FLATNESS AND INVERTIBILITY OF AN IDEAL

Muhammad Zafrullah

Department of Mathematics Winthrop College Rock Hill, SC 29733

It is well known that a finitely generated flat ideal of an integral domain is invertible. In this note we record the consequences of the following result.

PROPOSITION 1. Let A be a non-zero fractionary ideal of an integral domain D. Suppose that there exist $x_1, x_2, \ldots, x_n \in A$ such that $A^{-1} = (x_1, x_2, \ldots, x_n)^{-1}$. If A is flat then A is invertible.

PROOF. Consider $AA^{-1} = A(\bigcap_{i=1}^{n} (\frac{1}{x_i}))$. Because A is flat, according to Anderson [2, Theorem 2] we have

 $AA^{-1} = \bigcap_{i=1}^{n} \frac{A}{x_i}$. Now because $x_i \in A$ we have $AA^{-1} \supseteq D$. But already we have $AA^{-1} \subseteq D$.

As consequences of the above proposition we indicate that by Proposition 1, in a Krull domain a non-zero flat ideal is invertible and, so is a locally principal ideal. We also indicate

some other results which would require non-trivial proofs in the absence of Proposition 1.

It is well known that an integral domain is a Prufer domain if and only if its non-zero ideals are flat [5, Th. 4.2]. We characterize integral domains with the property that every divisorial ideal is flat. These integral domains turn out to be the generalized GCD(G-GCD) domains of [3]. Using some terminology from [8, Sections 32 and 34] we provide a characterization of G-GCD domains which also includes Prufer domains.

Throughout this note the letter D will denote an integral domain, with quotient field K. A function *: $F(D) - \rightarrow F(D)$ is called a <u>star operation</u> if for all A,B ϵ F(D) and for all a ϵ K - $\{0\}$.

(i) (a) * = (a) and (aA) * = aA*, (ii) A \subseteq A* and A \subseteq B implies A* \subseteq B* and (iii) (A*) *= A*.

Let * be a star operation on D. An ideal A ϵ F(D) is called a *-ideal if A = A* and A is called a *-ideal of finite type if there is a finitely generated B ϵ F(D) such that A = B*. Following [14] we call A ϵ F(D) strictly *-finite if there exists a finitely generated ideal B \subseteq A such that A* = B*. The function defined on F(D) by A --- (A^{-1})^{-1} = A_V is a star operation called the v-operation. It is easy to see that for any star operation *, A^{-1} = (A^*)^{-1} = (A^{-1})^*. So if A* = B* for any star operation then A^{-1} = B^{-1} and A_V = B_V. Indeed the function defined by A --- A on F(D) is another star operation called the d-operation. Finally a v-ideal is also called divisorial.

An integral domain which satisfies ACC on integral v-ideals is called a Mori-domain [6]. According to Querre [10, Th.1] an integral domain D is a Mori domain if, and only if, each A ϵ F(D) is strictly v-finite.

Given the above introduction, Proposition 1 proves that a strictly v-finite (or a v-ideal of finite type) which is also flat is invertible. In view of this observation the following results are straightforward.

COROLLARY 2. (c.f.[1] Theorem 2.1). Let A be a non-zero locally principal ideal. If A is strictly v-finite then A is invertible.

PROOF. Locally flat is flat.

COROLLARY 3. (c.f.[9] Theorem 2.4). In a Krull domain every non-zero flat ideal is invertible.

PROOF. A Krull domain is Mori and so every non-zero ideal in it is strictly v-finite.

In fact a statement better than Corollary 3 can be made.

COROLLARY 4. In a Mori domain every non-zero flat ideal is invertible.

COROLLARY 5. (c.f. [10] Corollary 2, p. 342) A Mori domain which is also Prufer is a Dedekind domain.

PROOF. In a Prufer domain every ideal is flat [5, Th. 4.2].

An integral domain D is called a generalized GCD (G-GCD) domain if for every finitely generated A ϵ F(D); A is invertible [3].

COROLLARY 6. For an integral domain D the following statements are equivalent.

- (1) D is a G-GCD domain.
- (2) For every finitely generated A ϵ F(D) there is some star operation *-such that A * is invertible.
- (3) For every finitely generated A ϵ F(D), there is some star operation * such that A is flat.

PROOF. (1) \Rightarrow (2). Trivial. (2) \Rightarrow (3). Obvious because projective is flat.

(3) \Rightarrow (1). Let $A = (x_1, \dots, x_n)$. Then the flatness of A^* gives $A^*A^{-1} = A^*(\bigcap (\frac{1}{x_i})) = \bigcap \frac{A^*}{x_i}.$

Now use the argument used in the proof of Proposition 1, to establish that A^* is invertible. It is easy to see that an invertible ideal is divisorial so $A^* = (A^*)_V = A_V$ is invertible.

The notion of a locally factorial Krull domain is connected with the invertibility of divisorial ideals. Some lists of equivalent conditions characterizing locally factorial Krull domains can be found in [1], and [12]. One of the conditions being: D is Krull and every divisorial ideal is invertible. In the following we add a few more equivalent conditions that characterize locally factorial Krull domains.

COROLLARY 7. The following are equivalent in an integral domain.

- 1. D is Krull and locally factorial
- 2. D is Krull and every divisorial ideal of D is flat.

- 3. D is Mori and every divisorial ideal is flat.
- 4. D is Mori and every divisorial ideal is invertible.
- 5. D is Mori and every divisorial ideal is locally principal.
- 6. D is Mori and G-GCD.

PROOF. (1) \iff (6), follows from [12, Theorem 1.10] and (4) \iff (6) by Corollary 6. (3) \implies (4) is a consequence of Corollary 4. (4) \implies (5) because an invertible ideal is locally prinicpal. (5) \implies (3) because locally free is flat. (2) \implies (4) because Krull is Mori and in a Krull domain every non-zero flat ideal is invertible. (4) \implies (2) because by the equivalence of (1) and (3) D is Krull. \implies (2) \implies (4) \implies (2) \implies (3) \implies (4) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (7) \implies (9) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (7) \implies (9) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (7) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (4) \implies (5) \implies (6) \implies (7) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6) \implies (7) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (8) \implies (8) \implies (9) \implies (1) \implies (1) \implies (1) \implies (1) \implies (2) \implies (3) \implies (4) \implies (3) \implies (4) \implies (4) \implies (5) \implies (6) \implies (7) \implies (8) \implies (8) \implies (9) \implies (9) \implies (1) \implies (1)

Now let us call D *-Prufer if every *-ideal of D is flat.

Then obviously a d-Prufer domain is Prufer. Moreover, in view of Corollary 6, for a general star operation *, a *-Prufer domain is at least a G-GCD domain.

To make the study of these concepts simpler we recall that to each star operations * on D can be associated another star operation * defined by $A^*S = U F^*$; where F ranges over finitely generated D-submodules of A. Obviously for any A ϵ F(D) A^*S is a direct limit of its star ideals of finite type. If each of the *-ideals of finite type is flat then A^*S is also flat [11, Th 3.30]. Once we note that for A ϵ F(D) finitely generated, $A^*S = A^*$ we have the following proposition.

PROPOSITION 8. If D is *-Prufer then D is $*_s$ -Prufer. The v_s -operation is normally called the <u>t-operation</u>. This leads to the following result.

PROPOSITION 9. If D is *-Prufer then * = t.

PROOF. If D is *-Prufer then for every finitely generated A ϵ F(D); A* = A $_{v}$ (see the proof of (3) \Rightarrow (1) of Corollary 6).

Indeed we do not need any new arguments to establish that a generalized GCD-domain is t-Prufer.

PROPOSITION 10. An integral domain D is a G-GCD domain if, and only if, D is t-Prufer. Moreover a G-GCD domain is a Prufer domain if, and only if, every ideal of D is a t-ideal.

It may be noted that the invertibility criteria discussed in [1], [2] and [4], allow a property weaker than flatness to cause invertibility. An integral domain D is said to have property * if for all a_1 , ..., a_m , b_1 , ..., $b_n \in D - \{0\}$; $(\bigcap a_i)(\bigcap b_j) = \bigcap a_i b_j$ [13]. So if, for A finitely generated in a *-domain D; A^{-1} is of finite type then A_v is flat and hence invertible. An interested reader may consult [13] for some interesting characterizations of G-GCD domains. Indeed Proposition 3.9 of [13] may be considered as a fore-runner of Proposition 1 of this note, and for this the author thanks the anonymous benefactor who refereed [13].

REMARK 11. Recall that if D is a G-GCD domain and X an indeterminate over D then D[X] is G-GCD. This is remarkable in that if D were Prufer, D[X] ceases to be Prufer yet it keeps on functioning as t-Prufer.

ACKNOWLEDGEMENT

Professor David E. Dobbs was exposed to Proposition 1 and some of its consequences. I gratefully acknowledge the fact that he not only appreciated the result but also encouraged me to write up the material for publication.

REFERENCES

- [1] D.D. Anderson, Globalization of some local properties in Krull domains, Proc. Amer. Math. Soc. 85(2)(1982), 141-145.
- [2] _____, On the ideal equation $I(B \cap C) = IB \cap IC$, Canad Math. Bull. 26(1983), 331-332.
- [3] D.D. Anderson and D.F. Anderson, Generalized GCD domains, Comment. Math. Univ. St. Pauli, 23(1979), 213-221.
- [4] D.D. Anderson and D.E. Dobbs, Flatness, LCM-stability and related module theoretic properties, J. Algebra 112(1)(1988), 139-150.
- [5] S.U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97(1960), 457-473.
- [6] N. Dessagnes (Raillard), Sur les anneaux de Mori, Thesis, Paris VI(1976).
- [7] D.E. Dobbs, On the criteria of D.D. Anderson for invertible and flat ideals, Canad. Math. Bull. 29(1)(1986), 25-32.
- [8] R.W. Gilmer, <u>Multiplicative Ideal Theory</u>, Dekker, New York(1972).

[9] S. Glaz and W. Vasconcelos, Flat ideals II, Manuscripta Math. 22(1977), 325-341.

- [10] J. Querre, Sur une propriete des anneaux de Krull, Bull. Sc. Math. $2^{\rm C}$ serie 95(1971), 341-354.
- [11] J.J. Rotman, <u>Notes on Homological Algebra</u>, van Nostrand-Reinhold 1970.
- [12] M. Zafrullah, Generalized Dedekind domains, Mathematika, 33(1986), 285-295.
- [13] ______, On a property of pre-Schreier domains, Comm. Algebra, 15(9)(1987), 1895-1920.
- [14] ______, Ascending chain conditions and star operations, Comm. Algebra 17(6)(1989), 1523-1533.

Received: February 1989 Revised: August 1989 Change *-Prufer mentioned in this paper to *-Flat

I recommend calling a domain whose nonzero *-ideals are flat, a *-flat domain and not a *-Prufer domain. The main reasons are: (1) There is literature, that appeared later than this paper, on *-Prufer monoids (for finite type star operations) see e.g. Chapter 17 of [Halter-Koch, Ideal Systems, Dekker, 1998], (2) Recently, following in Halter-Koch's footsteps, Anderson, Anderson, Fontana and myself have have written a paper "On v-domains and star operations" that calls *-Prufer, for a star operation *, an integral domain in which every nonzero finitely generated ideal is *-invertible. The above mentioned paper is to appear in Comm. Algebra.

Muhammad Zafrullah