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Let 3] be a commutative integral domain. A
#-gperation on D is a mapping F o F* on the set
of nonzero fractional ideals of D satisfying certain
properties which will be given in the next paragraph.

An important example of a -operation is the v-oper-

ation. If {Pa} is a collection of prime ideals of
D with D = GDP , then the mapping F -—s F* = nFDP
@ a
. . % 3 %
is a #—gperation satisfying {AMB) = A N B for
all nonzero fractional ideals A and B of D.
Moreover, 1if A is a mnonzero ideal of D with
, A* #* D, then A is contained in a prime ideal P of
%
D with PTo= P The purpose of this paper is to

prove, conversely, that if % is a *-operation on D
. . . . 2 3 €

with the properties that {(ANBY = A N B for all

nonzero fractional ideals A and B of D and that

each proper integral *~ideal is contained in a prime
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»*
w-jideal, then the w-operation is given by A — A

= nAI)P for some collection {Pa} of prime ideals of
@

D with DI = QDP . As a corollary, we obtain the in-
@

teresting result that a Noetherian domain D Thas the
property that (&HB)V = AV 3 Bv for all nonzero frac-
tional ideals A and B of D if and only if for
each grade one prime ideal P of D, DP is a {(one~
dimensional) Corenstein domain.

Let D be a commutative integral domain with
quotient field X. Let F{D) denote the set of non-
sercs fractional ideals of D and let (D) denote
the subset of finitely generated members of F(b). A
mapping F — Y of F{D) into F(D) is called a
w-gperation on D if{ the following conditions hold

for all a € K -~ {0} and A,B € F{D}:

(1) ()" = (a), (aA)™ = an™

(2) AcC A%, if ACB, then A € B": and

(3) (A = 4% |
A fractional ideal A € F{(D) is called a *-ideal if
A= A,

A %-pperation % on D is said to be of finite

character if AY = U0{J¥]J g A with J € (D)} for
each A € F(DB)}. If % 1is a *-operation om D, then
*
s

the functiom F - F of ¥(D) into F(D) given by

* x

F = UWJ Y CF with J € £{D}} 1is a finite charac-~
k3

ter *-operation on D. Clearly A* = A ° for each
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A € £(D). Recall thet the function on F(D) def ined

by A -~ Av = {Adl}—l is a w-operation on D called

the v-operation. The t-operation on D is given by
to= v, or equivalently, At = U{JviJ C A with
J € £{b)}. The reader may consult [2, section 32 and
347 for the basic properties of ®-gperations and the
v—-ogperation. The reader is also referred to [2] for
definitions and mnotation not defined here.

Let * be a ®-—operation on D. It is easily
proved that for {A&} ¢ F{(D)} with EAa € F{(D), then
(4 )" = (EA:)* and for A,B € F(D), (ABY = (A¥B* ).
This raises the natural question of whether {ﬂAa)*

e {ﬂAZ)* for each collection {Aa} C F{D) with

ﬂAa # 0. Since we always have ﬂA: = (nA:)* provided

ﬁAa # 0, the guestion becomes whether ﬂAZ = (ﬂAa)*.
As we will see, this is a very Strong condition. In
fact, if * has finite character, ﬂ&: = {nAa)* for

all {Aa} C £(D) with 0A # ¢ if and only if % is
the identity *-operation A — A* = AL

Now even for ] Noetherian, we need not have
(AHB)V = Av n Bv for nonzero integral ideals A and
BE of D, as the following example due to W. Heinzer
chows. Let k be a field and let D = kx>, x%,x°11.
Then D is a one-dimensional local domain with maxi-
o1 sdeal M = (0.x1x%).  Let A= x3.x*)  and
B - (x3,x®). Then A, =B =M; but ANB= x>y,

so  (ANB), = x>y cH=h, 0B
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Suppose that {Da} is a collection of overrings
of D with D = ﬂﬁa. Then the mapping A —> A*
= NAD ijs a *-operation on D and AD = A*D for
o o o

each o and each A € F(DYy. The proof of this well-

known result may be found im {2, Theorem 32.57. We
will be mostly interescted in the case where each Da
= DP for some prime ideal Pa of D. Some impor-—

a

tant properties of this type of w-gperation are given

in our first thecrem.

TEEOREM 1. Let ¥ = {Pa} he a set of nonzero prime
ideals of D wich D = ﬂB? . For A € F(D), define
o
3
A = ﬂADP
a

P
{1} The mapping A ~> A defines a *—-operation

on D. HMoreover, ADP = A*DP for each «a
o a

and each A € F(D).
(2) (anB)* = A" n BY for A,B € F(D).

(3) (A : BY = (A7:BY) for A € F(D) and
) D

B € £(Db}.

{4} P - p for each P_€ 9.
o a o

(6y If A is an integral ideal of D with
A* # D, then A C Pa for some . Hence

each proper integral w~jideal of D is con—

tained in a prime #-ideal.
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ﬂﬁ? is locally finite {i.e., each
a

(6) 1If D

i

0 # & € D is a unit in almost all DP ¥,
o

then ¥ has finite character.

Proof. The preof of (i} is a special case of the
result mentioned in the paragraph preceding Theorem 1.

(2) Let A,B € F(D). Then (ANBY™ = N(ANB)D,
o
. 3
= N(AD, N BD, ) = (NAD, } N (NBD, } = AT 0B
[o 4 o oA [e'4

{(3) Let A,B € F(D) with B finitely gener—

ated. Now ({A @ BYE C A, so {(A - B)*B* C A*. Hence
D

D

(A @ BYS € (AF:B%). Conversely, let d ¢ (A%:B%).
D D D
3¢ e % 3
Then 48 C A S0 dBDP = dB DP’ C A DP = ADP
o o a a

Hence d € (AD : BD, ) = (A : BYD, , where the

I P P

o BP @ D a

o

last equality follows since B is finitely generated.

But then d € N(A : B)D, = (A : B)™.
3] o 3]
t3 ¥
(4) Now P, =P, N D=PD, NDIP, P,
[+ o
SO “’* = .
& [o4
(5) Since A% 2D, for some a, ADp # Dp
ol o
Hence A C AD, NDCPD, ND=PF.
« a Pa a

(6) 1t suffices to prove that if A is a nom-

zero integral ideal of D and 0 % x € A*, then
x € A:@) for some finitely generated ideal AO C A.
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Choose O # a € A. Then a is =z unit in each DP ,
a
except, say for o = a1,~ﬂ~,an. Now feor each
3
i = L,***,n, x € A B? = ADP , so there is a
@y ay

finitely generated ideal Am C A with x € Aa DP .

i i e,
i
Put AO = {a) + Aa? + eme Aan. Then AO C A is a
finitely generated ideal and x € AODP for each a,
@
€ NAD, = A,
s0 X oPp = Ao-

oL

A variation of {5} of Theorem 1 appears in [81.

While Theorem 1 is sufficient for our needs, sev-
eral of the parts of Theorem 1 may be greatly gene-
ralized. Suppose that {Dm} is a collection of over-
rings of D with D = ﬂDa. Suppose that for each a,

there is a *-operaticn X = on Da' Then the mapping

A —> A = ﬂ(ADa}*a is & ®-operation om D. If we
take each *® to be the identity *-—operation on Da’
we get the previocusly def ined w~gperation A - A*
= ﬂADa. Observe that we can take each Da = I, SO

that each *, is a *»-gperation om D. In Theorem 2
we state without proof some properties of this
s-gperation. The proof of Theorem 2 is similar to the

proof of [2, Theorem 32.5] and Theorem 1.

THEOREM 2. Let D be an integral domain and let
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{D 1} be

a

D = ND .
o

defined on

{1}

(23

(3)

(4)

THEOREM 3.

P o= {Pa}

a collection of overrings of D with

For each Da, let *® be a ¥-operation
o ¥
D . For 4 € F(D), put A = N(AD)) &
The mapping A — 1% induces a %-operation
w 3 3
on I Moreover, {A Du} * = (ADa) @ for

each a and each A € F(D}.

If each Ep is a flat overring and each *

O

£ E *a
satisfies (AnB) ¥ = A TN B for all
AB € F(D_}, then (anB}™ = A% n B®  for

all A,B € F(D).

If each ﬂa ijs a fiat overring and each *

a
3 % 3¢
catisfies (4 @ BY = (A% : B % for all
D D
@ o
A€ F(D) and B € £(D ), them (A B)™
o @ D
% 3%
= (& * B} for all A € F(D) and
D
B € £(D).
If D = ﬂﬂm is locally finite and each *
has finite character, then £ has finite
character.
Let b3 be a w—-gperation on D. Let

be a set of prime ideals of D with the

property that each proper integral %-ideal of D is

centained

in some Pa. Then A — A = DKDP is a
a

s~operation on D and A’ C A® for each A € F(D).
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Proof. Let A Tbe =& proper sdeal of D  of the form

A = {{a) = {B)) where a,b € D. Then A is a
D
s—-ideal . By hypothesis A L Pa for some Q. Hence
by [2, exercise 22, page 527, D = ﬂDP . Hence
o
A —> A7 = HADP is a ®—pperation on D. lLet
o
O # x € A’ For Pa € ¢, AT € A’DP = ADP . S0
[¢2 al
x = als where a € A and s € D - Pa‘ Then
s € (A * xX), S0 {4 = x} & Pa' By hypothesis,
D D
(A : :-c)h)‘é = D. Hence x € xb = x{(A ° x)* = {(x{(A * x))*
D D D

c A”.

Now in general, & proper integral *—ideal of 1)

need not be contained in a prime w—-ideal. For exam—
ple, if (V,K¥) is a rank one nondiscrete valuation
domain, then Mv = V. Hence A has no prime
w~ideals. Note that (AHB)V = Av 0N Bv for all

A,B € F{(D), but v is not induced by a collection of
overrings of V. However, suppose that % has finite
character. Then it is well-known and easily proved
{for example, see [81) that each proper integral
)~ideal of D is contained in a2 maximal proper
integral »-—ideal and that a waximal proper integral
%-ideal is prime. We will denote the set of maximal

proper integral %-ideals of D by »-Max(D).
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COROLLARY 3.1. Let

finite character. Then

is a #-gperation on

A € F(D).

We are now ready to

paper .

THEOREM 4. Let % be a

following conditions on

2543
be = w—operatiomn on D of
A s A = ﬂ{ADPIP € s-Max(D)}
D  and A’ €AY  for each

prove the main result of this

s-ogperation on D. Then the

% are equivalent.

(1) There is a collection ¥ = {Pa} of prime
ideals of D with D = ﬂDP so that
o
A = nAD,  for each A € F(D).
a
(2) (a) (anBY® = A¥ nB®  for all (integral)
AB € F(D)
{(b) Each proper integral #-ideal of D is
contained in a prime -ideal.
(3) (a) (& : B = (A7:8") for 21l (integral)
b D
A € F(D) and B € £(D).
{(b) Each proper jntegral -ideal of D is
contained in a prime s-ideal.
Moreover, if either {2} or {3) is satisfied, then we

can take ¥ = {?a}

w—jideals of ] with

integral *-ideal of D

to be any collection of prime

the property that each proper

is contained in some Pa'
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Proof . The implications (1) => (2} and {1y = (3)
follow from Theorem 1. Suppose that {(2) or {3) holds.

Let & = {Pa} be =z collection of prime -ideals of

i) with the property that each proper integral
s-ideal of D is contained in some Pa' For
A € F{(D), define &’ = ﬂADP . By Theorem 3, A —> A’
a
is a w—-gperation on D and AT C e for each
A € F(D}.
(2) = (1). Let A € F(D). Let O x¢€ A",
5 3
Now (x) = A*n(xy = A0 = (Anx))
3 3 %
= ((4 = x)(x)) = (& x} (%), so D = (A : x) .
D I D
Hence (4 : x) ¢ P for any P o€ 9. Hence
D a a
x € AD, , so x € NAD, = A’. Hence A% = A’ = NAD, .
a a o
{3y => (1)y. Let O # x € A*. Then D = (A* Tox)
D
= {A*:{x)*) = {A x)% The proof that A% = A’ now
)] D
is identical to the proof of (2} = (1). We remark

that if either condition 2{a) or 3(a) holds for inte-

gral ideals, then it holds for fractional ideals as

well.

COROLLARY 4.1. Let B be =a ¥~gperation on D.

Suppose that each maximal ideal of D is a *-ideal.

Then the following conditions are equivalent.

(1) {AﬂB)* = A% nB” for =all nonzero integral

w

ideals A and of D.
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{2y (A = B);é = (A%BB*} for all nonzero integral

jdeals A and B of D with B finitely
generated.

{3) Every nonzero ideal of D is a *-ideal.

Proof. Apply Theorem 4 with ¢ being the set of all

maximal ideals of D.

COROLLARY 4.2. Let 3 be a finite character *-oper-

ation on D. Then the following conditions on ¥ are
equivalent.
(1) A% = N{AD,|P € =-Hax(D)} for all A € F(D).

A* n B for all A,B € F(D).

i

(2) (AnBY

{(3) (AﬂB}* A% n 8™ for all finitely generated

it

nonzero integral ideals A and B of D.

(4) (A : BY® = (A":8") for all A € F(D) and
D D

B

m

£(D}.

'

(5} (A : BY* = (47:8") for all finitely gemera-
D

ted nonzero integral ideals A and B of

b.

Proof. By Theorem 4, (1), {2) and (4) are equivalent.
Ciearly (2) = (3) and (4) = (5)}.

{(3) = (1}. The procf of this implication is a
slight modification of the proof that {2y = (1) in

Theorem 4. Let A/ = ﬂ{ADPlP € w-Hax{D)}. Then A’
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c AY. Let 0 # x € AF. Then xeA’l‘ where A, C A
is finitely generated. Observing that the condition

(ang)™ = A% n B for integral AR € £(D) in (3)
easily carries over to all AR € (D), we conclude

ms in (2) = (1) of Theorem 4 that D= (Ay : %),
D

Hence (A x) ¢ P for each P € »-Hax{D), 50

lp

x € ﬂAlﬂP C ﬂADP -~ A’. The proof that (5)y = (1) is a

slight modification of the proof that (3y = (1)-

COROLLARY 4.3. Let D be an integral domain and ¥

5 ¥—pperation on B. Suppose that 1 satisfies ACC
on integral se—ideals. If either (AnBY* = A% n B*

for all A,B € £(D) or (A By = (A%:8%) for all
D D

A,B € £(DY, then DP ijs Noetherian for each

p ¢ w-Max(D)-

Proof . Since D satisfies ACC on integral
%—ideals, ¥ has finize character. By Corollary 4.2,
A€ = N{AD,|P € ®-Max(D)} for each A € F(D). Let A
be a nonzero ideal of D. Since 3] has ACC on
integral s—-ideals, there 1is 2 finitely generated
ideal B CA with B =4". But then ADp = A"Dy
= BKDP = BDP ijs finitely generated. Since every
ideal of DP has the form ADP for some ideal A of
D, D is Noetherian.

P
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Theorem 4 may be strengthened if we restrict our-

selves te the v--operation. Recall that an integral
domain satisfying ACC on integral v—ideals is
called a Mori domain. Examples of Mori domains are

Noetherian domains and Krull domains.

THEOREHM 5. Let D be a Mori domain. Then the
following statemenis are equivalent.
(1) A, = n{ABPQP € v-Max{D)} for each
A € F{D}.

(2)  (AnB),

it

A B for ali A,B € F(D}.
v v

it

{33 (AﬁE)V AV i Bv for all finitely generated

nonzero integral ideals A and B of D.

i

{4y (A - B)v {Av : BV) for all A € F{(D) and
D b
B € f(D).

(5) (A B,

it

{AV 5 Ev) for all nonzero

finitely generated integral ideals A and
B of D.

(6} TFor each maximal v—ideal P of D, DP is
a one~dimensional Corenstein domain.

(7} For each height one prime ideal P of D,

D is Corenstein and D = ﬂ{DPlht P o= 1}.

P
(8) 4, = n{ADPlht P = 1} for each A € F(D}.

Proof . Since i is & Mori domain, v has finite

character. By Corollary 4.2, {1)~{5) are all equi-

valent.
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{1) = {6)}. Let P be a maximal v—ideal of D.
By Corcllary 4.3, DP is Noetherian. For each non-—
zero ideal A of D, ADP = AVDP. But since D is a
Mori domain, AVDP is a v-ideal of D? {see, for
example, [4, Proposition 1.13). Hence DP is a
Noetherian domain in which every nonzerc ideal is a
v-ideal. So BP is a one-dimensional Gorenstein
domain [7, Theorem 222].

{(6) => (7). Let P ©be = height one prime ideal

of D. 1t follows from [5, Théordme 9, page 30] that

P is a v—ideal. Let P € ¢ where Q is a maximal
v—ideal. By (8}, DQ is a one~dimensional Gorenstein
domain. Hence P o= Q. So the set of maximal

v-ideals of D coincides with the set of height one
prime ideals of ©D. Hence DP is Gorenstein for each
height one prime- ideal of D. Also,
ht P = 1} since we always have D = nDP

D o= ﬂ{DPi

where P runs over the set of maximal v-ideals.

{(7) => (8). Put A7 = ﬂ{A.DPIht P o= 1}. By
Theorem 1, A - A is a ®-gperation on D. Hence
for A € F(D}, we have AT Av, Conversely, let

O # x € Av’ Let ? be a height one prime ideal of
D Now x € A]v where Al C A is finitely genera-
ted. Then x € (AIV)DP [ (AXDP)V [ (ADP)v = ADP with

the last equality following since each ideal of DP
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is a v-ideal. Hence x € H{ADPEbt P o= 1} = A’. So

{8) = {2). This follows from Theorem 1.

COROLLARY 5.1. Let D be a Noetberian domain. Then

the eight conditions of Theorem 5 are all equivalent.
If either D is integrally closed or Gorenstein, then

B = Al : y o= { H !
(ﬁsﬂB}v = Av i Bv and {A 5 B)V ‘Av 5 Bv) for all

A,B € F(D).

Recall that an integral domain D is called a

Priifer v-multiplication domain (PVMD) if the finite

type v—ideals form a group under v-multiplication:

AXB = (AB)V. Eguivalently, D is a PVMD if and

only if DP is a valuation domain for each maximal
t~ideal P of D. For this =and other results on
PVMD's, the reader is referred te [31- In [1] we
showed that if D is an essential domain (i.e.,
D = ﬂDQ where {Q} is a set of prime ideals of D
with each ]JQ being a valuation domain}, then
(A]vﬁ“-~nﬁn)v = Alv o=« 0 Anv for all Al,“',An
€ f(D}. We alsc showed that if D is integrally
closed and (Alﬂ-“ﬂ"mn)v = Ay Noe-- 1 Anv for all

Ai"“’An € f(DP), then D is a v-domain (i.e., for
1

each A € £(D), (AA™ ), = D). Now a PVMD is both an

essential domain and & v-domain. However, neither an
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essential domain nor 2 v—domain need be a PVMD. We
have been unable to character the integrally closed

domains D for which (AﬂB)V = Av i1l Bv for all

A,B € F(D). However, if we replace the v—-operation
by the t—operation, sur nmext result gives a
satisfactory answer. The implication (8) = {1} of

Theorem 6 is due to B. Kang [6].

THEOREM 6. Let o be an integrally closed domain.
Then the following statemenls are equivalent.

(1) D is a PVED.

]

(2) (ANB) = A N B for all A,B € F(D).

{3} (AnB}t = A fy Bt for all finitely generated
nonzero integral ideals A and B of D.

(4y (A : B), = (A, : B,) for all A € F(D) and

B € £(D).

(5) (A= B

It

{At : Bt) for all finitely gen-

D

erated nonzero imtegral ideals A and B
of D.

(6) A, = H{ADPEP & t-Hax({D}}.

Proof. It follows from Corollary 4.2 that (2)-{6) are
equivalent.

(1) => (6). This implication is well-known.

(6) => {1}). Let O ¥ a,b & D. Since D is

integrally closed, (a2,b2yt = ((a,b)z)t_ ((32,b2)t
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2.2
= (a% ), = (A g5 2)v = (Alaxspny(ak-b)lv

b
Bovirh o) = ((a), = (255 ing  [2
aX+b aX-b’v ~ VT v o ’ t using [2,
Proposition 34.87.]) Hence ab € (az,bz}t. So for
each maxima i t~ideal P, ab € (az,bz}tDP

= 632,b2)DP. Since ﬁP is integrally closed, DP is

a valuation domain [2, Theorem 24.37. Since DP is a
valuation domain for each maximal t—ideal P, D is
a PVHD.

In [1], an integral domain D was defined to be

s crescent domain if A = {(NA ) for each collec—
av a’v

tion {Aa} Cc £{D}  with ﬂAa # 0. We remarked that a
Priifer domain and & one-dimensional Gorenstein domain
are crescent domains. We nlso showed that in a HMori
crescent domain, every maximal v—-ideal is a maximal
ideal. A modification of the proof of this result
combined with Corollary 4.1 shows that in a HMori
crescent domain D, every nonzero ideal is a
v—ideal; so D wmust be a one—dimensional Gorenstein
domaimn. However, this methed of proof easily extends

to a general finite character *—operation.

THEOREM 7. Let D Dbe an integral domain and let *
be a finite character ®-gperation on D. Then

(ﬂAa)* = ﬂA: for every collection {Aa} C f{D)  with
ﬁAu # 0 if and only if every element of F(D) is a

%-ideal (i.e., 3 is the jdentity ®-operation).
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Proof. The implication (<=} is obvious.

{z=>). By Corocllary 4.1 it suffices to show that
every maximal ideal H of D is a x-ideal. Suppose
that M is a maximal ideal of D that is not a

3

w—-ideal. Then H = D. Since #* has finite

character, there is a finitely generated ideal I CH

with If=1D. let $ = {I CH[I is a finitely
generated ideal with Qi b}. Then S # ¢ and S
is closed under finite products. Let O # x € M.
Shrink M to a prime ideal P minimal over {(x)}. It

f@llowé from [5, Théoréme 9] that P is a s—ideal.
Now J o= N{{x)+1{X € 8} # 0, ‘ so

7= ﬂ{({x)+1}%il € 8}y = b Hence there is a

H

D.
finitely generated ideal Jo C JCH with J: = D.

Now Jo €3 € () + 2 croe Jg. Hence, in the
integral domain 0 = b/P, TO = 3%. Since 36 is
finitely generated, jb = 0, 50 Jo € P Hence
D= Jg c P*, a contradiction.

COROLLARY 7.1. Let D be a MHori domain. Then D is

a2 crescent domain if and only if D is a

one-dimensional Gorenstein domain.

We remark that Theorem 7 is not true without the
hypothesis that % Thas finite character. For it is
easily proved that for any collection {Aa} C F{V)
with ﬂAa # 0 where v is =z valuation domain, we

have NiA__ = {OA .
av a’v
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