similar, and (c) follows from
(b). 1t is well known that any localization of an n-root closed domain is
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again n-root closed. Conversely, suppose that R is n-root closed and let
x" e R for x € K. Then x € Rg since Ry is n-root closed. Hence x = r/s, where
reR and seS. Then s”| r" in R forces s|r in R since s is a product of
primes. Thus xe€ R, so R is n-root closed. |

In [9, p. 555, Exercise 117, it is stated that if R satisfies ACCP and S is
generated by primes, then R is integrally closed whenever Ry is integrally
closed. Our next result shows that the ACCP hypothesis is not needed.

ProPOSITION 4.2. Let R be an integral domain and S a multiplicative set
of R generated by primes. Then R=Rgn R'. In particular, R is integrally
closed if and only if Ry is integrally closed.

Proof. The “c” inclusion is clear. Conversely, let x=r/se R’, where
re R, se S, and (r, s) = 1. The standard proof (cf. [13, Theorem 50]) shows
that s | r* in R and hence s € U(R). Thus xe R and we also have the “>”
inclusion. The “in particular” statement is now clear since the intersection
of two integrally closed domains is integrally closed and any localization of
an integrally closed domain is integrally closed. |

It is well known that the localization of a completely integrally closed
domain need not be completely integrally closed (cf. [9, Sect.13; 2,
Remarks after Example 7.7]). In fact, [9, p. 148, Exercise 21] and [16,
page 264, (Second) Example] show that this need not hold even if S is
generated by primes. However, Roitman [16, Proposition 5.2 does show
that if R is a completely integrally closed domain which satisfies ACCP and
S is a multiplicative set of R generated by primes, then Rg is completely
integrally closed. Our next proposition is a slight generalization of his
result (in particular, his ACCP hypothesis may be weakened to R being
atomic by Corollary 1.7).

PrROPOSITION 4.3. Let R be an integral domain and S a multiplicative set
of R generated by primes. If R is completely integrally closed and [\ p,R=0
for all sequences {p,} of nonassociate primes in S, then Rg is completely
integrally closed. In particular, if R is completely integrally closed and S is
a splitting multiplicative set generated by primes, then Rg is completely
integrally closed.

Proof. Since R is completely integrally closed, we have () p"R=0 for
each prime p € R. Thus S is a splitting multiplicative set by Proposition 1.6.
The proof now proceeds as in [16, Proposition 5.2]. The “in particular”
statement is clear. |

Examples 1.8 show that in general, Rg completely integrally closed does
not imply that R is completely integrally closed even when S is generated
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by primes. In [9, p. 555, Exercise 11], it is stated that if R satisfies ACCP
and S is generated by primes, then R is completely integrally closed
whenever Ry is completely integrally closed (this also holds if R is only
assumed to be atomic). We next give a slight refinement of this result which
is the complete integral closure analogue of Proposition 4.2.

PROPOSITION 4.4. Let R be an integral domain and S a multiplicative set
of R generated by primes. Then R= Ry R if and only if () p"R = 0 for each
prime pe S.

Proof. If 0#de () p"R for some prime pe S, then 1/pe Ry R=R, a
contradiction. Conversely, suppose that () p”"R =0 for each prime p e S. Let
x=r/se Rgn R, where reR, se 8, and (r, s)=1. Then for some nonzero
de R, dx" e R for all n>1. Thus for each n, dr” = s"r, for some r, € R. Since
d is nonzero and each | p"R=0, se U(R). Hence xe R,s0 R=RzsnR. |

COROLLARY 4.5. Let R be an integral domain and S a multiplicative set
of R generated by primes. If R is completely integrally closed and \ p"R=0
Jfor each prime p € S, then R is completely integrally closed. In particular, this
holds if S is a splitting multiplicative set generated by primes.

We note that Proposition 4.3 and Corollary 4.5 show that for a splitting
multiplicative set S generated by primes, R is completely integrally closed
if and only if Ry is completely integrally closed. In particular, this holds
when R is atomic.

5. DIRECTED UNIONS

Let k be a field and R, = k[ X "] for each integer n > 1. Then each R,
is a UFD, but the monoid domain R={J R,=k[X;Q*] is not a UFD;
in fact, R is not even atomic. Also, any integrally closed domain is a
directed union of integrally closed Noetherian. domains (cf. [3].) Hence
none of our factorization properties is preserved by directed unions and
thus not much can be said about general directed unions. However, if we
assume that each R, = Ry is an inert extension (and hence each R,c R=
U R, is an inert extensmn) then we get the desired results. We w111 need
the followmg lemma (cf. Example 5.4).

LeMMA 5.1. Let {R,} be a directed family of. atomic integral domains
such that each R,< Ry is an inert extension and let R=\J R,. If xeR is
irreducible, then x is irreducible in some R,.

Proof. Let xe R,. Since R, is atomic, x=Xx, --- x,, where each x,e R,
is irreducible. Since x is irreducible in R, all but one of the x/s, say x,, is
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a unit in R. Thus all the xs, except for x,,, are units in some R, with « <.
By Lemma 1.1, x, is irreducible in R,. Hence x is irreducible in R,. |

Our main result in this section is then

THEOREM 5.2. Let {R,} be a directed family of integral domains such
that each R,c Ry is an inert extension. Then R=\) R, is atomic (resp.,
satisfies ACCP, a BFD, a HFD, a FFD, or a UFD) if each R, is atomic
(resp., satisfies ACCP, a BFD, a HFD, a FFD, or a UFD).

Proof. ~ First, suppose that each R, is atomic. Let xe R; then xe R, for
some a. In R,, x=x,---x, as a product of irreducibles. By Lemma 1.1,
each x, is either irreducible or a unit in R. Thus x is a product of
irreducibles in R, so R is atomic. Next, suppose that aR = bR. Let ae R,.
Then a = br for some re R, so bu, ru—'e R, for some ue U(R). Let b’ = bu.
Then bR=»V'R and aR,< b’'R,. Hence for each strictly increasing chain of
principal ideals of length » in R starting at aR, we can construct a chain
of principal ideals of length » in R, starting at aR,. Thus R satisfies ACCP
(resp., is a BFD) if each R, satisfies ACCP (resp., is a BFD). For the case
in which each R, is a HFD, suppose that x,---x,=y, -y, with each x,,
y; irreducible in R. Then R is atomic and by Lemma 5.1, each x;, y; is
irreducible in some R,. Hence m =n since R, is a HFD. Thus R is a HFD.
Next, suppose that each R, is a FFD. Let x € R; then x € R, for some a. In
R,, let x, .., x,, be the nonassociate divisors of x. Suppose that y | x for
some y € R. Then ry = x for some re R. Hence r, y € Rz with R, < R;;. Thus
x = (ru)(yu~") for some ue U(R,) with ru, yu='€ R,. Thus yu~'=ux, for
some ve U(R,) and 1<i<n, so y=(uv) x; with uv e U(R;) = U(R). Hence
any divisor of x in R is an associate of some X, ..., x,,. Thus R is a FFD.
The proof for the UFD case is similar to that for the HFD case and will
thus be omitted. | ,

The case for UFDs have been observed by Cohn [6, p. 7] and the case
for atomic domains by Zaks [19]. Cohn also notes that R[{X,}] is a
UFD for any family of indeterminates {X,} when R is a UFD since
R[{X,}] is the directed union of {R[Y]| Y< {X,} finite} and R[Y] <
R[Z] is an inert extension if Y < Z. This observation together with
Theorem 5.2 shows that any of our factorization properties which is
preserved by adjoining a single indeterminate is also preserved by adjoining
any family of indeterminates.

We next give an example to show that the directed union of a family
{R,} of idf-domains with each R, = R, an inert extension need not be an
idf-domain.

ExaMmPLE 5.3. Let V be a valuation domain with quotient field F such
that F is the countable union of an increasing family of valuation overrings
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{V,} of V. Let K be a proper field extension of F (thus K*/F* is infinite
by Brandis’ theorem [4]) and X an indeterminate. Then each R,=7V, +
XK[[X]] is an idf-domain [1, Proposition 4.3]. However, R={J R, =
F+ XK[[X]] is not an idf-domain since K*/F* is infinite [1, Proposition
42(a)]. It is easily verified that R,,= R, is an inert extension whenever
m<n.

Our final example shows that we may have R={J R, a UFD and each
R,=R; an inert extension, but no R, satisfies any of our factorization
properties. It also shows that in Lemma 5.1 it is necessary to assume that
each R, is atomic.

ExampLE 54. Let g, be the product of the first » positive primes. Then
R,=7Z[1/q,]+ XQ[[X]] is a Bézout domain [9, p.286, Exercise 13]
which is neither atomic [1, Proposition 1.2] nor an idf-domain [1,
Proposition 4.3]. However, R={) R,=Q[[X]] is a UFD and R,,c R, is
an inert extension whenever m < n. Note that X is irreducible in R, but X
is not irreducible in any R,.

Note added in proof. In the paper “Overrings of half-factorial domains,” S. Chapman,
W. W. Smith, and the second author give an example of a Dedekind HFD with a localization
which is not a HFD.
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