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Introduction: Several recent papers ([5], [11], [14], {16], and (17]) have
characterized Krull domains in terms of the t-invertibility of some or
all of the fractional ideals. In this paper we undertake a more general
study of t-invertibility, presenting instances where it occurs naturally

and where 1t has interesting applications.

Throughout this work D will denote an integral domain with
quotient field K. We assume familiarity with properties of star
operations as found in [6, Sections 32 and 34] or [12]. Of particular
interest are the v- and t-operations. Recall that the v-operation on D
is defined as follows: for a fractional ideal [ of D, Iy = a byl Then
I is defined to be Ui{ly: J is a nonzero finitely generated subideal of

.

In the first section we prove that t-invertible prime t-ideals are
always maximal t-ideals. We prove in Theorem 1.4, moreover, that if P
is an upper to zero, that is, if P is a nonzero prime of DIx] which is
contracted from K[x], then P is t-invertible e P is a maximal t-ideal e
c:(P)t = D. (Here, c(P) denotes the ideal of D generated by the

coefficients of all the polynomials in P.)

A good deal of the remainder of the paper 1s devoted to
consequences of these results. For example, in section 2 we give a
simple proof of the fact, due to Glaz and Vasconcelos, that the
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property of being an H-domain is preserved upon passage from D to

Dix]. We also prove that D is a Krull domain & every maximal t-ideal

of D is t-invertible and has height one. In a more general vein we show
that D is integrally closed « every t-invertible t-ideal of DI[x] can be
written in the form fllx] for some polynomial f € DIx] and some ideal I
of D. A simple consequence of this is that D is integrally closed «
C(D) = C(D[x]). Here C(D) denotes the t-class group of D, that is, C(D)
= T(D)/PD), where T(D) (respectively, P(D)) denotes the group of t-

invertible t-ideals (respectively, the group of nonzero principal ideals)
of D.

Section 3 is devoted to the study of domains D for which every
upper to zero in DI[x] is a maximal t-ideal; we dub these rings UMT-
domains. We show that D is a UMT-domain & every prime ideal of
Dixly is extended from D, where N = {f & DIx]: c(f)y = D} We also
characterize Noetherian UMT-domains; they are precisely the

Noetherian domains in which every prime t-ideal has height one.

Finally, in section 4 we generalize part of Theorem 1.4 to the
following statement: if B is an ideal of DIx] for which c(B) is t-

invertible, then B 1s t-invertible.
Section 1. Basic results.

PROPOSITION 1.1. If M is a maximal t-ideal of D(x] with M M D = 0,
then M = (M 1 Dilx].

Proof: [t suffices to show that c¢M) C M, for then M C c(M)Ix] Z
(M NMD)Ixl. By [9, Proposition 4.3] c(M)[x] = (e(M)[x]){. Hence if c(M)
\; M then, since M is a maximal t-ideal, c(M)t[xJ = (c(M)[x])t = DIx].
It follows that c(M)t = D, whence there is an element g £ M with c(g)y
= D. (This is a well-known argument. First choose g1r -8y €M with
c(gl,.i.,gk)v = DIx]. Then for appropriately chosen exponents, the
polynomial g = gy + szg2 + - xr"'gk satisfies c(g)y = D.) But then
(a,g)y = DIx] for any nonzero element a of MMD [9, Lemma 4.4],

contradicting that M is a proper t-ideal.
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LEMMA 1.2. Let P be a nonzero prime ideal of D. If PP'l;t_ P, then P
is a minimal prime of a principal ideal (a) of D, and P = (a):b for some
b £ D.

Proof: Since PF"1 fri_ P there are elements a € P and u < F"1 with
au Z P, Clearly, P C (a):au. If x € D with xau € (a), then x € P, since
a &P and au € P. Hence P = (a):au. Since for any prime Q C P

with a £ Q, we have (a):au C Q, P is minimal over a.

We now state our first result on the consequences of t-
invertibility. Part 3) of Proposition 1.3 has also been obtained by S.
Gabelli [5].

PROPOSITION 1.3. If P is a t-invertible prime t-ideal of D, then
1) P is a minimal prime of a principal ideal,
2) P has the form (a):b for some a,b € D, and

3) P is a maximal t-ideal.

Proof: Since P is a t-invertible t-ideal, pp-l f;é P, and conclusions 1)
and 2) follow from Lemma 1.2. To see that P is a maximal t-ideal, let M
be an i1deal of D which contains P, and pick ¢« M.—P. Since P is a t-

invertible prime t-ideal, P = I, for some finitely generated 1deal I of D.

i}

Now suppose u £ (I,c)'l. Thenucl T 1 C P = ul & P = uP = uly

k™

P. Since P is t-invertible, this implies that u €D. Hence (I,c)'1 =

-

and, since (I,c) C M, M is not a t-ideal. Therefore, P is a maximal

ideal, as claimed.

It is easy to produce examples of maximal t-ideals which are not
t-invertible, but the two conditions are equivalent for a certain class

of prime ideals, as we now show.

THEOREM 1.4, Let P be an upper to O in DIx]l. The following

statements are equivalent.
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1) P is a maximal t-ideal.
2) P is t-invertible.

3) c(P)t = D. (In this case it is easy to produce g = P such
that c(g)y = D.)

Proof: 3) = 1). Suppose that P is not a maximal t-ideal, and let M be a
maximal t-ideal of D[x] which contains P. Since the containment is
proper, we have that M (1 D == 0. By Proposition 1.1, M =
M 1" D¥x]l. Since P '~ M, c¢(P) is contained in the t-ideal M 1: D, so
that ¢(P)y = D.

1) = 3). Since P r;_: c(P)[x], we have c(P); = D.
2) = 1). This follows from Proposition 1.3,

1) = 2). Since P is a maximal t-ideal, either PP"1 . Por Pis t-

invertible. By 1) = 3) there is an element g € P with c(g)y = D. By

[8, Proposition 1.8] there is a nonzero element a of D with aP  (f),
== 7 DIx N ;o2 - -1 a 7 -1 i+
where P = fK[x] M Dix]. Clearly, P P75, but fP fé P. Hence PP L

P, and the proof is complete.

COROLLARY 1.5. If P i1s an upper to 0 which 1s also a maximal t-ideal,
then P is divisorial. [n fact, P= (f,g)y, where {,g < P are such that
P = fKlx] 7 D[x} and c(g)y, = D.

Proof: Clearly, (f,g)y = P. Let h € P. Then ah < (f) for some nonzero
a = D. Thus h(a,g) '_ (f,g). Applying the v-operation to both sides and
using the fact that (a,g)y = DlIx], we have h € (f,g)y, and the proof 1s

complete.

Remark. Uppers to zero which are not divisorial exist [8, Example 2.3].

Section 2. Applications.

In (7] Glaz and Vasconcelos define an H-domain to be a domain D

in which every ideal 1 with ['1 = D has the property that J'l = D for
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some finitely generated subideal J of [. They then show that the H-
domain property 1s preserved upon passage to the polynomial ring. We

begin this section with a simple proof of this fact.

PROPOSITION 2.1 . If D is an H-domain, then so is DIx].
Proof: By [11, Proposition 2.4] it suffices to show that every maximal t-
ideal of DI[x] is divisorial. Accordingly, let P be a maximal t-ideal. [f P
1D = 0 then P = (P 1" D)[x] by Proposition 1.1. In this case P :1 D
is a maximal t-ideal of D. Since D 1s an H-domain, P (1 D is divisorial,
and it follows easily [9, Proposition 4.3] that P is divisorial. If P i D
= () then P 1s divisonial by Corollary 1.5.

PROPOSITION 2.2. Let P be an upper to 0 in DIx] which is a maximal
ideal. Then P is invertible. ( This sharpens [15, Exercise 20, p. 751.)

Proof: Since P is t-invertible PP'l 7. P. Since P 1s a maximal ideal,

this implies that ppl = D[x], and P is invertible.

We next discuss t-invertibility in Prifer v-multiplication domains
(PVMD’s). Recall that a PVMD 1s an integral domain in which each
nonzero finitely generated ideal is t-invertible. (The usual definition
is a domain in which the v-ideals of finite type form a group under v-

multiplication, but 1t 1s well known that the two definitions are

equivalent.)

PROPOSITION 2.3. Let D be a PVYMD, and let P be a prime 1deal of D.

Then P is a8 t-invertible prime t-ideal o P is of the form (a):b.

Proof: By [21, Lemma 8] if P == (a):b then P is a v-ideal of finite type;
that is, P = Jy for some finitely generated subideal J of P. Since D 1s
a PVMD, J, and hence P also, is t-invertible. The converse follows

from Proposition 1.3.
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We now apply the preceding results to obtain characterizations
of Krull domains. Some of Proposition 2.4 is contained in {14, Theorem
3.6], but we feel that our approach is sufficiently different to merit

inclusion here.

PROPOSITION 2.4. The following statements are equivalent.

1) D is a Krull domain.

2) D is a PVMD in which every minimal prime of a principal

ideal has the form (a):b.

3) Every minimal prime of a nonzero principal ideal is t-

invertible.

4) Every maximal t-ideal is t-invertible and has height one.

Proof: 1) = 2) This is well known.
2) = 3) This follows from Proposition 2.3.

3) = 4) Let P be a maximal t-ideal. Then P contains a prime Q
which is minimal over a nonzero principal ideal. By 3) Q is t-invertible,
whence bv Proposition 1.3 Q is a maximal t-ideal. Thus P = Q and P is

t-invertible. A similar argument shows that ht(P) = 1.

4) = 1) Since every t-ideal is contained in a maximal t-ideal, it
follows that every prime t-ideal of D is t-invertible. By [11, Theorem

2.31 D is a Krull domain.

Definition. A fractional ideal B of DI[x] is said to be extended from D if
B = fI[x] for some f € K[x] and some fractional ideal [ of D. Note
that if B (1 D = 0, then { is a constant and B is extended in the usual

sense.

In [3, Theorem 1] Brewer and Costa showed that D is seminormal
« each invertible fractional ideal of DI[x] is extended from D, and
Querre [18] proved that D is integrally closed « each divisorial ideal of
Dix] is extended from D. (See [20] for a particularly simple treatment of

this result.) We show below that D is integrally closed « every t-
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invertible t-ideal of D[x] is extended from D. First we record a lemma

whose proof is almost trivial and hence omitted.

LEMMA 2.5. Let P = fK[x] M DIx] be an upper to 0. Then P is
extended from D « P = fc(f)-lD[X].

PROPOSITION 2.6. The following statements are equivalent.
1) D is integrally closed.
2) Every divisorial ideal of Di{x] is extended from D.

3) Every t-invertible t-ideal of D[x] 1s extended from (a

necessarily t-invertible t-ideal of) D.

4) Every t-invertible upper to 0 in D[x] is extended from D.

Proof: 1) = 2) This follows from [18, Lemme 3.2].

2) = 3) Let B be a t-invertible t-ideal of D[x]. Then B is

divisorial, so by 2) B = gAlx] for some element g € D[x] and some
fractional ideal A of D. Since Alx] = LB is a t-invertible t-ideal, so is
A.

3) = 4) Trivial.

4) = 1) Let u € K be integral over D, and let P = FKix] " DIx],
where f(x) = x — u. Since u 1s integral over D, there is a monic
polynomial g € P. Write g = fk with k € KI[x]. By Theorem 1.4 P is
t-invertible, whence P = f‘c(f)'lD[x] by hypothesis and Lemma 2.5,
Hence k & c(f)'lD[x] = ku € DI[x]. Since k is monic this puts u < D.

Therefore, D is integrally closed.

In [2] the authors define the class group C(R) of an integral
domain R to be the quotient group T (R)/P(R), where T(R) is the group
of t-invertible t-ideals of R and P(R) is the group of principal ideals of
R. As an easy consequence of Proposition 2.6, we record the following
result of Gabelli [4].
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COROLLARY 2.7. D is integrally closed « C(D) = C(DIx)).

Proof: The map »:C(D) — C(Dlx]) given by p(IP(D)) = I1[x]P(DIk]) is
easily seen to be a monomorphism for any domain D [4]. By 1) & 3) of
Proposition 2.6 , ¥ is an epimorphism precisely when D 1s integrally

closed.

Section 3. UMT-domains.

In this section we study the class of domains all of whose uppers
to zero satisfy the equivalent conditions of Theorem 1.4. These
domains are related to several conjectures that have appeared in the

literature.

Definition. A UMT-domain is an integral domain D in which every

upper to zero in D[x] i1s a maximal t-ideal (hence t-invertible).

Examples of UMT-domains include PVMD’s (cf. Proposition 3.2
below) and one dimensional Noetherian domains (Theorem 3.7). Other
examples can be constructed as follows. Let D be a UMT-domain, and
let R be an overring with the property that, whenever A is a finitely
generated ideal of D with A'l = D, then R:AR = R. Then R is alsc a
UMT-domain. To see this let Q be an upper to zero in R[x]. Then
Q M DIx] is an upper to zero in D[x], whence, since D is a UMT-domain,
Q M DIx] contains f with c(f)y = D (Theorem 1.4). By the hypotheses
on R, we have that cR(f)v = R, so R is also a UMT-domain. In
particular, any localization of a UMT-domain is again a UMT-domain (cf.
[21, Lemma 4]). However, it is not the case that a domain D which is
locally UMT, in the sense that Dy, is a UMT-domain for each maximal
ideal M of D, is necessarily a UMT-domain. In view of Proposition 3.2
below, this may be seen by considering any locally PVMD which is not a

PVMD. Some explicit examples are given in {22].
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Notation. For a domain D, let N = {f € DIx]: c(f),, = D).

THEOREM 3.1. D is a UMT-domein < every prime of Dixly is

extended from D (in the usual sense).

Proof: Suppose that D is a UMT-domain, and let Q' = QD[x]N be prime
in D[x]N, where Q is prime in D[x]. Set P = Q /1 D. If Q = PIx], pick
f € Q — Plxl. By [19, Theorem A] there is an upper to zero Q' with
f € QY <2 Q. By hypothesis 3 g € Q' with c(g)y = D. However, this
contradicts the fact that Q M1 N = ©. Therefore, Q = Plx], and Q’ is

extended from D.

Conversely, suppose that D 15 not a UMT-domain; then there is
an upper P to 0 with P M N = . [t is easy to see that PD[x]N is a

prime in D[x]N which is not extended from D.

Using [10, Proposition 2.6] we can state the following result.

PROPOSITION 3.2. D is a PVMD « D 1s an integrally closed UMT-

domain.

Remark. Kang [13, Theorem 3.1] has shown that D is a PVMD « every
ideal of DIxly is extended from D.

Definition. A domain D is said to be gquasi-coherent (cf. [1]) if I‘1 is

finitely generated for each nonzero finitely generated ideal | of D.

PROPOSITION 3.3. If D is a quasi-coherent UMT-domain, then the
integral closure D’ of D is a PVYMD.

Proof: We first show that whenever | is a finitely generated ideal of D
for which Il = D, then D’:(O0D’) = D’. Let | be as stated. Suppose
that u € K satisfies ulD’ < D’. Since I is finitely generated, J = Dlul]

is a finitely generated fractional ideal of D such that ull < J.
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Applying the v-operation to both sides we have ul,, T JI,. Since D is
quasi-coherent, J,, is finitely generated, whence u < D’. Thus
D’:(ID) = D’, as claimed. Now let P be an upper to zero in D’[x].
Then P (1 DIx] is an upper to zero in D[x], and, since D is a UMT-
domain, P M DIx] contains an element f with cD(f)V = D. By what was
shown above D’:cD,(f‘) = D’. Therefore, D’ is an integrally closed

UMT-domain, which implies that D’ is a PVYMD.

REMARK 3.4. In [7] Glaz and Vasconcelos conjecture that the integral
closure of a one dimensional coherent domain is a Priifer domain. Since
one dimensional PVMD’s are Prufer domains, Proposition 3.3 seems to
provide evidence for the conjecture. This is somewhat illusory,
however, since, as is shown in Corollary 3.6 below, any one dimensional
domain with Prufer integral closure is already a UMT-domain. At any
rate it 1s conceirvable that the following more general statement is true:
the integral closure of any guasi-coherent domain is a PVMD. That is,
it is possible that the UMT hypothesis is unnecessary in Proposition
3.3.

It is also possible that the hypothesis of quasi-coherence is
superfluous. As evidence we cite the fact, proved in Corollary 3.6,
that the integral closure of any one dimensional UMT-domain 1s a

Prufer domain.

THEOREM 3.5. If D is a UMT-domain in which each maximal ideal is a
t-ideal, then the integral closure D’ of D is a Prifer domain.

Conversely, if D’ is a Priifer domain, then D is a UMT-domain.

Proof: Assume that D is a UMT-domain in which each maximal ideal is
a t-ideal., Let M’ be a meximal ideal of D’. We must show that D"\, is
a valuation domain. For this it suffices by [6, Theorem 19.15} to show
that if P/ is an upper to zero in D/[x], then P’ ;t M’[x]. If P C Mx],
then P < Mix], where P = P’ 1 DIx] and M = M’ M D. However, this
is impossible since by hypothesis P is a maximal t-ideal of DIx] and MIx]
is a t-ideal of DIx] (since M is a t-ideal of D). Therefore, D’ is a

Prifer domain.

P



T-INVERTIBILITY II 1965

Now suppose that D’ is a Prufer domain. Let P be an upper to
zero in D[x]. We claim that ¢(P) = D. If not then P C Mix] for some
maximal ideal M of D, and by going up in the integral extension D[x] C
D’[x], there is an upper to zero P’ in D’[x] and a prime ideal M’ of D’
with P i DI[x] = P, M/ i D = M, and P/ C M'x]. By [6, Theorem
19.15] this is impossible. Therefore, c(P) = D, as claimed. In
particular, c(P)t = D, and by Theorem 1.4 P is a maximal t-ideal of
Dix]. Hence D is a UMT-domain.

COROLLARY 3.6. Let D be a one-dimensional domain. Then D is a

UMT-domain <« the integral closure D’ of D 1s a Prifer domain.

Proof: This follows easily from Theorem 3.5 and the fact that height

one primes are t-ideals.

Our final result in this section characterizes Noetherian UMT-

domains.

THEOREM 3.7. A Noetherian domain D is a UMT-domain e every prime
t-ideal of D has height one.

Proof: Suppose that D is a Noetherian UMT-domain, and let P be prime
in D with htP > 1. Pick a,b € P such that (a,b) is contained in no
height one prime of D, and shrink P[x] to a prime Q minimal over
ax — b; necessarily Q will be an upper to 0. As D is a UMT-domain, Q

is a maximal t-ideal, whence P is not a t-ideal.

For the converse, let Q be an upper to 0. Then Q ¢ P[x] for all
height one primes P, whence c(Q) ‘Z P for all prime t-ideals P. It
follows that c(Q)t = D. Hence D is a UMT-domain.

REMARK 3.8. It is well known that in a Noetherian domain every prime

t-ideal is in fact an associated prime of a principal ideal. Thus a
Noetherian domain is a UMT-domain « every associated prime of a

principal ideal has height one.
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QUESTION: If D is a Noetherian domain, does 1t necessarily follow that
there is a Noetherian UMT-domain between D and the integral closure
D’? Of course, as 1s well known, D’ itself is a Krull domain, hence also

a UMT-domain.

Section 4. A generalization of Theorem 1.4.

As a precursor to our main result, we prove the following special

case.

PROPOSITION 4.1. If B is an ideal of D(x] with c¢(B), = D, then B is t-

invertible.

Proof: Pick g £ B with c(g)y, = D. Also, choose f & B such that BKIx]
= fK[x]. As in the proof of Corollary 1.5, we can show that B _
(f,g)y. Hence if a nonzero element a of D is chosen so that ag € (f), we
have aB ' (f). Therefore, ?: IS B'l, and a = %f ¢ BBL, Since (a,g)y =
D[x] and (a,g) & BB'l, this implies that (BB'l)t = DI[x].

[9]

LEMMA 4. If | is a fractional ideal of D and A is an ideal of DIx],

then c(IA) = Ic(A).

Proof: That c(IA) Z' Ic(A) is clear. Let d < c(IA). Then 3 Uppeenslly, €
i« [
I and f,...f;, € A such that d € (P u.f) C Y u.c(f). Since each
1 k 30 =i
ujc(fj) i Ic{A), we have d € Ic(A), completing the proof.

THEOREM 4.3. Let B be an ideal of D[x]. If ¢(B) is t-invertible, then

B is t-invertible.

Proof: Consider the ideal c(B)'lB. By Lemma 4.2, c(c(B)'lB) =
(B le(B). Hence c(c(B)'IB), = D, whence by Proposition 4.1, «(B)!B is

t-invertible. It follows easily that B is t-invertible.
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The converse of Theorem 4.3 is far from true, as we show in

Theorem 4.5 below.

LEMMA 4.4. If B is an ideal of DIx), then c(By); = c(B);.
Proof: B Z ¢(B)lx] = By < (c(B)Ix]), = c(B)lx] = c(By) T c(B);. The

result follows easily.

THEOREM 4.5, D is a PVMD « for all ideals B of DIxl], t-invertibliliy
of B implies t-invertibility of c(B).

Proof: &) Let | be a finitely generated ideal of D, and choose f € DI[x]
with c(f) = I. Clearly, fDIx] is (t-) invertible, whence | = c(fD[x]) is t-
invertible. Therefore, D is a PVMD.

=) Now let B be a t-invertible ideal of DIix]. By Proposition 2.6,
BL = gAlx], where g € D[x] and A is a t-invertible ideal of D. By
Lemma 4.2 <(By) = Ac(g). Since D is a PVMD, c(g) is t-invertible,
whence so is C(Bt)‘ By Lemma 4.4 c(B)y = c(By),. Therefore, c(B) is t-

invertible.

An argument similar to, but easier than, that for Theorem 4.5

yields the following characterization of Prifer domains.
THEOREM 4.6. D is a Prifer domain « for every ideal B of Dix],

invertibility of B implies invertibility of <(B).
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