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0. INTRODUCTION

This article gives a survey of how the notion of t-invertibility has, in recent
years, been used to develop new concepts that enhance our understanding of
the multiplicative structure of commutative integral domains. The concept
of ¢-invertibility arises in the context of star operations. However, in general
terms a (fractional) ideal A, of an integral domain D, is t-invertible if there
is a finitely generated (fractional) ideal ¥ C A and a finitely generated
fractional ideal G C A~! such that (FG)™' = D. In a more specialized
context the notion of t-invertibility has to do with the t-operation which
is one of the so called star operations. There seems to be no book other
than Gilmer’s [Gil] that treats star operations purely from a ring theoretic
view point. But a lot has changed since Gilmer’s book was published. So
I have devoted a part of section 1. to an introduction to star operations,
*-invertibility in general, and t-invertibility in particular.

While invertible ideals fare rather admirably in ring extensions, the be-
havior of #-invertible ideals is a bit “iffy”. The search for extensions D C R,
where D is a subring of the integral domain R, such that ¢-invertible ideals
of D extend to t-invertible ideals of R showed first that if R is a quotient
ring of D, then we have the desired property. This led to #-linked extensions
of [DHLZ] and to extensions with the desired property where R is not nec-
essarily an overring. (An overring of D is a ring between D and K.) The
remainder of section 1. and the tail end of section 2. are devoted to such
extensions.

In the earlier part of section 2., various ways of ascertaining the t-
-invertibility of an ideal are discussed. Various notions that arise mainly
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430 NON-NOETHERIAN COMMUTATIVE RING THEORY

from t-invertibility or some other form of *-invertibility of some or all of
their nonzero ideals are also discussed in section 2.. Of these, the most
important are the Prifer »-multiplication domains (PVMD’s for short) and
the notion of the ?-class group. An integral domain whose nonzero finitely
generated ideals are t-invertible is called a PVMD. For a general integral do-
main D, the set Inv(D) of t-invertible ¢-idealsof D is a group, under what
may be called ¢-product. It so happens that Inv,(D) contains as a subgroup
the set P(D) of principal nonzero fractional ideals of D. The t-class group
is defined as the quotient group Cl;(D) = Inv,(D)/P(D). The only close
resemblance that the ¢-class group has with the usual divisor class group is
that the members of Inv,(D) are all divisorial ideals. Otherwise, the divisor
class group can be defined only for a restricted class of integral domains.

In sections 3. and 4., we show what t-invertibility can really do. To get
the reader interested, a bit of introduction is in order. Traditionally the star
operations were linked with intersections of valuation domains of valuations
over a field. The reason: in a valuation domain a finitely generated ideal
1s principal. The study of valuations basically lets you do analysis in your
algebra. That is why, in my opinion, Krull defined what later came to be
known as a Krull domain as an integral domain D that is a locally finite
intersection of discrete rank one valuation rings. A current and more polished
definition of the same concept is: D is a Krull domain if (K1) D is a locally
finite intersection of localizations at height one prime ideals and (K2) the
localization at each height one prime is a discrete valuation ring (DVR).
Let us consider a domain that satisfies (K1) alone and call it a weakly Krull
domain(WKD). Then a natural set of questions is: (a) Does a WKD have
any Krull like properties? (b) Are there any WKI’s of interest? The answer
to (b) is yes; Noetherian domains whose grade one primes are of height one
are WKD’s, and they are considered to be of general interest. Outlined in
section 3. are characterizations of WKD’s. These characterizations indicate
that WKD’s are strikingly similar to Krull domains (this answers (a)). So
much so that the t-class group of a WKD has the same tight grip on the
factorization properties of a WKD as the divisor class group has on those
of a Krull domain. On the other hand, section 4. is a collection of instances
where something less or something not quite related causes t-invertibility.
This section also includes a discussion of a newly introduced star operation,
the w-operation. It also includes a discussion of the domains that are called
UMT domains [HZ 1], and of what are called H domains in [GV]. Finally,
an interested reader would find, scattered here and there, some problems
which to my knowledge are untouched yet. The notation and terminology
are standard as in [Gil].
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1. STAR OPERATIONS

Let D be an integral domain with quotient field K, let F(D) be the set
of nonzero fractional ideals of D, and let f(D) be the set of nonzero finitely
generated fractional ideals of D. For the purposes of this article, we shall
often refer to a fractional ideal as an ”ideal” and we shall call a fractional
ideal contained in DD an integral ideal. As the title of the article indicates, we
shall use the theory of star operations on an integral domain. For the sake of
completeness, we include a description of star operations, and some related
notions, below. For a more detailed study of star operations the reader may
consult Gilmer [Gil], Griffin [Gri 1], Jaffard [Jaf], and [H-K] in that order.
The reader may also note that Jaffard’s treatment of ideal systems is in
the frame-work of partially ordered groups and that of Halter-Koch’s is via
cancellative monoids and divisibility in them. We will mention results from
[Gil] without any reference, and will provide necessary reference or proof for
material that may not be found in [Gil].

A star operation is a function A — A* on F'(D) with the following prop-
erties:

If A,B € F(D) and a € K\{0}, then

(i) (a)* = (a) and (aA)* = aA”.

(11) A C A* and if A C B, then A* C B*.

(iii) (A*)* = A~.

We shall call A* the *-image { or x-envelope ) of A. An ideal A is said to
be a *-ideal if A* = A. Thus A* is a *-ideal and of course every principal
fractional ideal, including D = (1), is a *- ideal for any star operation x. For
all A, B € F(D) and for each star operation x, (AB)* = (A*B)* = (A*B*)".
These equations define what is called x-multiplication ( or *-product). If
{A4} is a subset of F(D) such that NA, # (0), then N(A,)* = (N(Aa)™)*
We may call this property the intersection property. Also, if {A,} is a subset
of F(D) such that > A, is a fractional ideal, then (3~ Aq)* = (3_ Aj)"; this
may be called the sum property. Now, by the intersection property any
nontrivial intersection of *- ideals is again a #-ideal. Thus for a,b # 0,
(a) : b= {z € D| zb C (a)} is a *-ideal for any star operation * because

(a) : b = (%) A D and so, for each A € F(D),is A~ = {z € K|zA C D}

(= ﬂaeA_{O}(l)). On the particular side, if A € F(D) is a +-ideal for some
a R
1
star operation x and B € F(D), thensois A:x B = ﬂbeB-—{o} -5A.

Define A4, = (A™H)7! and A, = [J{F,] 0 # F is a finitely generated
subideal of A}. The functions 4 — A, and 4 = A; on F(D) are more
familiar examples of star operations defined on an integral domain. A v-
ideal is better known as a divisorial ideal. The identity function d on F'(D),
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defined by A — A, is another example of a star operation. There are of
course many more.star operations that can be defined on an integral domain
D. But for any star operation * and for any A € F(D), A* C A,. Some
other useful relations are: For any A € F(D), (A71)* = A1 = (4*)~! and
s0, (Ay)" = A, = (A*),. In fact, if 4 and v are two star operations such that
for all A € F(D) A* C AY, then v is said to be coarser than u , denoted
by 4 < v, and it is easy to establish that (A*)* = AY = (A#)”. In this
terminology then, the v-operation is the coarsest of all star operations on
D. The reason for v being the coarsest is the fact that for each 4 € F(D),
Ay = (JzD where z € K such that A C zD. The following observation often
proves useful.

Observation A. Given that A is a nonzero integral ideal of D, then

A, # D if, and only if, there exist a,b € D\{0} such that A C %D, and

ath.

The relation < defined above is a partial order on the set S(D) of all star
operations on L. A reader interested in this aspect of star operations may
consult [AA]. Further, as D = (1)* = (1), we conclude that D is a *-ideal for
every star operation *. Consequently, if * is a star operation, then A € F (D)
is an integral ideal if and only if A* is.

A star operation x is said to be of finite character if, for each A € F{(D),
A* = |J{F*| 0 # F is a finitely generated subideal of A}. Thus a star
operation * is of finite character if, and only if, for every member z of A*,
z € F*, where F' is a nonzero finitely generated subideal of A. Obviously the
t operation and the d operation are of finite character. In fact to each star
operation * we can associate a star operation *, such that for all A € F(D),
A*s = J{F™*| 0 # F is a finitely generated subideal of A}. Clearly, A*s C A*
and if A is finitely generated, then A* = A*s. By definition, t = v, and if
A is finitely generated then A, = A,. It is easy to see that if * is of finite
character, then A* C A; for all A € F(D). We may call x5 the x-companion
of finite character.

Given that * is a star operation of finite character, an easy Zorn’s Lemma
argument shows that each proper integral *-ideal is contained in a maximal
proper integral *-ideal and that such a maximal *-ideal is prime. Let us
denote by * — Max (D), the set of all maximal *-ideals of D. Then for each
A€ F(D), A" = Npesmraz(p) A" Dp [Gri 1] Using the fact that D is a
*-ideal for every star operation #, we conclude that D = nPe*—Max(D) Dp.
Using Observation A, we make the following observation.

Observation B. If  is a finite character star operation and if 7 € x —
Maz(D) is divisorial, then P = (a) : b for some a,b € D\{0}.

As already mentioned, one classical method of getting star operations is
via defining families of overrings of D. Here, by a defining family we mcan
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a family {R,} of overrings of D such that D = [, Ra. Now if {R,} is a
defining family of overrings of D, the function A — A* = (|, AR, on F(D) is
a star operation, which is said to be induced by {R,}. Indeed, if x is induced
by {R4}, then A*R, = AR,. Traditionally, the overrings in the defining
families were taken to be valuation domains. These days star operations
induced by quotient rings, preferably localizations at primes, are in vogue.
An interested reader may want to see Dan Anderson’s useful paper [And|
and references there. Every now and then new star operations are born. Of
these, one is the so called w-operation introduced by Wang and McCasland
[WM]. This operation can be defined as A — A" = (\pgi_praz(p) ADP,
and it is a finite character star operation. Anderson and S. Cook [AC] have
recently shown that given any finite character star operation * we can define
x, by A A = ﬂpe*_MGI(D) ADp, that %, is of finite character, and
that *, — Maz(D) = % — Maz(D). We shall revisit the w-operation in a
later section. A defining family { R, } of overrings of D is said to be of finite
character if every nonzero nonunit of D is a nonunit in at most a finite
number of R,. A defining family of finite character induces a finite character
star operation, see [And, Theorem 2] for an extremely general result.

A x- ideal A is said to be of finite type (or *-finite) if there is a finitely
generated ideal B such that A = B* and A € F(D) is strictly =-finite if
there is a finitely generated ideal B C A such that A* = B*. This term
was introduced in [Zaf 7], where it was indicated that confusing *-finite with
strictly *finite could cause problems. Strictly v-finite was called gquasi fin
by Querre in [Que 1].

Given A € F(D), we say that A is #-invertible, for some star operation
*, if there is a B € F(D) such that (AB)* = D. Multlplymg this last
equation by 47! and applymg * to both sides, we get A7 = (A1) =
((AB)Y*A~1)* =((AB)A™")* = (AA"'B)* C B*. Next, as AB* C (AB*)*
(AB)* = D, we conclude that B* C A~!. Combining the two inclusions,
we have that if for some star operation *, (AB)* = D, then B* = A~
Now if A is *-invertible, then so is A~!, and consequently A* = A,. Now
as D = (AA~1)* C (AA™Y), C D, we conclude that *-invertible implies v-
invertible. In fact if 1 is coarser than v, then v-invertible implies p-invertible.
Consequently an invertible I € F'(D) is *-invertible for every star operation
*.

If % is a star operation of finite character and if A € F'(D) is *-invertible,
then D = (AA~1)* = U{F*|0 # F is a finitely generated subldeal of AA™1},
and so D = (1) Q F* for some finitely generated ¥ C AA™"'. Now it is easy
to see that F C GH, where G is a finitely generated subideal of 4, and H is a
finitely generated subideal of A=, Next D = F* C (GH)* C (AA™1)*
and from this it is easy to deduce that G* = A* and H* = A~!. Consequently
if * is of finite character, then (AA~1)* = D implies that there is a finitely




434  NON-NOETHERIAN COMMUTATIVE RING THEORY

generated ideal G C A and a finitely generated ideal H C A~! such that
G*=A*and H* = A~ L. B

Now suppose that * = p, for some star operation p. Then A% = GPs = G*
and applying p to these equations we get A? = G’ and similarly H? =
A~Y. Thus if * is a p-companion of finite character and A ¢ F(D) is *-
invertible, then A is strictly p-finite and so is A~!. Now as p is coarser than
*, (AA™1)* = D implies that (AA~1)? = D. Conversely, it is easy to see that
if (AA7™1)? = D and A and A™! are strictly p-finite, then (AA~1)?s = D.

The above considerations can be summed up in the following theorem.

Theorem 1.1. Let + be a star operation and let A € F(D). Then the
following hold:

(a). If A is x-invertible, then A* = A, and A is v-invertible.

(b). If x is of finite character, then A is x-invertible if and only if there
are finitely generated ideals G C A, H C A~ such that G* = A* = A,,
H* = A™', and (GH)* = D. In particular, if + = d and A is d-invertible,
then we have the usual conclusion that A is a finitely generated v-ideal and
the inverse is also a finitely generated v-ideal.

(c). An ideal A is *, invertible if, and only if, there are finitely generated
ideals G C A and H C A™! such that (GH)Y* = D. In particular A is
t-invertible iof, and only if, there are finitely generated ideals G C A and
H C A7 such that (GH)™' = D.

(d) A is xs-invertible if and only if A is strictly v-finite, A~ is v-finite
and (AA YY" = D.

(e). If A is xs-invertible, then A is t-invertible. Consequently, if * is of
finite character and A is x-invertible, then A is t-invertible.

Observation C. Every *-invertible *-ideal is divisorial.
There are several useful properties of t-invertible ideals. Of these I include
a few that are more relevant to the topics discussed here.

Proposition 1.2. Let A € F(D) be a t-invertible ideal. Then the following
hold.

(1). For any B,C € F(D), AB C AC implies that B, C C;.

(2). If B € F(D) is such that B C A; then there is an integral ideal C
such that B, = (AC);. Conversely, if there is such an integral ideal C with
By = (AC)y, then B C A;.

(3). If B € F(D) 1is t-invertible and for some C € F(D) B; = (AC),,
then C s t-invertible.

(4). If B € F(D) 1is t-invertible, then so is AB with inverse (A~'B™1),.

(5). If B € F(D) is t-invertible, then there erists a t-invertible ideal C
such that C C A;, By.

(6). If B € F(D) is t-invertible and A + B 1is t-invertible, then so is
AN By.

(7). If B € F(D) is
A+ B.
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(7). If B € F(D) is t-invertible and A; N By is t-invertible, then so is
A+ B.

Proof. (1)-(4) are straight-forward and so are left to the reader. For (5), find
d € D\{0} such that dA,dB C D. Then C = dAB would do. For (6) and
(7), note that A; = A,, By = B,, and that A and B are t-invertible. Now
(A'B~Y(A+ B)), = (A 'AB~' + A"'BB™"), = (B~! + A7), (because
A and B are t-invertible) = (A, N B,)~!. That is {4, N B,) = (A™'B~1(4+
B))~!. Now using (4) we have (6) and using (3) we have (7). O

Let us note that while in (6) # can be replaced by any star operation x*, it
is generally not the case for (7). For example, take * = d, A =aD,B = bD,
where a,b € D\{0} and D is a non-Bezout GCD domain. Then aD NbD is
(d-) invertible, being principal, whereas aD + bD need not be invertible.

Let, as we have already done, Inv;(D) denote the set of all t-invertible
t-ideals of D. Using (4) of the above proposition and the usual properties of
fractional ideals we can show that Inwv(D) is a group under ¢-multiplication.
Using (2), we can define a partial order < on Inv (D) by A < B <« there
is an integral ideal C € Inu (D) such that (AC); = B, or equivalently
A < B if and only if B C A. Thus (Inv (D), <,%), where *, denotes the
t-multiplication, is a partially ordered group with the set Integinvy(D) of
integral t-invertible t-ideals its positive cone. Next, recall that a partially
ordered group (G, <) is directed, if for each pair a,b € G there is an element
¢ € G such that a,b < c¢. Using (5) above, and our definition of order, we
sum up the above considerations in the following statement.

Corollary 1.3. (Inuv (D), <, %) is a directed partially ordered group.

The notion of ideal systems, as introduced by Priifer and Krull, had not
taken any real shape when it was hijacked by Lorenzen [Lor] into partially
ordered groups, where it really took its pre-Griffin shape. Griffin’s work [Gri
1], [Gri 2], brought rings, essentially integral domains, into the picture. With
rings came their usual questions, and one of them was that of localization.
Aubert [Aub] produced a very general and very brief description of how an
ideal system would fare under localization. Then appeared, as Lemma 4, in
[Zaf 2], the following result.

Lemma 1.4. Let A be a nonzero ideal of D and let S be a multiplicative set
in D If A is finitely generated, then

(1). (ADs)"! = A7 Ds.

(2) (ADS)L = (AUDS)U‘ ’

Part(2) of this lemma related the v-operation in Ds with the v-operation
in D. It was later improved in the proof of Corollary 1.6 of [MMZ] to:
(3). If A, is of finite type, then (ADg)y = (AyDs)y-
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Then came Lemma 3.4 of [Kan:

(4). For any nonzero ideal A of D, (ADg)s = (AtDs):.

We note that (4) is a decided improvement on (2), but it does not show the
link between the v-operations of D and Dg. But this can be easily remedied
by noting that the v-operation is coarser than the t-operation. Thus we have
for any A € F(D)

(5). (ADs)v = (AtDs)o-

Some of the consequences of these results are: (i). If A is a ¢-ideal of Dy,
then so is AN D. (The proof consists of taking a finitely generated A C AND
and noting that A,Ds C (ADg), C A ) (ii). If A is strictly v- finite such
that A~} is of finite type also, then A,Ds = (ADg), [BZ 2]. This result has
two direct consequences:

(a) If A is a t-invertible t-ideal of D, then ((4A™1)Ds), = ((AA=Y)Dg): =
Dg, by (4)above. Moreover, A and A™! being of finite type, ADs = (ADs),-
This means that every t-invertible t-ideal of D extends to a t-invertible ¢-
ideal of Dg. Using this it can be shown that there is a homomorphism from
Cl(D) to Cly(Dg) defined by [A] — [ADg] [AR, Proposition 2.2].

(b) If D is a quasi-coherent domain, i.e., a domain such that for every
non-zero finitely generated ideal I, I71 is of finite type, then the finite type
v-ideals of D extend to, finite type v-ideals of Dg, and by Kang’s result, (4)
above, t-ideals of D extend to ¢-ideals of Dg. Quasi-coherent domains include
Mori domains, integral domains with ACC on integral divisorial ideals (see
[Rai] and [Nis 2}), coherent domains, and hence Noetherian domains.

The formulas, as stated in (1), (2), and (3) of Lemma 1.4, are deadly traps
if you are not very careful. Needless to say that I was the first one to stumble
(and of course I was not the last!). I thought that from (ADg)y = (AuDs)y,
for finitely generated ideals A, it followed that if  were a prime t-ideal of D
then PDg would be a prime t-ideal of Dg, and drew a conclusion that was
pointed out to me as false by Joe Mott, from whom I have learned so much.
This led to the construction of examples, in [Zaf 4] and in [Zaf 8], of integral
domains R with prime t-ideals M such that M R, is not a t-ideal, see also
the paper by Gabelli and Roitman [GR]. Luckily, for most of the integral
domains of interest such as Noetherian, coherent and quasi-coherent, the
prime t-ideals extend to prime t-ideals of their rings of fractions. Domains
with this property are called well behaved and they are characterized in [Zaf
8].
The rather sad aspect of part (2) of Lemma 1.4 is that, with some hind-
sight, it can be derived from Exercise 20, page 432 of (Gil]. However, it was
the formula character of the statements in (1),(2),(3) that caught the fancy
of researchers in the area. (For the purposes of organization, we shall con-
sider statements (3)- (5) above as parts of Lemma 1.4). The result is that
there are similar formulae being employed when the overring is flat [Ryk,
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Lemma 2.6] or a generalized quotient ring[Kan, Lemma 3.4], [Gab 2]. Then
results similar to (1) and (2) of Lemma 1.4, but in totally different contexts,
started appearing along with consequences similar to the ones mentioned
above. The result is that a unified approach to these results seems to be
necessary. This we shall do in a separate paper. For the present, we include
in the next section a brief description of what is to come.

2. T-INVERTIBILITY, V-INVERTIBILITY AND
CONCEPTS ARISING FROM THEM

We have already seen the definition of ¢-invertibility. Now we tackle the
question of characterizing ¢-invertibility. That is, we shall look into char-
acteristic confirmatory tests of ¢-invertibility. The first that comes to mind
arises from the observation that if A js t-invertible, then (AA~1), (= D) is
not a "proper integral” ideal, and so is not in any proper maximal t-ideal.
Conversely, if the integral ideal AA~! is not contained in any maximal #-
ideal, then as AA™! C (AA™1),, (AA™1), must be improper and hence must
be D. We have proved a special case of the following more general result.

Theorem 2.1. Let  be a finite character star operation. Then A € F(D)
s x-invertible if and only if AA™) is not contained in any mazimal *-ideal.

We have seen that if + is a star operation and A € F(D), then (AA™1)* =
D implies (AA~1)* = D, and either of these implies (4471), = D. So a
study of v-invertibility is important in that if A € F(D) is not v-invertible,
then A is not *-invertible for any star operation *. Similarly, if A4 is not -
invertible, then A is not *-invertible for any * of finite character. So the first
test of invertibility of any kind involves checking if B, = D for an integral
ideal B. In this connection, some results have proved useful time and again.
To give the results a somewhat more general flavor let us introduce some
terminology.

Call a subset X of Spec(D) a defining family of primes of D if D =
Npex Dp- Let xx be the star operation defined by A4 +— pex ADp. It can
be easily established that X is a defining family of primes if, and only if|
cach proper ideal of the form (a) : b is contained in some member of X [Gil,
Exercise 22 p. 52]. The best known defining families of primes are: Maz (D)),
the set of maximal ideals of D, x — Maxz(D) for any finite character star
operation *, and P = {P € Spec(D) : P is minimal over a proper nonzero
ideal of the form (a) : b}. (The members of B were shown to be prime t-
ideals in [Zaf 2].) The members of ‘P are called associated primes of principal
ideals by J. Brewer and W. Heinzer in [BH]. (A prime ideal minimal over the
proper ideal (a) : b is in Bourbaki terminology a weakly associated prime of
the ideal (a).) Let us call an ideal A transportable through a defining family
X if (ADp)~! = A7'Dp for all P € X. Because every ring of fractions of




438 NON-NOETHERIAN COMMUTATIVE RING THEORY

D 1s a flat D module, every finitely generated ideal is transportable through
every defining family. The same, of course, can be shown for every strictly
*+-finite ideal for any * because A* = B* implies A~! = B!,

Recall also that a prime ideal P is called essential if Dp is a valuation
domain, and that a domain D is called essential if there is a. defining family
X C Spec(D) such that each member of X is essential. Borrowing notation
from the usual Zariski Topology, we have for I an integral ideal of D, V() =
{P € Spec(D): P DI} and D(I) = {P € Spec(D): P 2 I'}. Now we are in
a position to sum up in the following theorem the numerous useful results,
that have been proved over the years, about v-invertibility and t-invertibility.

Theorem 2.2. Let A be a nonzero integral ideal of D and let X be a defining
family of primes of D.

(1). If AZ P for all P € X (or equivalently D(A) D X), then A*X = D,
and hence A, = A~! = D.

(2). If A=t # D, then A is contained in some member of X (or equiva-
lently V(A)N X # ). '

(3). If A is finitely generated and X = P, then A, = D if and only
if A is not contained in any member of P (or equivalently, if and only if
V(A)NP = 4).

(4)- If A is finitely generated and X = B, then A, # D if and only if
A 1s contained in at least one member of B (or equivalently, if and only if
V(A) B # ¢)

(5). If A is transportable through X and if ADp is principal for every
P e X, then A is xx-invertible (and hence is v-invertible).

(6). If A and A™' are both strictly *x-finite, then A is t-invertible if and
only of ADp s principal for each P € X.

(7). If A is transportable through t — Maz(D), then A is t-invertible if
and only if ADp is principal for every P € t — Maz(D).

(8). If = is a finite character star operation and if A is strictly *-finite,
then A is x-invertible if and only if ADp is principal for every P € x —
Moaz(D). Consequently if A is strictly v-finite, then A is t-invertible if and
only of ADp 1s principal for every P € t — Maz(D).

(9). If A 1is finitely generated and every member of X is essential, then A
is v-invertible and A is t-invertible if and only if A= is of finite type.

Comments and references. (1) and (2) are contraposttives of each
other and (2) appeared in [Zaf 6] as Theorem 1. The conclusions of (3)
and (4), being contrapositives of each other, are equivalent. For the proof,
note that because A is finitely generated A, = A;. So if A, = D, then A
i1s not contained in any proper prime t-ideal and all the members of P are
prime t-ideals. For the converse, it is enough to note that ¥ is a defining
family of primes of D, for then (1) applies. This result has appeared in a
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number of papers, see Tang [Tan] or [Zaf 5, Lemma 6]. For (5), we note
that for every P € X, (ADp)™! = A~ 'Dp, and as ADp is principal, we
have AA~'Dp = D. This gives AA™! ¢ P for each P € X, which leads to
(AA~Y)*x = D. We can apply (5) and Theorem 1.1 to prove (6). (7) was
proved in [Bou, Proposition 1]; the proof runs along essentially the same
lines as (5), but in this case we end up with AA~1 ¢ P for each P € t —
Moax(D) which means that (AA™1), = D. The converse is straightforward.
(8) appeared for x = t in [MMZ, Lemma 1.5 and Corollary 1.6] and then
in [Kan] and it follows directly from (7) once we note that for a strictly
sfinite A, (ADs)~! = A™'Ds. Finally, (9) can be proved using (5) and
(6) and the fact that every finitely generated ideal in a valuation domain is
principal.(See also {Zaf 2, Lemma 8]).

Remark 2.3. For (1)-(4) of the above theorem, A must be an integral ideal.

. . _ 1
For otherwise, taking a nonzero nonunit a, A = (=) would cause problems .
a

For (3) and (4), the ideal A can be taken to be strictly v-finite. For (5), we
can take A such that A is strictly *x finite, and A need not be an integral
ideal. Finally, (6), (7), (8) and (9), also hold for A fractional.

Let us now bring in some definitions and results relating certain kinds of
“ipvertibilities” with certain domains. This will make it easier to explain the
applications of ¢-invertibility. An integral domain D is called a v-domain if
every finitely generated ideal of D is v-invertible. Note that by every finitely
generated tdeal 1s ... Wwe mean every nonzero finitely generated ideal is ...
There are other ways of defining v-domains and we refer the reader to [Gil].
Using (8) of Theorem 2.2, we note that an essential domain is a v-domain.
Later we will see that a v-domain is not necessarily essential.

An integral domain D is called a Prufer v-multiplication domain (PVMD
for short), if every finitely generated ideal of D is t-invertible. PVMD’s may
also be called t-Priifer (or pseudo-Prifer) partly because of the fact that the
definitions are alike: D is Priifer if every finitely generated ideal of D is in-
vertible, and partly because of the fact that the theory of PVMD’s runs along
lines more or less parallel to that of Priifer domains. For example, D is Prifer
( PVMD) if and only if for each maximal ideal (maximal t-ideal) M of D, D
is a valuation domain. Another characterization of Priifer domains (resp.,
PVMD’s) is that D is Prifer (resp., PVMD) if, and only if, every two gener-
ated ideal of D is invertible (resp., t-invertible). These characterizations for
PVMD’s were established by Griffin in [Gri 1]. For further development on
PVMD’s, the reader may consult [Kan], [MZ], [HMM], and [Hou]. Another
characterization of PVMD’s comes from the study of nvy(D). The following
can be established using Proposition 1.2 and Corollary 1.3: Disa PVMD if
and only if for every pair A, B € Inv (D), AN B € Inv(D), if and only if
for every pair A, B € Inv(D) (A+ B): € Inv,(D). Using the definition of
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< on Inv, (D) given prior to Corollary 1.3 we can define for A, B € Inuv (D),
AV B =sup(A,B)= ANB and AAB = inf(A4, B) = (A, B),. Thus we have
the following statement. '

Proposition 2.4. An integral domain D s o PVMD if and only of
(Inv (D), <,%¢) is a lattice ordered group.

A related, yet more easily accessible, concept is that of a GCD domain,
i.e., an integral domain in which every pair of elements a,b, such that at
least one is nonzero, has a greatest common divisor. A GCD domain D is
characterized by the fact that [, is principal for all I € f(D). Indeed, a
GCD domain is a somewhat special PVMD. D.D. Anderson has written a
detailed survey article on GCD domains [A 1] for this collection. Established
in [A 1] are the necessary and sufficient conditions under which a PVMD
is a GCD domain. It is my experience that if a statement is true for GCD
domains, then very often some form of that statement can also be proved for
PVMD’s. Now in [Pic], G. Picavet studies GCD domains from a topological
point of view. Some introduction to the language used in [Pic] is made prior
to Theorem 2.2. It appears that some of the tools used in [Pic] can be shown,
in light of Theorem 2.2, to hold more generally. It would be interesting to
see if most of [Pic] can be restated for PVMD’s.

A domain D such that A, is invertible for every A € f(D), is called a Gen-
eralized GCD domain (G-GCD domain). Of the various characterizations
of G-GCD domains known and given in [AA 1], and in [A 1], my favorite is:
D is a G-GCD domain if, and only if, D is a PVMD that is also locally a
GCD domain. The reason is that it follows from a result that indicates the
relationship between {-invertibility and invertibility. The result 1s

Proposition 2.5. Let A be a nonzero ideal of D. Then the following are
equivalent:

(1). A 1s invertible.

(2). A is t-invertible and ADp 1s principal for each mazimal ideal M of
D.

(3). A is strictly v-finite and ADyy is principal for each mazimal ideal M
of D.
Proof. (1)= (2) = (3) are obvious. For (3)= (1), use Corollary 2 of [Zaf
9. O

The link between this result and the above characterization of G-GCD
domains is routine and we leave it to the reader.

Another concept that is related to v-invertibility is that of a completely
integrally closed domain. An integral domain D is said to be completely
integrally closed if, for z € K and for some r € D\{0}, z"r € D foralln € N
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implies that z € D. A completely integrally closed integral domain is also
characterized by the fact that every nonzero ideal of D is v-invertible [Gil,
p. 421]. Finally, it is well known that if D is an intersection of completely
integrally closed overrings, then D is completely integrally closed. Nagata
[Nag 1] and [Nag 2] gave an example of a completely integrally closed one-
dimensional quasilocal domain that is not a valuation domain. This example
can be used as an example of a v-domain that is not essential.

Finally, a whole set of v, ¢, and d invertibility based characterizations of
several integral domains of interest have been synthesized into a chart in
[AMZ 1]. In that chart the reader will also find the fact that D is a Krull
domain if every nonzero ideal of D is t-invertible. (There is a minor error in
the statement box of TV domains(every t-ideal is a v-ideal). An interested
reader may correct it by reading “IfV A € F(D),A; = A, and VA € f(D), A
is” in place of what is written there.)

Another notion that arose from the notion of ¢-invertibility is that of the
t-class group. It arose from the observation that the group Inv:(D) contains
as subgroups the group Inv(D) of all invertible ideals of D and the group
P(D) of all nonzero principal fractional ideals of ). The quotient groups
Cly(D) = Inv(D)Y/P(D) and G(D) = Inv,(D)/Inv(D) were introduced in
[Bou] as the class group, and the local class group of D. We shall refer to
Cli (D) as the t-class group to differentiate it from the divisor class group
Cl(D), which is traditionally defined only for completely integrally closed
domains as CI(D) = Div(D)/P(D), where Div(D) may stand for all the
divisorial ideals of a completely integrally closed D. (The usual description
of div(D) is in terms of divisor classes.) Now the divisor class group had
proved to be very useful in determining how far a Krull domain was from
being a UFD and had shown some remarkable functorial properties (see
Fossum [Fos]), and it was hoped that Cl;(D) would show the same nice
properties for PVMD’s because of the abundance of ¢-invertible ¢-ideals in
them.

What made Cl;(D) interesting, at that time, was the fact that if D is
Krull, then Cl;(D) turns out to be the divisor class group, and when D
is Priifer Cl,(D) is the usual ideal class group. Moreover, when D is a
PVMD, CI;(D) seems to behave just like the divisor class group, for instance
(D PVMD ACL(D) = 0) = D is GCD [Bou|. Then in {Zaf 3], it was
indicated that (D PVMD ACI[(D) torsion)=> D is almost GCD, i.e., for
every pair z,y of nonzero elements of D there is n = n(z,y) € N such that
(z™) N (y™) is principal. Later, Anderson and Rykaert [AR] provided some
other similarities the t-class group of a PVMD had with the divisor class
group of a Krull domain. To top it all, the ¢-class group was defined for a
general integral domain. On the other hand, Gabelli [Gab 1] came up with a
devastatingly beautiful result that Cl;(D) is isomorphic to Cl;(D[X]) if and
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only if D is integrally closed. Then David Anderson wrote a very exhaustive
article [An 1] on the topic indicating that, in fact, for any star operation
+ a *-class group can be defined. The details of how the ‘concept of the
t-class group developed and where it stands are included in a survey article
by David Anderson [An 2] in this collection. We shall briefly touch upon it
from time to time. :

It was indicated in section 1. that if S is a multiplicative set of D, then
there is a homomorphism from Cl,(D) to Cl;(Dg) defined by [A] — [ADs).
There has been a great deal of activity in search of similar relations for ring
extensions D C R, where R is a suitable extension, not nccessarily the ring
of fractions. Of crucial importance here is the knowledge that correspond-
ing to each A € Inuv,(D), there is a B € Invi(R) such that some kind of
homomorphism can be verified from Cl(D) to Cli(R). David Anderson [An
1, Section 4] came up with a suggestion of the operations on D and F being
compatible. Denoting by *x a * operation of the domain X he said that *p
and xp are compatible on D C R if for all I € F(D) (IR)"™® = (I*PR)*R.
Using this notion, he was able to prove some positive results when R was
faithfully flat over D. Barucci, Gabelli, and Roitman extended the idea in
a slightly different direction. With a few modifications their result [BGR,
Proposition 1.1] reads as follows:

Proposition 2.6. Let D C R be an extension of integral domains. Then
the following statements are equivalent:

(1). I,, R C (IR)yy for each nonzero finitely generated I € F(D).

(2). (IR)yg = (Inp R)vy for each finitely generated I € F(D).

(3). IRt = (I;p R)1p for each I € F(D).

(4). UR)yp = Ity R)uy for each I € F(D).

(5). If A is an integral t-ideal of R such that AND #(0), then AN D s
a t-ideal of D.

(6). I,, R C (IR), for each I € F(D).

Moreover, under these equivalent conditions, the map [A] — [(AR);z] s
a homomorphism from Cl(D) to Cly(R).

If these equivalent conditions hold for an extension D C R, we say that
D C R is t-compatible. Now 1t is easy to see that D C R is t-compatible in
each of the following cases.

(a). When (AR)™! = A~R for each A € f(D).

This includes not only the cases when R is a quotient ring or a flat over-
ring, but also a host of other cases, and in each case the t-invertible ¢-ideals of
D extend to the t-invertible t-ideals of R. Because of the space constraints
on this article, it would be difficult to mention all the cases. So we shall
mention some and provide references for an interested reader to have some
idea until the promised paper appears. The first case that comes to mind
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is when R = D + X Dg[X], where X is an indeterminate over Dg, [Zaf 8,
Lemma 3.1]. Recently, Anderson, Elbaghdadi, and Kabbaj have indicated
in [AEK, Lemma 3.6] that the construction T = D + XD [X], where X is an
indeterminate over D, is a flat D module if and only if @ is a flat D module.
This of course means that (a) above applies [AEK, Lemma 3.7]. This con-
struction, which is usually referred to as the A + X B[X] construction, was
studied in [AAZ 1] and a look into recent literature indicates that it can do
much more than the D 4+ X Ds[X] construction. For instance, A + X B[X]
can be used to produce examples of domains that satisfy ACC on principal
ideals. A number of papers [BIK], [ANeA], [DRSS}, and a host of other
papers, that are either in press or in preparation, study this aspect of this
construction. Coming back to the topic, (a) also applies to certain pullback
situations other than the A+ X B[X] type, see for example [FG, Proposition
1.8].

(b). When (AR)"! = (A7 'R),, for all A € f(D).

This would include cases when R is defined by a family { R, }of overrings
such that each R, is a flat D module. For in that case, (AR)™! = R i,
AR = (N, Ra) ;1 AR = N, (Ra 11, ARy) = (N, A7 Ry) = (A7'R),. Here
L is the quotient field of R. In this case, t-invertible t-ideals of D extend to
t-invertible ideals of R. The special case when each of R, is a localization
can be witnessed in [AHZ].

(c) When (AR)™! = A7'R for all A € F(D) .

This happens when R = D[X] (see [Nis 1] and [HH]) and when R is a
generalized D + M construction of Brewer and Rutter [BR], (see [CMZ 1],
[CMZ 2], [AR], [An 1], and [BG] for various forms of the D+ M construction
and the proof that (c) holds). In case (¢} a somewhat stronger form of
Proposition 2.6 can be proved. '

(d) When for all A € F(D), (AR)™' = (A"'R),,. This holds when R =
Int(D) = {f € K[X]: f(D) C D}. The reader may consult [CGH, Lemma
3.1], when it appears, to see that this holds.

We note that in each of the extensions D C R, discussed above, R is
t-linked over D, i.e., for every A € f(D),A”! = D implies (AR)™!' = R
[DHLZ]. So in each case there is a homomorphism 6 : Cl,(D) — Cli(R)
defined by @([A]) = [(AR):] [AHZ, Theorem 2.2]. However, if R is t-linked
over D, the extension D C R may not satisfy any of (a)- (d) and may not
satisfy any of the equivalent conditions. (These facts will be included in a
detailed account in the promised article.) Besides, the presence of any of (a)
- () allows a better grip, especially in deciding whether the homomorphism
is actually an isomorphism or not. For instance, in the proof of Theorem 4.8
of [AHZ] the presence of (b) above helped. The results on isomorphisms of
Cl,(D) and Cly(R), for various extensions D C R, are covered amply in [An
2] and [An 1].
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It would be unfair not to mention the important special case that actually
caused [BGR, Proposition 1.1]. The case of D C R where R is a generalized
ring of fractions of D is somewhat peculiar. The generalized ring of fractions,
by the way, is defined as follows: Let & be a generalized multiplicative
system, le., a multiplicatively closed set of ideals generated by a set of
nonzero ideals of D. Then the set Dg = {z € K-: zA C D for some A € G} is
aring called the generalized ring of fractions w.r.t. &. There are two kinds of
ideal extensions from D to Dg : (@) Given an integral ideal J of D we define
Js={z € K:2A C J for some A € G} and () The usual extension JDg.
It is well known that JDg C Jg. For further details the reader may consult
Arnold and Brewer [AB] and references there. For a more current treatment
of the topic see [FHP)]. Querre in [Que 2, Lemme 1] stated that if A and B are
1deals of D) and if & is a generalized multiplicative system, then (A i B)g C
Ag 1k Bs. Moreover if B is of finite type, then (A :x B)s = Ag :x Bs =
Ae 'k BDgs. This means that (i) (B~ Y)g = (Bg) ™! = (BDg) ! for every
finitely generated ideal B. Kang [Kan, Lemma 3.4], extended this result to
(i) (Bs)y = (BDg)y = (Bys)y = (ByDg), when B is finitely generated,
and (iii) (BDg): = (BiDg); for any B € F(D), see also [Gab 2]. So, by (ii),
Proposition 2.6 applies and D C Dg is t-compatible. Now under certain
conditions, Dg is expressible as an intersection of localizations of D. Under
these conditions, as we have already seen, we have (B~ 'Dg), = (BDg)™!
for all finitely generated B € F(D). This leads to the following question:

Question 2.7. Is it true that every extension of domains D C R, where
R is a generalized ring of fractions of D, falls under one of the conditions

(a) - ()7

3. T-INVERTIBILITY AND LOCALLY FINITE
INTERSECTIONS OF LOCALIZATIONS

In connection with invertibility (¢ or d ), results of the following type have
always fascinated me for their “roll-over” quality. The result stated here,
can be found as Lemma 2.2 in [AMZ 2]. For a similar flavor, in the case of
invertibility, the reader may want to see an old short note [Zaf 1].

Proposition 3.1. Suppose that X C Spec(D) is a defining family of D
such that each nonzero nonunit of D belongs to at most a finite number of
members of X. If A € F(D) is such that ADp is principal for each P € X,
then A is *x-invertible, and hence t-invertible.

The proof essentially uses (5) of Theorem 2.2, but first it uses the finite
character of {Dp}pex and the fact that ADp is principal for each P € X to
show that A is strictly *y-finite. We shall call X a defining family of finite
character if D = (p.x Dp is of finite character.

The above propositic
above proposition. The
[Zaf 1, Theorem 2]). If
of "AMZ 2). We inel il

Proposition 3.2. Lri
elements of X are com
finite character. Then !
(]) *N O~ A"[(L;L‘{]_)J =
(2). A s =y invertih

(3). If A is t-invertil

It 1s customary to der
this notation. we stae i
to Proposition 3.1, yet
view,

Corollary 3.3. [AMZ

where the intersection
O#z€ P, xDpN D s

Why i1s Corollary 3.2
(K1) D = ﬂpe,\'m Dp,
Dp s a discrete valuatic
(K1) only is called a wr
have been around in va:
For example, a generaliz
in addition to (K1) the
Pe XM Then o
GKD's with the GO s
factorial domams (W
domain whose nonzere
shown in [AZ 1, Theor
WEFD satisfies (K1}, 2o
result that i1s Corollary
WKD’s [AMZ 2, Theore

Theorem 3.4. The fol

(1). D =Npexo) Dr
(2). Every proper pris
(3). Every proper t

(4). If P is a prime
zDp N D s t-invertible.

(5). Euvery proper priy
all the associated prime

-2




PEORY

«cial case that actually
rere R is a generalized
1lized ring of fractions,
sralized multiplicative
senerated by a set of
* D forsome A € &} is
There are two kinds of
ideal J of D we define
usual extension JDg.
-he reader may consult
nore current treatment
ted that if A and B are
em, then (A :x B)s C
w Ble = As ik Be =
= (B[)(g)‘l for every
extended this result to
3 is finitely generated,
L [Cab 210 So, by (ii).
i¢. Now under certain
salizations of D. Under
(BleG)v - (BDKS)'l
e following question:
domains D C R, where
r one of the conditions

JALLY FINITE
JZATIONS

the following type have
The result stated here,
lar flavor, in the case of
t note [Zaf 1].

o defining family of D
most a finite number of
dncipal for cach P € X,

ut first it uses the hnite
weipal for each P € X to
defining family of finite

Putting t-Invertibility to Use 445

The above proposition is a useful result, but let X = Maz(D) in the
above proposition. Then we are actually getting *xy = d (as in the case of
[Zaf 1, Theorem 2]). If we want t-invertibility exactly, there is Lemma 2.1
of [AMZ 2]. We include it here for record.

Proposition 3.2. Let X be a set of prime t-ideals such that no two distinct
elements of X are comparable and suppose that X is a defining family of
finite character. Then the following staternents hold.

(1). ¥x — Maz(D) = X =t — Maz(D).

(2). Ais # x -invertible <> A is t-invertible.

(8). If A is t-invertible, then A*X = Ay

It is customary to denote by X (1) the set of height one primes of D. Using
this notation, we state the following result which is an immediate corollary
to Proposition 3.1, yet it is very important from the applications point of
view.

Corollary 3.3. [AMZ 2, Corollary 2.3] Suppose that D = Npexm Pps
where the intersection has finite character. Then for P € X gnd for
0#£x€ P, zDpN D is a t-invertible primary t-ideal.

Why is Corollary 3.3 interesting? Let us recall that D is a Krull domain if
(K1) D = Npexm Dp, where the intersection has finite character, and (K2)
Dp is a discrete valuation domain for each P e X1 A domain that satisfies
(K1) only is called a weakly Krull domain (WKD). Weakly Krull domains
have been around in various guises, each guise involving an extra property.
For example, a generalized Krull domain (GKD) of Ribenboim [Rib] satisfied
in addition to (K1) the property: (K2') Dp is a valuation domain for each
p ¢ X(V). Then there were the generalized UFD’s that turned out to be
GKD’s with the GCD property (see [AAZ 2]), and then there were the weakly
factorial domains (WFD’s) of Anderson and Mahaney [AM]. A WFD is a
domain whose nonzero nonunits are products of primary elements. It was
shown in {AZ 1, Theorem], that in addition to various other properties, a
WFD satisfies (K1), and for 0 +zrzePe XM zDpN D is principal. The
result that is Corollary3.3 here led to a whole set of characterizations of
WKD’s [AMZ 2, Theorem 3.1]. In the following we include some.

Theorem 3.4. The following are equivalent for an integral domain D.

(1). D= pex® Dp, where the intersection has finite character.

(2). Every proper principal ideal of D is @ t-product of prumnary (t-) tdeals.

(3). Every proper t-ideal of D is a t-product of primary (t-) sdeals.

(4). If P 1s a prime ideal minimal over a proper principal ideal (z), then
zDp N D is t-invertible.

(5). Every proper principal ideal of D has a primary decomposition, where
all the associated prime ideals have height one.
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This theorem shows that the WKD’s have easy to use analogs of all the
good properties of Krull domains, at least at the proper principal ideal level,
including the various factorization properties. So what was special with
Krull domains could be done to some extent for say Noetherian domains in
which grade one primes have height one. Those interested in, not necessarily
unique, factorization properties took special notice of WKD’s. A reader
interested in this kind of study may look up Geroldinger’s work see e.g.
[Ger] and the references there. For a treatment of weakly Krull monoidsand
other generalizations of Krull monoids the reader may consult Chapter 22
of Halter-Koch’s book [H-K]. Characterizations such as given in Theorem
3.4 also indicate that there are sufficiently many ¢-invertible ¢-ideals for the
t-class group to be effective. This led to more interesting results such as
the weakly Krull analog of Nagata’s class group theorem in [AHZ]. Then
the fact that D is weakly factorial if and only if D i1s weakly Krull and
Cly(D) = 0, which can be traced back to [AZ 1], made the factorization
properties of certain classes of Noetherian domains transparent on the one
hand and aroused interest in the ¢-class groups on the other. An interested
reader may also want to check a recent paper by Martine Picavet [P-H]. This
paper deals with weakly factorial algebraic orders. A reader who is interested
in the multiplicative ideal theory in cancellative monoids may want to see
[H-K], Chapters 12 and 13, and in works such as [Kai] and references there
for a treatment of class groups from that angle.

Now in a WKD D, for every proper principal ideal () and for each mem-
ber P of X{) that contains z we have zDp N D which is t-invertible and
which is contained in only one member of XV, that is P. Now suppose that
we have a defining family F of mutually incomparable prime ideals of D
such that, for every P € F and for every 0 # z € P, we have that xtDp N D
is t-invertible and that P is the only member of F that contains zDp N D.
This approach led to the notion of a P-pure ideal in [AMZ 2] as an integral
ideal A such that A is contained in a unique prime P € F and later, [AZ 2],
to, a unidirectional ideal as an ideal A that belongs to a unique member of F
(pointing to P if A C P). Now let *r be the star operation induced by F on
D, and call two ideals A and B *x -comazimal if (A+ B)*7 = D. It is easy
to see that if A and B are unidirectional ideals pointing to the same member
P of F, then so are A**, B** (AB)** and A*F N B**. Moreover, two uni-
directional ideals A and B of D are *» comaximal if, and only if, they point
to different members of F [AZ 2, Lemma 2.5]. Noting also that if A and B
are *x comaximal, then (AB)** = A** N B*7, we conclude as in Lemma 2.6
of [AZ 2] that if Ay, Ay, ..., A, are unidirectional ideals such that no two
of the A; point to the same member of F, then ([, 4:)*" = (., 4;7.
Using these observations, we come to the conclusion that if a * r-ideal 4 of
D is expressible as a finite *z-product of unidirectional *r-ideals, then A is
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expressible uniquely, up to order, as a *-product of mutually * F-comaximal
+ r-ideals [AZ 2, Lemma 2.7]. Now our theory of “unique factorization” of
unidirectional ideals is complete. Let us call F an independent family if
no two distinct members P and @ of F contain a common nonzero prime
ideal. Then, using some straight-forward arguments, we get the following
statement which is a part of Proposition 2.8 of [AZ 2].

Proposition 3.5. Let F be a defining family of primes of D and let xr
be the star operation induced by localizations at members of F. Then the

following are equivalent:

(1). F is an independent family of finite character,

(2). every *x-ideal is uniquely expressible as a finite x r-product of unidi-
rectional *r-ideals,

(3). every proper principal ideal is expressible as a finite *x-product of
unidirectional * x-ideals,

(4). every proper principal ideal is uniquely expressible as a finite *x-
product of mutually *x-comazimal unidirectional x r-ideals.

Now taking *» of finite character, it is shown in [AZ 2] that the following
are equivalent.

(1). F is independent of finite character,

(2). every nonzero prime ideal of D contains a unidirectional *x-invertible
* r-1deal,

(3). for Pe Fand 0# xz € D, zDpND 1s * r-invertible and unidirec-
tional,

(4). F is independent and for any nonzero ideal A of D, A*F is of finite
type whenever ADp is finitely generated for all P in F.

This is a part of Theorem 3.4 of [AZ 2]. The above two results characterize
what are called in [AZ 2] F-Independent of Finite Character (7-IFC, or IFC)
domains. I have included them here to (a) indicate the parallelism and (b)
prepare an interested reader for a set of problems in this connection. The
best known examples of IFC domains are the independent rings of Krull
type of Griffin [Gri 2] which are PVMD’s D with F = ¢ — Maz(D) and F
is independent of finite character. Then there are the semi-t-pure domains
of [AMZ 3]. These domains have, again, F =1 — Maz(D), where F is
independent of finite character, and these domains have the extra property
that their t-invertible ¢-ideals are principal, i.e., their t-class group is trivial.
Finally, the h-local domains of Matlis [Mat] are precisely the F-IFC domains
with F = Maz(D). I do not know of an example of an F-IFC domain D such
that F # Maxz(D) or F # t - Maz(D). Yet even if it is easy to construct
such an example, it should be on the record.

Problem 3.6. Find an example of a F-IFC domain such that 7 # Maz (D)
and F # t — Maz(D).
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Another problem that is close to this one can be stated as follows.

Problem 3.7. Call D a G-finite character, or a finite character, domain if
there is a family G of primes of D such that D — mPeg Dp and every nonzero
nonunit of D belongs to finitely many members of G. Characterize a G-finite
character domain using the notion of unidirectional ideals.

IFC domains being characterized by *r-invertible *r-ideals and the fac-
torization properties of their elements may bring the notion of *r-class
groups into the picture. A solution to problem 3.6 may give rise to a *-
class group that lies properly between the ¢-class and the Picard group.

4. GETTING T-INVERTIBILITY INDIRECTLY

We have seen characterizations of t-mvertibility and v-invertibility in terms
of defining families of primes. There are other ways and situations in which
t-invertibility of an ideal happens or is caused by its v-invertibility or less.
This section is concerned with instances where we get t-invertibility at the
price of v-invertibility or as a consequence of some event on which we seem
to have no control.

Note, with reference to (1) of Theorem 2.2, that if for some ideal A,
A7l = D, A can still be contained in some associated prime of a principal
ideal.” In fact, A can itself be an associated prime. The simplest example
1s that of a non-discrete rank one valuation domain (V, M). The maximal
ideal M of V is obviously an associated prime of a principal ideal, but
M™' = M, = V. In (GV], Glaz and Vasconcelos chose to study integral
domains D with the property that if for an ideal A we have A~! = D {or
equivalently A, = D), then A is strictly v-finite. An integral domain that
satisfies this property is called an H domain. Houston and the author proved
in [HZ 1, Proposition 2.4] the following result.

Proposition 4.1. An integral domain D is an H domain if and only if every
mazimal t-ideal of D is divisorial.

By Observation B, every maximal ¢-ideal of an H domain D is of the form
(a) : b, and so is an associated prime of a principal ideal. Let A € F(D) be
v-invertible. Then (AA~1), = D, and consequently AA~! is strictly v-finite,
because D is an H domain. So by (3) of Theorem 2.2, AA~! is not contained
in any associated prime of a principal ideal, and hence is not contained in
any maximal t-ideal, which leads to (AA '), = D. Thus in an H domain
every v-invertible ideal is t-invertible. On the other hand, if D is such that
every v-invertible ideal of D is ¢ invertible and if there is a nonzero ideal A
such that A=! = D, then A is v-invertible, hence is ¢-invertible, and hence is
strictly v-finite. Thus we have an interesting characterization of H domains.
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Proposition 4.2. The following are equivalent for an integral domain D.
(1). D is an H doman.
(2). Bvery mazimal t-ideal of D 1is divisortial.
(3). Every mazimal t-ideal of D is of the form (a) : b.
(4). Every v-invertible ideal of D 1s t-invertible.

The somewhat restricted class of H domains includes Noetherian domains
and Mori domains, i.e., integral domains in which integral divisorial ideals
satisfy ACC. Now these are integral domains which are called TV domains,
i.e., ones in which every t-ideal is a v-ideal [HZ 1]. Yet H domains are much
more general than that. Using the D + X K[X ] construction of [CMZ 1] we
can construct non TV H-domains with some help from [HZ 1].

Now in a v-domain, every finitely generated ideal is v-invertible. So an
H domain that is a v-domain must be a PVMD. Next, if an H domain D is
completely integrally closed, then every nonzero fractional and hence integral
ideal of D is v-invertible, hence t-invertible, and hence strictly v-finite. This,
by Lemma 1 of Nishimura [Nis 2], means that integral divisorial ideals of D
satisfy ACC and that D is completely integrally closed and consequently by
Theorem 2 of [Nis 2] we conclude that D is Krull. So we have the following

result which was proved in [GV, 3.2 (d)}.

Proposition 4.3. A completely integrally closed H domain s a Krull do-
maoen.

In [MMZ], it was shown rather laboriously that D is a Krull domain if and
only if every associated prime of a principal ideal of D 1s t-invertible. This
result was then improved by Kang [Kang] to: D isa Krull domain if and only
if every minimal prime of a principal ideal of D is t-invertible. These results
were then put to rest using the TV domain connection in {HZ 1, Theorem
2.3]. It appears that if we use the properties of t-invertible prime t-ideals,
given in Proposition 1.3 of [HZ 2], a more satisfactory proof can be effected.
This result is included here for reference.

Proposition 4.4. If Pisa t-invertible prime t-ideal of D, then the Sollowing
hold.

(a). P is a minimal prime of a principal ideal.

(b). P has the form (a) : b for some a,beD.

(c). P is a mazimal t-1deal

The following result is immediate, but it does not seem to have found iis
way into the literature.

Corollary 4.5. If = is of finite character and if P is a *-invertible prime
x-ideal, then the following hold.
(a). P is a minimal prime of a principal ideal.
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(b). P has the form (a) : b for some a,b € D.
(c). P is a mazimal t-ideal.

Proof. If P is a #-invertible *-ideal, then P is strictly #-finite and P = P* =
Py, and so P is a t-ideal. Now as ¢ is coarser than any finite character *, P
is a t-invertible t-ideal. Now the other conclusions are immediate. ]

This means that if + # ¢ is of finite character we cannot in general say
that if P is a *-invertible prime *-ideal, then P is a maximal x-1deal. For
a concrete example, note that in a UFD that is not a PID, every height
one prime ideal, being principal, is (d-) invertible but is not necessarily a
maximal (d-) ideal. These observations indicate the pivotal position the -
operation has among the star operations. Now let us use them to provide
the more “satisfying proof” that was promised.

Theorem 4.6. [Kang] An integral domain D is Krull if and only if every
minimal prime of every proper principal ideal is t-invertible.

Proof. 1f D is a Krull domain, then it is well known that every nonzero ideal
1s t-invertible. For the converse, note that if every minimal prime P of a
principal ideal is t-invertible, then by Proposition 4.4 it is a maximal t-ideal
and of the form (a) : b. This makes every prime ¢-ideal maximal of height one
and of finite type. So D is an H domain. Next, as P is t-invertible, PDp is
principal by (8) of Theorem 2.2. But PDp principal of height one makes Dp
a discrete rank one valuation domain. Now as ) — ﬂPétf,Ma:c(D) Dp, where
each of Dp is completely integrally closed, we have that D is a completely
integrally closed H domain, and hence a Krull domain. O

Before we move to another topic, a general comment is in order. Given
any star operation *, we have seen that *-invertible implies v-invertible, and
in an H domain v-invertible implies ¢-invertible. So every *-class group of
an H domain is contained in the t-class group. Now let p be a star opera-
tion defined by 4 — ﬂPG‘B ADp, where B is our trusted set of associated
primes of principal ideals. Now let A be a t-invertible ideal of any domain
D. Because (AA™"); = D, we have that AA™! is not contained in any max-
imal {-ideal, and hence not contained in any associated prime of a principal
ideal. Consequently, in a general domain, #-invertible implies p-invertible.
Moreover, as we have seen, in an H domain the converse also holds. So in
an H domain the p-class group is precisely the t-class group and in view of
(4) of Proposition 4.2, we have the following statement: For an H domain
D, Cly(D) = Cl,(D) = Cl,(D). 1t is easy to establish that in general v, ¢
and p are distinct.

Glaz and Vasconcelos discuss in GV} another concept that may have some
far reaching effects on the theory of star operations. They introduce the no-
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tion of a semidivisorial ideal. An ideal I is semidivisorial if I : J = I when-
ever .J is finitely generated such that J -1 — D. This concept was briefly yet
effectively touched on by Hedstrom and Houston in [HH, Proposition 3.2].
They showed that the operation I — I* = U{I : J|J is a finitely gener-
ated ideal such that J, = D} is a finite character star operation on F(D).
Later,Wang and McCasland [WM] introduced precisely this operation, but
in a more general setting. Let us first agree to denote by GV (D) the set of
all finitely generated ideals J of D such that J, = D. Then they define for a
torsion-free module M over D the w-envelope M, = {z € M @ K|zJ & M
for some J € GV (D)}. Clearly a w-module is one that is equal to its w-
envelope. They prove enough results on w-modules to be able to switch over
to w-envelopes of ideals and to say that every integral w-ideal is contained
in a maximal w-ideal and that this maximal w-ideal is prime. They also
show [WM, Proposition 2.5], that for any two submodules A and B of a
torsion free module F, A, N By, = (AN B),, which, for ideals, means that for
each nonzero fractional ideal I, I, = Npew- maz(p) 1 PP [A 1, Theorem 1}.
Recently, Anderson and Cook [AC] and Wang [Wan 4] have independently
shown that t — Maz(D) = w — Maz(D) and that consequently, a nonzero
ideal I is t-invertible if and only if it is w-invertible. The last result was how-
ever known, though not in those terms, to the authors of [AMZ 2]. In view
of so many similarities, one may want to check if the w operation and the ¢
operation are the same. The answer is no and that comes from a beautiful
result of Kang. We include this result here for the record.

Theorem 4.7. [Kan, Theorem 3.5] D is a PVMD if and only if D is inte-
grally closed and It = (\pey—mar(D) IDp for every nonzero integral ideal 1
of D.

So if D is integrally closed and not a PVMD, then there exist nonzero
integral ideals J such that Jw S Ji. It would be useful to have some concrete
cxamples of ideals that have this property. Some of these examples will have
to be for D integrally closed and some for ) not integrally closed.

Now what is so nice about the w-operation is that 1t 1s smoother than the
t-operation in that (a) given any nonzero prime ideal P of D, either P 1s a
w-ideal or P, = D because P is a w-ideal if and only if P is contained in
some maximal w-ideal, and (b) as long as the w-operation is with reference
to GV(D), it works pretty smoothly by inducing its own brand of a finite
character #-operation wp in a w-algebra R over D by assigning to each
ideal I of R its w-envelope I,. This star operation is subservient to the
actual w-operation on R (with reference to GV(R)). So the w-operation
does not have any problems similar to those of the t-operation going to ring
extensions. Smoothness of this sort can only mean one thing, that you can
bring in a lot more homological algebra than ‘with other star operations, if
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that is what you want. (A reader who wishes to explore homological aspects
of the w-operation may look up [Wan 1], [Wan 2], and [Wan 4] as well.) Then
there is the notion of the w-integral closure of D {Wan 3]. I will come back to
it shortly. (Some of these comments are based on unpublished manuscripts
[Wan 4] and [Wan 5] of Wang. I have taken the liberty to include them here
hoping to arouse interest and allay any misconceptions/fears that may come
in the way of accepting this new concept.)

Our next indirect source of ¢-invertibility, that led to applications, comes
from [HZ 2, Theorem 1.4]. Let us recall first that if R = D[X], where X is an
indeterminate over D, and if P is a prime ideal of R such that PN D = (0),
then P is called a prime upper to 0.

Proposition 4.8. Let P be a prime upper to 0 in D[{X]|. Then the following
statements are equivalent.

(1). P is a mazimal t-ideal.

(2). P is t-invertible.

(3). (c(P)): = D.

Here c(P) denotes the content of P, i.e., the ideal generated by the coef-
ficients of the polynomials in P. It is easy to see ([(HZ 2, remark with (3)])
that (3) above is equivalent to (4): P contains a polynomial f such that
(e(f)} = D. Coupling this with Proposition 4 of [Zaf 5], which says that an
integrally closed D is a PVMD if and only if every prime upper to 0 contains
a polynomial f such that (¢(f)), = D, one may deduce that an integrally
closed D is a PVMD if and only if every prime upper to 0 of D[X] is a
maximal ¢-ideal. This led to the notion of a UMT domain as an integral
domain D such that every prime upper to 0 is a maximal ¢-ideal.

It 1s easy to see that an integrally closed UMT domain is a PVMD; but
is the integral closure of a UMT domain a PVMD? No one seems to know.
There are partial results available however. These results can be extracted,
along with some relevant references, from Fontana, Gabelli, and Houston’s
paper [FGH], where, for a very good reason, UMT domains are dubbed as
“PVMD’s without the integrally closed property”. The results that may
have a bearing on future work in that direction are the following. They
show among several equivalent conditions that D is a UMT domain if and
only if for every maximal t-ideal M of D, Dy, has Prufer integral closure,
and then using an extremely useful tool introduced by Kang [Kan] they show
that D is a UMT domain < D[X]s is a UMT domain < D[X]g has Priifer
integral closure, where S = {f € D[X]| (¢(f))y = D}. They show that a
UMT domain is well behaved, i.e., every prime t-ideal of D localizes to a
prime t-ideal [Zaf 8]. In view of the above result, it is fair to conjecture
that D is a UMT domain if, and only if, (1) Dps is a UMT domain for each
maximal ideal M and (2) D is well behaved. UMT domains have also been
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studied, in a hither to unpublished paper by Wang [Wan 5]. Wang introduces
the notion of a w-integral closure D" and shows that if D has UMT, then
DY is a we-PVMD of [HMM], i.e., every finitely generated ideal of D" is
wg-invertible, which makes D" slightly more than an ordinary PVMD (see
[HMM’ for this remark). Here wyq is the star operation induced by GV(D)
on D",

Our final example of indirect ¢-invertibility comes from the observation
[HZ 2, Proposition 4.1} that if B is an ideal of D[ X with (¢(B)); = D, then B
is t-invertible. This is equivalent to saying that there is a polynomial f € B
such that (¢(f)), = D. This led to the question: What are the elements
or ideals whose presence inside any ideal would ensure that the ideal is t-
invertible? Let us call such an element/ideal a t-invertibility element/ideal.
The answer came from [GMZ, Theorem 1.3]. As it looks like a useful result,
we include it here.

Theorem 4.9. Suppose A is a nonzero integral ideal of D. Fach integral
tdeal of D containing A is t-invertible if, and only if, Ay is a finite t-product
of mazimal t-invertible t-ideals of D.

This theorem may serve as a quick confirmatory test of ¢-invertibility. For
example, if you spot a finite product of principal primes in an ideal, then the
ideal is at least t-invertible. (In fact if you spot a product of principal primes
in an integral ideal B it can be easily shown that B, is principal.) This led
further to the question of invertibility elements etc. A general answer is
provided in [GMZ, Theorem 1.3’} which just amounts to replacing ¢ by a
finite character star operation *.
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