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Abstract. Let R be a commutative integral domain with field of fractions K. Let {R ; }i er

be a defining family of overrings of R of finite character. We show that if R has an infinite
strictly ascending chain of integral v-ideals then at least one R ; must allow an infinite strictly

ascending chain of integral v-ideals. Thus if each R'. is Mori (satisfies ACC on integral v-ideals)}

then so must be R. We use this to show that R is a Mori domain if and only if R has a family

{PU) }i <y Of prime ideals such that {Rp » }ie ; is a defining family of R of finite character

and for each i, R is Mori. We also show that if R has more than one maximal #-ideals then

p(i)

R is Mori if, and only if, for all non-zero non-units x, Rx is Mori.

Introduction. Throughout this article we use R, with or without subscripts, to
denote a commutative integral domain with quotient field K. An integral domain R
is a Mori domain if it satisfies ACC on integral v-ideals. Noetherian and Krull
domains are the rather obvious examples of Mori domains. Mori domains have been
studied in detait in [9], [3] and [4], though the main body of results on them
appear in Querre’s work, An interested reader may consult [8] and references given
there.

In this article we characterize Mori domainsusing their overrings (rings between
R and K). The main results may be described as follows. In Section 1, it is shown
that if {R;},; isafamily of overrings of R with the properties that

(i) R=NR,; and (ii) every non-zero non-unit of R is a non-unit in at mosta
[

finite number of R;, andif R admits an infinite ascending chain of integral v-ideals
then so docs at least one of R ;- Using this, one concludes that (a) if eachof R ; is
Mori then so is R and (b) if each of R; satisfies ACC on principal ideals then so

does R. In Section 2, it is shown that if R isa quasi local domain with at least two
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maximal t-ideals (to be defined later) then R is a Mori domain if and only if for
all non-zero non-units x € R, R isaMori domain. Here R, denotes R ¢ where

s=1{x} . The terminology used in this section may be of use in rephrasing some
_i=0

known results to get more productive statements.

1. Characterization via overrings. To ensure readibility, we introduce some notions
to be used in this article. We also indicate some properties of Mori domains.
Let F(R) denote the set of non-zero fractional ideals of R. Associated to

each A€ F(R) there are the fractional ideals A !'={xE€K|xACR} =
R:p A and A, =R: (R :  A)=(A71)"' Themap A~ A4, on F(R) is
a #-operation called the v-operation. The reader may consult Section 32 and 34 of

[6] for the basic properties of =#-operations. For our purposes we note that for any
*.operation * and forany 4 € F(R), 4 CA* C A4, ,=(4%),=(4,)*=(4)),
and 471 =(A471)*=(4*)"1=(4,) . Further,anideal A € F(R) is called
a v-ideal if 4=4 , and a v-ideal of finite type if A =8B for some finitely generat-
ed B € F(R). In particular, 4! isa v-ideal. Anideal A€ F(R) iscalleda
t-ideal if for all finitely generated B € F(R), B C A implies B, C 4. An integral

ideal maximal w. r. ¢ being a t-ideal is called a maximal t-ideal and is prime (Griffin
[71). Further,for A € F(R), A,= U B, where B ranges over finitely generated

R-submodules of A, is a t-ideal and the operation A > A4, is another *-operation

called the t-operation.
To indicate the basic properties of Mori domains we quote the following theorem
from Raillard [9].

Theorem ([9], Theorem A.Q). For R, the following are equivalent.
(1) R is a Mori domain.

(2) For every strictly descending chain of v-ideals {An } - , NA, = (0).

n=0 n

(3) Every non-empty family of integral v-ideals admits a maximal element,

(4) For every integral ideal A of R thereis a finitely generated ideal B C A such
that A~'=B—1
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From (4), of the above theorem, one concludes that every v-ideal of a Mori
domain is a- v-ideal of finite type. From (3), it follows that every integral v-ideal,
of a Mori domain, is contained in a maximal v-ideal which is prime according to [3].
Finally, using (2), we can show that every integral v-ideal of a Mori domain is
contained in only a finite number of maximal v-ideals ( [3]).

Before stating results on characterization of Mori domains via overrings we note

that if {R; },., isa family of overrings of R such that R = ?Ri then {R;},,

is called a defining family of R and it is said to be of finite character if every non-zero

non-unit of R is a non-unit in only a finite number of R,. Further if {Ri }i er 18

a defining family of R then the map defined by 4 > A4*= NAR,; isa *-operation
1]
on R induced by the family {R },.,.

Theorem 1. Let {R;} be a defining family of R of finite character. If R

ier
admits an infinite strictly ascending chain of integral v-ideals then so does at least one
of Ri'

To prove this theorem we need the following two lemmas.

Lemma 2. Let {Ri } be a defining family of R. Then for any fractional

ier
ideal A of R, A™'=0(R;: AR;)=N(AR,)™" and A,= N(R;:(R:A)R)).
i i i
(From this point on we shall write R : A tomean R : (A.)
Proof. let A€EF(R). If x€R : A then xA C R andso xARi C R, for
all i€, and x € N(R;:AR;). Conversely, let x & ﬂ(Rl. :AR;). Then
i i

xARigRi, forall i€/, But A4 C AR;. So xA C xARl.(;R'. forall i€,
Consequently, x4 CNR, and xE€R :A. Thus we establish A='=R:4=
]

N(R; : AR;). In particular, 4, =(4~')~' = (R, : A~ R)).
i i

Lemma 3. Let {Ri }ie! be a defining family of R and let A C B be two

v-ideals of R. Then forsomei €1, R; : (R : 4 JR; CR;:(R:B)R,

Proof. We note that, because A and B are p-ideals,if A C BthenR : 4 DR :B
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and so for all i €7, we have R;: (R:A)R, CR;: (R :B)R,. If we assume
that forall i€7, R, : (R : A)R,;=R;: (R :B)R;, thenby Lemma2, 4 =4 =
N(R;: (R:A4A)R;)= N(R,;: (R:B)R;)=B =B, acontradiction.

i i

Proof of Theorem 1. Let A ! CA 2 € -ut "be an infinite ascending chain of

integral p-ideals of R. Then by the finite character of {R i } there exists only

ier
a finite number of R, forwhich R, : (R:4 | )R; #R;.Let F={R ,R,,...,R }
be the set of all the R, for which R, : (R : 4 )R, # R;. Now thechain 4, C 4,
C ... givesrise to the chain R;:(R:4 )R;CR;:(R:4,)R;C .... forall
R; € F. Because the original chain is strictly ascending, by Lemma 3, for all posi-
tive integral m, R, :(R: 4, )R, CR,;:(R: 4

m+1)R; for at least one R;. But

then an infinite number of strict inclusions are distributed over a finite number of
chains :

R,:(R:A4 )R, CR;:(R:4,)R; C...
Consequently at least one of these chains has an infinite number of strict inclusions.

Now to complete the proof all we have to show is that if 4 is an integral ideal of R
then R, :(R : A)R; is an integral ideal of R;. For this we note that R : 4 2 R

and so (R : A)R; 2 R; which gives R;: (R: A)Rl. S R;. Being an inverse this
ideal is also a p-ideals of R;.

Corollary 4. Let {Ri } ;e be adefining family of finite character of R. Then
the following hold,
(1) Ifeach of R ; 18 a Mori domain then R must be a Mori domain.
(2) Ifeach of R i satisfies ACC on principal ideals then so does R.
(3) If each of R; is a Krull domain then so is R.

Proof. (1) and (2) are direct. For (3) we note that (a) a Krull domain is-

a Mori domain which is also completely integrally closed and (b) an arbitrary inter-
section of completely integrally closed integral domains is completely integrally closed.
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It is known that if R is a Mori domain then so are its rings of fractions (see
e.g. [3] and [9]). Moreover, we have noted that every non-zero non-unit of a
Mori domain belongs to only a finite number of its maximal p-ideals. These obser-

vations give rise to the following corollary.

Corollary 5. An integral domain R is a Mori (Krull) domain if and only if R

has a family {P (i)} of prime ideals such that

ier
(1) every non-zero non-unit of R belongs to at most a finite number of P (i),

(2) forevery i€1, R is a Mori (Kwull) domain, and

P(i)
= M .
(B R= 0By

2. Characterization via rings of fractions. For the next characterization we in-
clude some new terminology in the hope that it would facilitate the statement of
results similar to those presented in this section.

Let x € R be anon-zero non-unit andlet = {xi } :;0 . Denote R by R,
and call it a localised ring of fractions of R . Also, call a quasi local domain a #local
domain if its maximal ideal is a z-ideal. Obviously, if the maximal ideal is not a t-ideal
then we may call R anon t-local domain. In fact R isanon flocal domain if and
only if there isin R a maximal z-ideal P and a non-zero non-unit x € R — P. Now
the promised result.

Theorem 6. A4 non tlocal domain R is a Mori (Krull) domain if and only if
every localised ring of fractions of R is a Mori (Krull) domain.

The proof of this theorem is direct, but to make the contents of this section more
productive we prove it via the following lemma.

Lemma 7. For an integral domain R the following are equivalent.
(1) R isnon tlocal.

(2) There is a set {xl, Xoyreues X, }of non-units of R such that
(xl,x2,.l.,.,xn)v=R.
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(3) R is a finite intersection of localized rings of fractions of itself.

Proof. (1) = (2). By the remarks before Theorem 6, if R is non r-local
then there is a maximal r-ideal P and a non-unit x|, € R ~ P. Now P=P, C (va)t

and as P is maximal w.r.¢ being an integral f-ideal (x, ,P),=R. From this it

follows that there exist Xy, X x_ in P such that (x1 s Xy e X, ), =R,

3,.’.., n

(2) = (3). Recall that a prime ideal minimal over an ideal of the type (a) : , (b)
R

={x€R |xb€(a)} (# (0),R) is called an associated prime of a (non-zero)
principal ideal [5]. Let P(R) denote the set of all associated primes of principal
ideals. Since (x1 sX,,...,%,) =R, according to Tang [10], (x1 Xy .,xn)
is contained in no member of P(R ). That is if

E,={P,EP(R)|x;€P,} then NE,=¢. Thus P(R)=U(P(R)-E,).
i

Now according to [5], R=N R ,, where P rangesover P(R) and for a multipli-

o
cative set S of R,Rg=N {R,|PEP(R),PNS=¢}. Now letting {x,/ }]’::
= §(i) we have
Rgiy=N {R,1PEP(R), PNS(i)=¢} =N {R,|PEP(R) - E; }andso
(?RS(I.)= N {R, | PEP(R) - E, forsome i=1,2,...,n}

N{R, | PEU(P(R)-E;)}

N {R, | PEP(R)}

= R,
(3) = (1). Let R=N RS(z') where S (i) is multiplicatively generated by xi.Then
cleatly x,, i=1,2,...,n, share no associated prime and so (xl Xyseeen X, )v
=R (see Tang [10] ). Now if (xl,xz,...,xn)v=R then x; share no maximal

t-ideals. Further, as we have defined localised rings of fractions only for non-zero non-

units, R has more than one maximal z-ideals.

Proof of Theorem 6. Since R is non t-local, it is a finite intersection of localis-
ed rings of fractions each of which is a Mori (Krull) domain by hypothesis. Now by
Corollary 4, R must be Mori (Krull). Conversely if R is Mori (Krull) then so are
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its rings of fractions and combining this with the main hypothesis we get the result.

Remark 8. Lemma 7 may turn out to be a useful result, Useful in that it makes
possible the extension of results of multiplicative nature stated for non quasi local
domains to non t-local domains. This is'a-considerable advantage because a non t-local
domain may still be quasi local. It may also be a very much needed result at this point
of time. An interested reader may compare Lemma 7 with Lemma2.10 of [2]
and with Lemma2.1 of [1]. For applications, Theorem 2.3 of [1] may be
compared with Theorem 6 of this article.

Corollary 9. Let R be a quasi local domain which is locally factorial in the sense
of Fossum (localised rings of fractions are factorial [1]). If R has two non-gssociat-
ed principal primes then R is factorial.

The proof is an obvious application of Theorem 6 (Lemma 7 included) and the
celebrated theorem of Nagata on UFD’s: If R is Krull and S amultiplicative set
of R generated by primes then R s UFD implies R isa UFD.

Proof of Corollary9. let p and q be two non-associated primes. Then
(r,q),=R andso R =Rp N Rq ; which means that R is Krull. Now R being

Krull and R P being factorial imply that R is factorial by Nagata’s Theorem.
We note that if R is local (Noetherian) it is sufficient to ask for a single prime
along with the main hypothesis of Corollary 9 to get a factorial ring.
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