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Let D be an integral domain. Two nonzero elements x; y 2 D are v-coprime
if (x)\ (y) = (xy). D is an almost-GCD domain (AGCD domain) if for every
pair x; y 2 D, there exists a natural number n = n(x; y) such that (xn)\ (yn)
is principal. We show that if x is a nonzero nonunit element of an almost GCD
domainD, then the set fM ;M maximal t-ideal; x 2Mg is �nite, if and only if
the set S(x) := fy 2 D; y nonunit, y divides xn for some ng does not contain
an in�nite sequence of mutually v-coprime elements, if and only if there exists
an integer r such that every sequence of mutually v-coprime elements of S(x)
has length � r. One of the various consequences of this result is that a GCD
domain D is a semilocal B�ezout domain if and only if D does not contain
an in�nite sequence of mutually v-coprime nonunit elements. Then, we study
integrally closed AGCD domains of �nite t-character of the type A + XB[X]
and we construct examples of non-integrally closed AGCD of �nite t-character
by local algebra techniques.

1. INTRODUCTION

Throughout this article, the letter D will denote a commutative integral

domain with quotient �eld K, IN the set of nonnegative integers and IN�

the set of positive integers. The domain D is local if D contains only

one maximal ideal and semilocal if D contains only a �nite number of

maximal ideals. The domainD is an almost GCD domain (AGCD domain)

if for every pair of elements x; y 2 D, there exists n = n(x; y) 2 IN� such

that (xn) \ (yn) is a principal ideal. AGCD domains were introduced and

studied in [27]. Two nonzero elements x; y of a domain D are v-coprime if
(x) \ (y) = (xy). As we shall see later (Lemma 2.1) x; y are v-coprime if

and only if (x; y)�1 = D if and only if (x; y)v = D.

If A is a nonzero fractional ideal of D, the ideal (A�1)�1 will be denoted

byAv; the ideal [fFv;F is a nonzero �nitely generated subideal of Ag will
be denoted by At. An ideal A is a t-ideal if A = At and the set of maximal

t-ideals of D will be denoted by Maxt(D). The domain D is of �nite
t-character if every nonzero nonunit of D belongs to only �nitely many

maximal t-ideals of D. The reader in need of review of these concepts may

consult [13] and [17]. The class of domains of �nite t-character includes

Noetherian and Krull domains. The class of AGCD domains of �nite t-

character includes the almost factorial domains studied by Storch in [23]

and Zafrullah in [27].

If x is a nonzero nonunit element of D, the set fy 2 D; y is a nonunit

that divides xn for some n 2 IN�g will be called the span of x. The �rst

objective of Section 2 of this paper is to show that if x is a nonzero nonunit

element of an AGCD domain, then the following statements are equivalent:

(i) fM 2Maxt(D);x 2Mg is �nite.
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(ii) The span of x does not contain an in�nite sequence of mutually

v-coprime elements.

(iii) There exists an integer r such that every sequence of mutually v-

coprime elements of the span of x has length � r.

As an immediate consequence, we obtain that an AGCD domain D is of

�nite t-character if and only if the following property is satis�ed:

(F) For every nonzero nonunit x of D, the span of x does not

contain an in�nite sequence of mutually v-coprime elements.

The above result is clearly of a local nature. A second objective of

Section 2 is to obtain the following global result: If D is an AGCD domain

(respectively, a GCD domain) that does not contain an in�nite sequence of

mutually v-coprime nonunit elements, then D is a semilocal almost B�ezout

domain (respectively, semilocal B�ezout domain). We recall that a domain

D is an almost B�ezout domain if for every x; y 2 D, there exists n =

n(x; y) 2 IN� such that (xn; yn) is a principal ideal [1].

In Section 3, we study the integral closure of the AGCD domains of

�nite t-character. We also study the integrally closed AGCD domains of

�nite t-character of the type A +XB[X] where A � B is an extension of

domains. The characterizations of the �nite t-character property in terms

of Property (F) given in Section 2 plays a fundamental role. In Section 4,

we construct, by local algebra techniques, examples of non-integrally closed

AGCD domains of �nite t-character. Finally, in Section 5, we make a few

remarks about the divisibility group of an AGCD domain.

2. SEQUENCES OF MUTUALLY V -COPRIME ELEMENTS

The main objective of this section is to prove the following two comple-

mentary theorems.

Theorem 2.1. Let D be an AGCD domain, x an element of D, S(x) the
span of x and �(x) the set fM 2 Maxt(D);x 2 Mg. Then, the following
statements are equivalent:
(i) s := ]�(x) <1.
(ii) S(x) does not contain any in�nite sequence of mutually v-coprime

elements.
(iii) r := supfu; there exists y1; : : : ; yu 2 S(x) that are mutually v-coprimeg <

1.
Furthermore, when this occurs, r = s.

Before stating the second theorem, we need some de�nitions.
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Definition 2.1. A nonzero nonunit element z of an integral domain

D is almost rigid if for every m 2 IN� and every pair x; y of divisors of zm,

there exists n = n(x; y) 2 IN� such that xn divides yn or yn divides xn.

Moreover, for an almost rigid element z of an AGCD domain D, the ideal

fy 2 D; y; z are not v-coprimeg, denoted by P (z), is the ideal associated
with z.

Theorem 2.2. Let D, x, S(x) and �(x) be as in Theorem 2.1. Suppose
that ]�(x) = r <1. Then
(a) There exists a sequence of almost rigid elements z1; : : : ; zr 2 S(x)

that are mutually v-coprime.
(b) For any such sequence z1; : : : ; zr, one has �(x) = fP (zi); i = 1; : : : ; rg.

As an immediate consequence of Theorems 2.1 and 2.2, we have:

Corollary 2.1. . Let D be an AGCD domain. Then
(a) D is of �nite t-character if and only if D satis�es Property (F).
(b) When D is of �nite t-character,Maxt(D) = fP (z); z 2 D; z almost rigidg.

For the proofs of Theorems 2.1 and 2.2, we shall need some preliminary

lemmas. The �rst one gathers some useful technical results, some of which

are well known, but for the sake of completeness, we give the proofs.

Lemma 2.1. Let D be an AGCD domain and r; s two nonzero nonunit
elements of D. Then, the following statements are equivalent:
(i) (r) \ (s) 6= (rs); i.e., r and s are not v-coprime.
(ii) (r; s)v 6= (1).
(iii) There exists n 2 IN� and d a nonunit of D such that (rn; sn)v = (d).
(iv) There exists n 2 IN� and d a nonunit of D such that (rn; sn)v � (d).
If furthermore r and s are almost rigid, then (i){(iv) are also equivalent

to:
(v) There exist n 2 IN� such that rnjsn or snjrn.

Proof. (i),(ii). The equivalence between (i) and (ii) is independent of

the AGCD hypothesis. We can derive it as in 1.1 of [27].

(ii))(iii). Since A is an AGCD domain, there exists n 2 IN� such that

(rn)\(sn) is principal, say generated bym. Then (rn; sn)v is also principal,

generated by d = rnsn=m. If we suppose that d is a unit, then we have

(rn; sn)v = D, hence also that (r; s)v = D since (rn; sn)v � (r; s)v. This

contradicts the hypothesis.

(iii))(iv). Clear.
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(iv))(ii). Let n 2 IN� and d a nonunit of D such that (rn; sn) � (d).

Then, (rn; sn)v � (d) � D and (rn; sn)v is contained in a proper t-ideal.

Let M be a maximal t-ideal containing (rn; sn)v; then M must contain r

and s, hence contains (r; s)v. Thus, (r; s)v 6= D.

(v))(iv). Clear (and we don't need to suppose that r and s are almost

rigid).

Now we suppose that r and s are almost rigid and that (iii) holds. We

want to show that (v) is satis�ed.

Set r1 = rn, s1 = sn. Observe that r1 and s1 are almost rigid and

that (r1; s1)v = (d). Clearly, x := d and y := r1=d divide r1 in D. Since

r1 is almost rigid, there exists u 2 IN� such that du divides (r1=d)
u or

(r1=d)
u divides du; hence d2u divides ru1 or ru1 divides d2u. Similarly, there

exists k 2 IN� such that d2k divides sk1 or sk1 divides d2k. By raising these

equations to the power k and u, respectively, we have:

(1) d2ku divides rku1 or (2) rku1 divides d2ku

and

(3) d2ku divides sku1 or (4) sku1 divides d2ku.

If we suppose that (1) and (3) are valid, then we have (rku1 ; sku1 )v � (d2ku),

which is absurd since by Lemma 3.6 of [27], we must have (rku1 ; sku1 )v =

(dku).

If we suppose that (1) and (4) are valid, then we obtain that sku1 divides

rku1 . If we suppose that (2) and (3) are valid, then rku1 divides sku1 .

Finally, if we suppose that (2) and (4) are valid, then both rku1 and sku1
divide d2ku and, since d is almost rigid (as a divisor of the almost rigid

element r1), there exists ` 2 IN� such that rku`1 divides sku`1 or sku`1 divides

rku`1 .

In any case, we see that there exists p 2 IN� such that r
p
1 divides s

p
1 or s

p
1

divides r
p
1, and we therefore have r` divides s` or s` divides r` with ` = np.

Thus (v) is satis�ed.

If D is not an AGCD domain, then two almost rigid elements of D may

satisfy condition (i) of Lemma 2.1 without satisfying condition (v).

Example 2.1. If V is a proper valuation domain with quotient �eld

K, then the indeterminates X and Y are almost rigid elements of the ring

D = V + (X;Y )K[X;Y ] that are not v-coprime, but for every n, neither

Xn nor Y n divides the other.

Lemma 2.2. Let D be an AGCD domain.
(a) If r is an almost rigid element of D, then P (r) := fy 2 D; (y; r)v 6=

(1)g is the only maximal t-ideal of D that contains r.
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(b) If r and s are two almost rigid elements of D, then P (r) = P (s) if
and only if r and s are not v-coprime.

Proof. (a) Let y 2 D. Since D is an AGCD domain, then by Lemma

2.1, y belongs to P (r) if and only if there exists a nonunit d 2 D and n 2 IN�

such that djrn and djyn. Hence P (r) = [f
p
(d); d is a nonunit of D such that r 2p

(d)g and this union is directed (actually linearly ordered) because r is

almost rigid. Since the radical of a t-ideal is also a t-ideal,
p
(d) and P (r)

are (proper) t-ideals.

Now letM be a maximal t-ideal ofD containing r. Then for every y 2M ,

we have (y; r)v �M 6= D. Hence M � P (r) and therefore M = P (r).

(b) If r; s are not v-coprime, then by Lemma 2.1 we may assume rnjsn
for some n 2 IN�. Hence s 2 P (r) and P (r) = P (s) by (a).

Conversely, if P (r) = P (s) then s 2 P (r), (r; s)v 6= D, that is, r and s are

not v-coprime.

Lemma 2.3. Let D be an AGCD domain and r a nonzero element of D.
Then the following statements are equivalent:
(i) r is almost rigid.
(i) The span of r contains no pair of v-coprime elements.

Proof. (i))(ii). Let S(r) be the span of r and x; y two elements of

S(r). Then there exist t1; t2 2 IN� such that xjrt1 and yjrt2 , hence xjrt
and yjrt where t = maxft1; t2g. Since r is almost rigid, rt is almost rigid.

Therefore, there exists n 2 IN� such that xnjyn or ynjxn. Then, by Lemma

2.1 (v)!(i), x and y are not v-coprime.

(ii))(i). Assume that r is not almost rigid. Then, there exists t 2 IN�

and x; y nonunit divisors of rt such that for every n 2 IN�, xn does not

divide yn and yn does not divide xn. Since D is an AGCD domain, there

exists p 2 IN� and m 2 D such that

(xp) \ (yp) = (m): (1)

Let

d := xpyp=m: (2)

Then d is a divisor of xp, yp and m, and from (1), one easily gets that

(xp=d) \ (yp=d) = (m=d) : (3)

From (2), one gets that

m=d = xpyp=d2: (4)
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The relations (3) and (4) tell us that x=d and y=d are v-coprime.

Now, since xp does not divide yp and yp does not divide xp, xp=d and yp=d

are nonunits of D, and since both xp=d and yp=d divide rtp, they belong to

S(r). This contradicts (i).

Lemma 2.4. Let D be an AGCD domain, x a nonzero nonunit element
of D, S(x) the span of x, �(x) the set fP (r); r almost rigid, x 2 P (r)g and
�(x) the set fM 2Maxt(D);x 2Mg. Then
(a) �(x) = fP (s); s almost rigid, s 2 S(x)g.
(b) If S(x) does not contain any in�nite sequence of mutually v-coprime

elements, then �(x) is �nite and �(x) = �(x).

Proof. (a) Let r 2 D be an almost rigid element such that x 2 P (r);

i.e., such that (x; r)v 6= D. Since D is an AGCD domain, Lemma 2.1

implies that there exists n 2 IN� and a nonunit s 2 D such that (xn; rn)v =

(s). Since s divides xn, one has s 2 S(x). Since rn 2 (s) � P (s), and

since by Lemma 2.2(a) P (s) is prime t-ideal, one has (r; s)v � P (s), hence

(r; s)v 6= D, and therefore P (r) = P (s) by Lemma 2.2(b). Thus �(x) �
fP (s); s almost rigid; s 2 S(x)g.
Conversely, if s is an almost rigid element in S(x), then there exists

n 2 IN� such that xm 2 (s) � P (s), hence x 2 P (s) since P (s) is a prime

ideal by Lemma 2.2(a). Thus, P (s) 2 �(x).

(b) We �rst claim that S(x) contains an almost rigid element. Assume

the contrary. In particular, x itself is not almost rigid and, by Lemma

2.3, there exist y1; z1 2 S(x) that are v-coprime. By induction, suppose

that y1; : : : :yi, zi are mutually v-coprime elements of S(x). By our as-

sumption, zi cannot be almost rigid, hence by Lemma 2.3, there exist yi+1,

zi+1 2 S(zi) � S(x) that are v-coprime. It follows that y1; : : : ; yi; yi+1; zi+1
are mutually v-coprime elements of S(x). Thus we get an arbitrarily long

sequence of mutually v-coprime elements in S(x), contradicting the hy-

pothesis. Thus S(x) contains an almost rigid element r and our claim is

proved. As a consequence, �(x) is not empty by (a).

Now, by hypothesis, S(x) does not contain an in�nite sequence of mutu-

ally v-coprime elements; thus, by Lemma 2.2(b), fP (s); s almost rigid, s 2
S(x)g is �nite. By (a), this means that �(x) is �nite. Thus, �(x) is not

empty and �nite, say �(x) = fP1; : : : ; Pkg.
We know that �(x) � �(x) by Lemma 2.2(a). Conversely, let M 2 �(x)

and suppose thatM 62 �(x), hence thatM 6� P1[� � �[Pk. For i = 1; : : : ; k,

let xi 2MnPi. Since D is an AGCD domain, then by Remark after Lemma

3.3 of [1], there exist n 2 IN� and d 2M such that (xn; xn1 ; : : : ; x
n
k)v = (d).

Then d is a nonzero nonunit element such that �(d) is empty. This is ab-

surd. Indeed, we have S(d) � S(x); hence S(d) does not contain any in�nite

sequence of mutually v-coprime elements (since S(x) does not) and there-
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fore �(d) is not empty by the previous claim applied to the element d instead

of x.

We can now give the proofs of Theorems 2.1 and 2.2.

Proof (Proof of Theorem 2.1). (i))(iii). Let �(x) = fM1; : : : ;Msg;
then clearly S(x) � M1 [ � � � [Ms. If y and z are two v-coprime nonunit

elements of D, then (y; z)v = (1) and a maximal t-ideal M of D cannot

contain both y and z. Thus every sequence of mutually v-coprime elements

of S(x) has length � s. (Note that for this implication, we did not use the

fact that D was an AGCD domain.)

(iii))(ii). Clear.

(ii))(i). This is given by Lemma 2.4(b).

When properties (i){(iii) are satis�ed, we have �(x) = fP (y); y almost rigid, y 2
S(x)g by Lemma 2.4(a). Furthermore, we have ]fP (y); y almost rigid, y 2
S(x)g = supfu; there exists, y1; : : : ; yu 2 S(x) that are mutually v-coprimeg
by Lemma 2.2(b). Thus s = r.

Proof (Proof of Theorem 2.2). (a) Since ]�(x) = r < 1, then by

Theorem 2.1, S(x) does not contain any in�nite sequence of mutually v-

coprime elements, and by Lemma 2.4, there exist some almost rigid ele-

ments z1; : : : ; zr 2 S(x) such that �(x) = fP (z1); : : : ; P (zr)g. By Lemma

2.2(b), those elements z1; : : : ; zr are mutually v-coprime.

(b) If z1; : : : ; zr is a sequence of almost rigid elements of S(x) that are mu-

tually v-coprime, then by Lemma 2.2, P (z1); : : : ; P (zr) are distinct maxi-

mal t-ideals ofD. By Lemma 2.4, they belong to �(x). Since ]�(x) = r, we

then have �(x) = fP (z1); : : : ; P (zr)g.
Whereas Theorems 2.1 and 2.2 were of a local nature, the next result is

of a global nature.

Proposition 2.1. Let D be an AGCD domain.

(a)The following statements are equivalent:

(i) D is a semilocal almost B�ezout domain.

(ii) D does not contain any in�nite sequence of mutualy v-coprime

nonunit elements.

(iii) r := supfu; there exist nonunit elements y1; : : : ; yu of D that are

mutually v-coprimeg <1.

(b)When conditions (i){(iii) occur, then ]Max(D) = r and the following

statements hold:

(i)There exists a sequence of almost rigid elements z1; : : : ; zr of D that

are mutually v-coprime.
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(ii)For any such sequence z1; : : : ; zr, Max(D) = fP (zi); i = 1; : : : ; rg.

For the proof of Proposition 2.1, we need a lemma.

Lemma 2.5. Let D be an AGCD domain and P a prime ideal of D.
Then P is a t-ideal if and only if for every x; y 2 P , there exist k 2 IN�

and p 2 P such that (xk; yk) � (p).

Proof. Let P be a proper (not necessarily prime) t-ideal and x; y 2 P .

We have (x; y) � P hence (x; y)v = (x; y)t � Pt = P . Thus, by Lemma

2.1, there exist k 2 IN� and p 2 P such that (xk; yk) � (p).

Conversely, suppose that P is a prime ideal and that for every x; y 2 P ,

there exist k 2 IN� and p 2 P such that (xk; yk) � (p). We want to show

that P is a t-ideal; i.e., (z1; : : : ; zn)v � P for each z1; : : : ; zn 2 P . Before

giving the proof, we observe that if a1; : : : ; an 2 IN�, a := maxfa1; : : : ; ang
and q := an+ 1, then ((z1; : : : ; zn)v)

q � ((z1; : : : ; zn)
q)v � (za11 ; : : : ; zann )v,

hence that (z1; : : : ; zn)v � P if and only if (za11 ; : : : ; zann )v � P .

Now we start the proof. We use induction on n. If n = 1, the result is

clear. If n = 2, then by hypothesis, there exist k 2 IN� and p 2 P such

that (zk1 ; z
k
2 ) � (p). Thus (zk1 ; z

k
2 )v � (p)v = (p) � P and by the previ-

ous observation, (z1; z2)v � P . If n � 3, then by our hypothesis, there

exist ` 2 IN� and p 2 P such that (z`1; z
`
2)v � (p). Again by the previous

observation, (z1; z2; z3; : : : ; zn)v � P if and only if (z`1; z
`
2; z3; : : : ; zn)v �

P . Since (z`1; z
`
2; z3; : : : ; zn)v = ((z`1; z

`
2)v; z3; : : : ; zn)v � (p; z3; : : : ; zn)v,

then (z`1; z
`
2; z3; : : : ; zn)v � P if (p; z3; : : : ; zn)v � P . Since only (n � 1)

elements of P are involved, then by the induction hypothesis, we have

(p; z3; : : : ; zn)v � P .

Proof (Proof of Proposition 2.1). (a) (i))(iii). By Lemma 2.5, in almost

B�ezout domain D, every prime ideal of D is a t-ideal, hence Maxt(D) =

Max(D) and Maxt(D) is �nite. As already seen in the �rst part of the proof

of Theorem 2.1, two v-coprime nonunit elements of D cannot be contained

in the same maximal t-ideal. Thus every sequence of mutually v-coprime

nonunits of D has length � ]Max(D).

(iii))(ii). Clear.

(ii))(i). By Corollary 2.1(b), Maxt(D) = fP (y); y 2 D; y almost rigidg.
Then, by Lemma 2.2(b), Maxt(D) is �nite, hence Max(D) = Maxt(D)

since [fM 2 Max(D)g = fnonunit elements of Dg = [fM 2 Maxt(D)g.
Thus D is semilocal. By [1], Corollary 5.4, D is an almost B�ezout domain.

(b) Assume that the statements of (a) are satis�ed and let s := ]Max(D).

By Lemma 2.5, Maxt(D) = Max(D). Then by Corollary 2.1, there exists

a sequence of almost rigid elements z1; : : : ; zs of D such that Max(D) =
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fP (z1); : : : ; P (zs)g. By Lemma 2.2(b), z1; : : : ; zs are mutually v-coprime,

hence s � r. It has already been seen during the proof of (a) that r � s.

Thus, s = r.

Finally, if z1; : : : ; zr is any sequence of almost rigid elements ofD that are

mutuallyv-coprime, then by Lemma2.2, fP (z1); : : : ; P (zr)g is a set of r dis-
tinct maximal t-ideals. Thus, fP (z1); : : : ; P (zr)g = Max(D).

Proposition 2.2. Let D be a GCD domain. Then
(a) D is a semilocal B�ezout domain if and only if D does not contain

any in�nite sequence of mutually v-coprime nonunit elements.
(b) When this occurs, Max(D) = fP (z); z 2 D; z almost rigidg.

Proof. Apply Proposition 2.1 and Corollary 3.6 of [23].

Proposition 2.2 can be generalized in the following way.

Proposition 2.3. Let D be an integrally closed AGCD domain. Then
D is a semilocal B�ezout domain if and only if D does not contain any
in�nite sequence of mutually v-coprime nonunit elements.

Proof. The \only if" part is given by Proposition 2.1. Now, ifD does not

contain any in�nite sequence of mutually v-coprime nonunit elements, then

by Proposition 2.1 and its proof, D is semilocal and Max(D) = Maxt(D).

Then, by Corollary 3.8 and Theorem 3.9 of [27] and Proposition 4.4 of [21],

D is a semilocal Pr�ufer domain, hence a semilocal B�ezout domain by Theo-

rems 60 and 107 of [19].

Remark 2. 1. We have seen in Corollary 2.1 that if D is an AGCD do-

main of �nite t-character, then Maxt(D) = fP (z); z 2 D; z almost rigidg.
If D is not of �nite character, this need not be true, even if D is B�ezout.

We give two examples:

(a) Let A be the ring of all the algebraic integers. Then A is a B�ezout do-

main, and Max(A) = Maxt(A). By Proposition 42.8 of [13], every nonunit

element of A belongs to uncountably many maximal t-ideals. By Lemma

2.2(a) this implies that A has no almost rigid element.

(b) Let E be the ring of entire functions. It is a B�ezout domain, and

Maxt(E) = Max(E). By a result on p. 147 of [13], every nonzero nonunit

element ofE is divisible by some prime element of the type z�� with � 2 C.

Hence every almost rigid element of E is of the type y := "(z � �)n with "

invertible in E, � 2 C, n 2 IN� and, for such y, we have P (y) = (z��)E, a

height-one maximal ideal. Since E is in�nite dimensional, we obtain that

there exist some maximal t-ideals that are not associated with any almost

rigid element of E.
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3. INTEGRALLY CLOSED AGCD DOMAINS OF FINITE

T -CHARACTER

According to [27], Corollary 3.8 and Theorem 3.9, an integrally closed

AGCD domain is a Pr�ufer v-multiplication domain with torsion t-class

group. It seems pertinent to give the reader some idea of the concepts men-

tioned in the above sentence. Note that a fractional ideal A is t-invertible

if there exists a fractional ideal B such that (AB)t = D and in this case

Bt = A�1. An integral domain D is said to be a Pr�ufer v-multiplication

domain if every �nitely generated nonzero ideal of D is t-invertible. For

an introduction to the t-class group of D, the reader may consult [27] or

[7]. For our purposes, let us note here that the set of t-invertible t-ideals

of D forms a group T (D) under the t-product: A�tB = (AB)t = (AtB)t.

Obviously T (D) contains, as a subgroup, the group of nonzero principal

fractional ideals P (D). The quotient group Clt(D) = T (D)=P (D) is called

the t-class group (a number of authors now prefer to call it the class group

of D). This class group, introduced in [6], has the interesting property that

if D is a Krull domain, then Clt(D) is just the divisor class group of D and

if D is Pr�ufer Clt(D) is the ideal class group. So, being PVMD's of �nite

t-character, Krull domains with torsion divisor class group of Storch [24]

are examples of AGCD domains with �nite t-character.

We �rst look at the integral closure of an AGCD domain.

Proposition 3.1. Let D be an AGCD domain and D0 its integral clo-
sure. Then
(a) D0 is an AGCD domain,
(b) D0 is of �nite t-character if and only if D is of �nite t-character.

Proof. (a) This is given by Theorem 3.4 of [27].

(b) By [1], Theorems 2.1 and 3.1, D � D0 is a root extension and the

canonical map� : Spec(D0)! Spec(D) de�ned by �(Q) = Q\D is a home-

omorphism. Then, it is suÆcient to show that if A � B is a root extension

of AGCD domains, the canonical map Spec(B)! Spec(A) establishes a bi-

jection between Maxt(A) and Maxt(B). By Theorem 2.1 of [1], it suÆces to

see that for Q 2 Spec(B), Q is a t-ideal if and only ifQ\A is a t-ideal. That

this is indeed true for a root extension of AGCD domains is an easy conse-

quence of Lemma 2.5.

Next, we consider domainsR, which are constructed as A+XB[X] where

A � B is an extension of domains. This pullback construction o�ers more

structure than a general pullback. For example, R is the direct sum of A
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and XB[X] and, since R lies between the two polynomial rings A[X] and

B[X], it can be expected to inherit some properties from these two rings.

The ring A + XAS [X], where S is a multiplicative system of A, was

studied in [10]; it was shown that if A is a GCD domain, then A+XAS [X]

is a GCD domain if and only if GCD(a;X) exists for every a 2 A. Since

the appearance of [10], the rings of type A + XAS [X] have served as a

source of examples. In [28], it was proved that if A is a GCD domain then

A + XAS [X] is a GCD domain if and only if for all a 2 Anf0g, a = bs

where s 2 S and b is coprime to every member of S. Later, in [3], this

special property of S was used to de�ne a splitting multiplicative set of A
as a saturated multiplicative set S such that for all a 2 Anf0g, a = bs

where s 2 S and b is v-coprime to every member of S.

One aim of this section is to investigate properties of A and B that are

necessary and suÆcient for A + XB[X] to be an integrally closed AGCD

domain of �nite t-character. Considering that AGCD domains are a gen-

eralization of GCD domains, we can expect that a concept generalizing a

splitting multiplicative set will surface. The following result proves pre-

cisely that.

Theorem 3.1. Let A � B be an extension of domains such that B is
an overring of A. Then
(a) The ring A + XB[X] is an integrally closed AGCD domain if and

only if A is an integrally closed AGCD domain and B = AS where S is
a multiplicative system of A satisfying the following property: for every
a 2 Anf0g, there exists n 2 IN� such that an = bs with b 2 A v-coprime to
every element of S and s 2 S.
(b) When R := A+XAS [X] is an integrally closed AGCD domain, R is

of �nite t-character if and only if A is of �nite t-character and S does not
contain any in�nite sequence of mutually v-coprime nonunit elements.

We �rst prove a simple lemma.

Lemma 3.1. Let S be a saturated multiplicative set of an integral domain
R and let F be a t-invertible (integral) t-ideal of R such that FRS = dRS

for some d 2 R. Then there is a t-invertible integral ideal G of R such that
for some s 2 S, (ds) = (FG)v and G \ S 6= ;.

Proof. Since FRS = dRS for some d 2 R, then for some s 2 S

we can assume that ds 2 F . Let G = dsF�1. Then G � R and as

GRS = dsF�1RS = ds(FRS)
�1 = RS we conclude that G \ S 6= ;. Mul-

tiplying G = dsF�1 by F and applying the v-operation we get (FG)v =

ds(FF�1)v = (ds).
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Proof (Proof of Theorem 3.1). (a) Let U(B) denote the set of units of B.
As a �rst step let us note that S = A \ U(B) is a saturated multiplicative

set in A, and that according to [2], R is integrally closed if and only if A

and B are both integrally closed.

Suppose that R = A + XB[X] is an integrally closed AGCD domain.

For each a 2 Anf0g, there exists n = n(a;X) such that (an; Xn)v = dR

for some d 2 R. Since djan, d 2 A and since djXn, d 2 U(B). Thus

d 2 A\U(B). Next dividing through by d we get (an=d;Xn=d)v = R. Since

an=d and Xn=d are v-coprime, then an=d is v-coprime to every divisor of

Xn=d in R and hence to every member of S. Thus we have shown that for

each a 2 Anf0g, there is n 2 IN� such that an = hs where s 2 A \ U(B)
and h 2 A is v-coprime to every member of A \ U(B).
Next we show that every element b of B is of the form a=s where a 2 A

and s 2 A\U(B). For this we note that if b 2 A we have nothing to prove.

So let us assume that b 2 BnA and note that, as R is an AGCD domain

there exists n = n(X; bX) such that (Xn; bnXn)v = hR. Since b 2 BnA
we can write b = r=s where r; s 2 A. Since R is an AGCD domain there

exists m = m(r; s) such that (rmR+smR)v = kR where k 2 A. We cannot

have k = sm because if so, we would then have bm = rm=sm 2 A and

therefore b 2 A since A is integrally closed, which is absurd. Let rm = k�

and sm = k�, where (�; �)v = R. Since hmR = (Xmn; (bm)nXmn)v =

(Xmn; �n=�nXmn)v, we have �
nhmR = (�nXmn; �nXmn

v ) = XmnR and

consequently hmR = Xmn=�nR. Thus, �n 2 A \ U(B), and so � 2
A \ U(B). Now �nbmn 2 A implies �bm 2 A, because A is integrally

closed, and hence bm 2 AS . Finally, since AS is integrally closed, b 2 AS .

It still remains to show that A is an AGCD domain. For this, let a; b 2
Anf0g. As A +XB[X] is AGCD there exists n = n(a; b) such that anR \
bnR = dR for some d 2 R. But since djanbn in R we conclude that d 2 A.

Now using the fact that for each x 2 A, xR \ A = xA we conclude that

anA \ bnA = dA.

Conversely, suppose now that we have:

(i) A is an integrally closed AGCD,

(ii) B = AS ,

(iii) S is a multiplicative system of A such that for all a 2 A, there is

n = n(a) such that an = bs where s 2 S and b 2 A is v-coprime to every

member of S.

In order to show that R = A + XAS [X] is an integrally closed AGCD

domain, it is suÆcient to show that R is a PVMD with torsion t-class group

[27]. According to a recent result of [4] A + XAS [X] is a PVMD if and

only if for each a 2 D, (a;X) is a t-invertible ideal of R. To establish

this let us note that for some n 2 IN�, an = bs where s 2 S and b is v-

coprime to every member of S. Since b is v-coprime to X in AS [X] we have

bAS [X]\XAS [X] = bXAS [X]. So for all h 2 bR\XR there is s 2 S such



14 DUMITRESCU, LEQUAIN, MOTT, ZAFRULLAH

that sh 2 bXR. Now as X divides h we have h = Xk. Thus, sk 2 bR. This

means that b divides the constant term of sk in A. But as b is v-coprime to

s we conclude that b divides the constant term of k. Now as every power of

s divide the nonconstant terms we see that b divides k. But then h 2 bXR.

This proves that bR \XR = bXR and hence (b;X)v = R. Consequently,

(b;Xn=s)v = R, or sR = (bs;Xn)v = (an; Xn)v. Using Corollary 3.3 of [27]

and the fact that R is integrally closed, we conclude that sR = ((a;X)n)v.

But this makes (a;X) t-invertible, for each a 2 A.

Finally, to show that R has a torsion t-class group, we show that for

every t-invertible t-ideal H of R, (Hn)t is principal. For this we consider

two cases:

(�) when H \ S 6= ;, and
(�) when H \ S = ;.
In case (�) we have H = H \ A + XAS [X], according to [10]. Now it

can be easily shown that H \A is a t-invertible t-ideal of A. Since A is an

integrally closed AGCD domain there is n 2 IN� such that ((H \A)n)v is

principal. But then so is (Hn)v = ((H \A)n)v +XAS [X].

For the case (�), let H be a t-invertible t-ideal of R. It is well known [7]

thatHRS is a t-invertible t-ideal ofRS . SinceH\S = ;,HRS is nontrivial,

and since RS = AS [X] is an integrally closed AGCD domain, there is

n 2 IN� such that ((HRS)
n)v = (HnRS)v = (Hn)vRS is principal, say

(Hn)vRS = dRS. But then, by Lemma 3.1 there is a t-invertible integral

t-ideal G of R = A + XAS [X] such that G \ S 6= ; and for some s 2 S,

(ds) = ((Hn)vG)v = (HnG)v. Now by part (�), there is m 2 IN� such that

(Gm)v = tR. Now (ds)m = ((Hn)vG)v = ((HnG)v)
m = (Hmn(Gm)v)v,

and from this it is easy to conclude that (Hmn)v is principal.

(b) By Corollary 2.1(a), we may replace the �nite t-character assumption

by Property (F). Observe that A � R is a at extension, hence that two

elements y; z 2 A are v-coprime in A only if they are v-coprime in R

Suppose that R satis�es Property (F). Let x 2 A, T (A; x) the span of x

in A and T (R; x) the span of x in R. Since funits of Ag = funits of Rg,
then T (A; x) � T (R; x). Since by hypothesis T (R; x) does not contain any

in�nite sequence of mutually v-coprime nonunit elements of R, then by the

above observation, T (A; x) does not contain any in�nite sequence of mutu-

ally v-coprime elements of A. Thus A satis�es Property (F). Furthermore,

every element s 2 S divides X in R, hence fy 2 S; y is not invertible in Rg
is contained in the span of X in R, which, by hypothesis, does not contain

any in�nite sequence of mutually v-coprime nonunit elements in R. Thus,

again by the above observation, S does not contain any in�nite sequence

of mutually v-coprime nonunit elements of A.

Conversely, suppose that A satis�es Property (F) and that S does not

contain any in�nite sequence of mutually v-coprime nonunit elements of A.
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Without loss of generality, we may suppose that S is saturated. Suppose

that R does not satisfy Property (F) and let f 2 R be a nonzero nonunit

element of R whose span in R contains an in�nite sequence (gi)i�1 of

mutually v-coprime nonunit elements of R.

If f 2 A, then looking at the degrees of the polynomials in the equalities

of the type fn = giri, we see that gi and ri belong to A. Then, for every

i � 1, gi belongs to the span of f in A. Furthermore, since gi, gj 2 A and

yiR \ gjR = gigjR, we also have giA \ gjA = gigjA. Thus, (gi)i�1 is an

in�nite sequence of mutually v-coprime nonunit elements of A contained in

the span of f in A, contradicting the hypothesis.

If f 62 A, we �rst claim that only �nitely many gi's may not belong

to A. Let K be the quotient �eld of A. The element f is a nonunit of

K[X] and (gi)i�1 is a sequence of elements that belong to the span of

f in K[X]; furthermore, since K[X] is a localization of R, the extension

R � K[X] is at and by 3.H on p. 23 of [20], the gi's are mutually v-

coprime in K[X]. Since K[X] is a PID, the span of f in K[X] cannot

contain an in�nite sequence of mutually v-coprime nonunit elments. Thus,

only a �nite number of gi's may be nonunit elements in K[X]; i.e., only a

�nite number of gi's may not belong to A. This proves our intermediary

claim, and eliminating a �nite number of them, we may assume that every

gi belongs to A. By (a), for every i � 1 there exists ni 2 IN� and si 2 S

such that g0i := gnii =si belongs to A and is v-coprime to every element

of S. Note that since gi, gi 2 A and giR \ gjR = gigjR, we also have

giA \ gjA = gigjA; i.e., gi; gj are v-coprime in A; then gnii ; g
nj
j are v-

coprime in A amd g0i; g
0
j are v-coprime in A. Note also that gi being a

nonunit element of R and S being saturated, g0i is a unit of A if and only

if gnii belongs to S. Since by hypothesis S does not contain any in�nite

sequence of mutually v-copositive nonunit elements of A, then there are

only �nitely many elements of the set fg0ig that are units in A. Eliminating

them, we may assume that every g0i is a nonunit element of A. Note that gi
belongs to the span of f in R; thus, g0i belongs to the span of f in R, too.

Let a 2 A, t 2 S, m 2 IN� such that (a=t)Xn is the leading monomial of f .

Then, there exists r 2 IN� such that g0i divides a
r=tr in AS ; thus, there exists

s 2 S such that sar 2 sA \ g0iA. Since g0i is v-coprime with every element

of S, we have sA \ g0iA = sg0iA. This implies that g0i divides a
r in A and

hence that g0i belongs to the span of a in A. We are thus reduced to a case

that we have already settled; we have seen that it leads to a contradiction.
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4. EXAMPLES OF NON-INTEGRALLY CLOSED AGCD

DOMAINS OF FINITE T -CHARACTER

To put all the examples of AGCD domains of �nite t-character together in

this article would be too repetitive, so we point out the relevant references.

Example 4.16 of [1] gives for each n, the ring Rn = ZZ + 2niZZ where

i =
p
�1. The ring Rn has the property that for every subset I of Rn,

there is n = n(I) such that the ideal generated by fan; a 2 Ig is principal
(such rings are called almost principal ideal (API) domains) and its integral

closure ZZ[i] is a PID. This makes the ring one-dimensional with the prop-

erty that every nonzero nonunit of it belongs to at most a �nite number

of prime ideals. Noting that each nonzero prime ideal of Rn is of height

one, it is easy to deduce that each nonzero prime ideal of Rn is, indeed, a

t-ideal.

Theorem 4.17 of [1] provides other examples of API domains that are

not integrally closed but whose integral closures are Dedekind domains

with torsion class groups. Using similar reasoning as above, these rings

can also be shown to be of �nite t-character.

Some examples in positive characteristic are given by Remark 4.1 and

Proposition 4.1. We shall describe two constructions that provide examples

of non-integrally closed AGCD domains. They were suggested by Example

2.13 of [27], whose proof shows, more generally, that for an extension A � B

of domains of charactestic p > 0 with Bp � A, A is an almost B�ezout

domain if and only if B is. First, some introductory comments.

Remark 4. 1. (a) Recall from [25], that an extension A � B of domains

is said to be R2 stable if every two nonzero v-coprime elements of A remain

v-coprime in B (equivalently, if xA \ yA = fA, with x; y; f 2 A, implies

xB\yB = fB). By p. 363 of [25], a at extension of domains is R2-stable.

(b) If A � B is an R2-stable root extension of domains and A is an

AGCD domain, then B is also an AGCD domain. Indeed, if x; y 2 B,

there exist n 2 IN� and f 2 A such that xn; yn 2 A and xnA \ ynA = fA,

so xnB \ ynB = fB.

As our next example shows, (b) does not hold if we drop the R2-stableness

hypothesis. Let k be a �eld of characteristic two, let B be the sub-

ring of k[X;Y ] consisting of all the polynomials f that have no term in

X;Y and XY (i.e., f = a + bX2 + cY 2 + dX3 + : : :) and let A be the

UFD subring k[X2; Y 2] of B. Obviously, B2 � A. But B is not an

AGCD domain, because X2n; Y 2n have no nonunit common factor in B

and X2n+1Y 2n+1 2 (X2nB \ Y 2nB)nX2nY 2nB for each n � 1. Notice

that the integral closure of B is B0 = k[X;Y ] and B02 � B. So B � B0

is a root extension, B0 is a UFD, but B is not an AGCD domain. This

example answers a question posed in the paragraph before Theorem 5.9 in

[1].
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(c) If D is an integrally closed domain of characteristic p > 0, then

B = D[Xp; Xp+1; : : : ; X2p�1] is free (a fortiori at) D[Xp]-module with

basis 1, Xp+1; : : : ; X2p�1.

(d) If D is an integrally closed domain of characteristic p > 0, then

Dp[Xp] � Dp+XD[X] = R is an R2-stable extension. Indeed, assume that

f; g are two nonzero v-coprime elements of D[X] (hence that fp; gp are v-

coprime in Dp[Xp]); we may also assume that f(0) 6= 0. Let r 2 gpR :R fp.

Since fp; gp are also v-coprime in D[X], r = gpq, for some q 2 D[X]. Since

D is integrally closed, we obtain successively: afp 2 R, q(0)(f(0))p 2 Dp,

q(0) 2 Q(Dp) \ D = Dp, q 2 R, so r 2 gpR. Consequently, fp; gp are

v-coprime in R.

(e) By Theorem 5.6 of [27], if D is an integrally closed AGCD domain,

then so is D[X].

We now give the promised constructions. Assume that D is an integrally

closed AGCD domain (for instance, a GCD domain) of characteristic p > 0

such that D 6= Dp. Then D[Xp; Xp+1; : : : ; X2p�1] and Dp + XD[X] are

non-integrally closed AGCD domains. Indeed, it suÆces to apply (e), (c)

and (b) of Theorem 2.7 of [2] for the �rst case, and respectively (e), (d)

and (b) for the second case. If D is an integrally closed AGCD of �nite

t-character, then D[Xp; Xp+1; : : : ; X2p�1] and Dp + XD[X] are AGCD

domains of �nite t-character. Indeed, the integral closure D[X] is of �-

nite t-character by Theorem 3.1(b) and therefore the conclusion follows by

Proposition 3.1(b).

A certain power series compositum construction used in local algebra,

also provides examples of non-integrally closed AGCD domains of �nite

t-character. According to 0IV , 23.1.1 of [16], a domain D is said to be

japanese, if for each �nite �eld extension L of Q(D), the integral closure of

D in L is a �nite D-module.

Proposition 4.1. Let D be a regular local ring of characteristic p > 0.
Let C be the power series ring D[[X]], A the subring Dp[[X]] and B = A[D].

(a)B is a local AGCD domain of �nite t-character.

(b)The integral closure B0 of B is a Krull domain and B0 = Q(B) \C.
(c) Suppose that D is a DVR. Then B is a local two-dimensional do-

main, whose maximal ideal can be generated by two elements. Moreover,
the following assertions are equivalent:

(i) D is a japanese domain,

(ii) B is a Noetherian domain,

(iii) B is integrally closed,

(iv) B is a UFD,



18 DUMITRESCU, LEQUAIN, MOTT, ZAFRULLAH

(v) B is a regular ring,

(vi) the extension B � C is at.

(d) If D is a non-japanese DVR, Dp[[X]][D] is a two-dimensional AGCD
domain of �nite t-character, which is neither integrally closed nor Noethe-
rian. In particular, so is Dp[[X]][D] when D = kp[[Y ]][k], where k is a
�eld of characteristic p > 0 with [k : kp] = 1, or D = k[[Y ]] \ k(Y; u2),
where k is a �eld characteristic two and u 2 k[[Y ]] is transcendental over
k(Y ) (in both cases, Y is an indeterminate over k).

Proof. (a) Since D is regular, Dp � D is a at extension by Kunz's

Theorem 107 of [20]. By Corollary 1, p. 170 of [20], the power series

extension Dp � A is at, too. By base change, we obtain the injective at

canonical morphism A ! A 
Dp D = R. A simple direct limit argument,

for instance as in Remark 3.1 of [11], proves the injectivity of the canonical

morphism w : R ! C, given by w(g 
 d) = gd for g 2 A and d 2 D.

Because w(A) = A and w(R) = B, A � B is a at extension of domains.

A is a UFD because A is a regular ring by p.142 of [20]. By Remark 4.1(b),

B is an AGCD domain; by the proof of Proposition 3.1(b), B is of �nite

t-character.

(b) Since C is a UFD and Cp � B, the integral closure B0 of B is exactly

Q(B) \C. Hence B0 is a Krull domain Corollary 44.10 of [13].

(c) Since Cp � B, the canonical morphism between the spectra of C and

B is bijective. Since C is a two-dimensional local domain (see the proof of

Theorem 72 of [19]), so is B. If q is a generator of the maximal ideal of D,

then q;X generate the maximal ideal of B, because B=XB is A-isomorphic

to A. So (ii),(v).

(iii))(ii). If B is integrally closed, then as shown above B is a local Krull

domain. But a two-dimensional local Krull domain B with �nitely gener-

ated maximal ideal is a Noetherian domain by Mori-Nishimura's theorem

[20], Theorem 104, (if P is a minimal prime ideal of B, B=P is a one-

dimensional local domain with �nitely generated maximal ideal, so B=P is

Noetherian by Cohen's Theorem, Theorem 8 of [19]).

(i),(ii),(vi). These equivalences follow at once from [11], Corollary

3.4, as soon as we have noticed the simple fact that, for a DVR D, the `G-

ring' property is equivalent to D being a japanese domain (IV, Remarques

7.6.7 of [16]).

(v))(iv))(iii). These implications are obvious.

(d) The two choices for D of the `in particular' part are the examples of

non-japanese DVRs given by Nagata (Example 3.1, p.206 of [22]), and Ka-

plansky (Theorem 100 of [19]), respectively.
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While AGCD domains of �nite t-character that are not integrally closed

are somewhat obscure, integrally closed AGCD domains abound as we

have already seen. Another class of integrally closed AGCD domains is the

GCD domains of �nite t-character. From [26], we can see that if D is a

GCD domain with Property (F), then every nonzero nonunit element of D

belongs to only �nitely many maximal t-ideals, each associated with a rigid

element. This, in the fourth author's usual terminology, was a translation

of Paul Conrad's work [9] on lattice ordered groups, every strictly positive

element of which exceeded at most a �nite number of mutually disjoint

strictly positive elements.

5. THE DIVISIBITY GROUP OF AN AGCD DOMAIN

We make a few remarks about the group of divisibility of an AGCD

domain.

Let U denote the set of units of D and let K� denote the set of nonzero

elements of the quotient �eld K of D. Then K� is a group under multi-

plication and U is a subgroup of K�. The quotient group K�=U , partially

ordered by the relation xU � yU , yx�1 2 D is called the group of divis-
ibility of D and commonly denoted by G(D). Note that 1U is the identity

of G(D) and that the partial order is compatible with the group opera-

tion. Clearly the positive cone of G(D) is the set G+(D) = fdU ; d 2 D� =

Dnf0gg.
For future reference, we state the following well known result:

Proposition 5.1. Let D be an integral domain, G(D) = K�=U the
group of divisibility of D and h; k 2 K�. Then hU ^ kU 2 G(D) ,
hU _ kU 2 G(D), hD \ kD is principal , (hD + kD)v is principal.

Let us call a directed partially ordered abelian group G an almost lattice
ordered group if, for each pair x; y 2 G, there exists n = n(x; y) such that

xn _ yn exists. Then we have the following statement.

Proposition 5.2. An integral domain D is an almost GCD domain if
and only if G(D) is an almost lattice ordered group.

We use this introduction to pose some problems, which may be consid-

ered at a later time. We know that if G is a lattice ordered group then G

is, up to isomorphism, the group of divisibility of a B�ezout domain [13],

pp. 214{215.

Question 1. Given an almost lattice ordered group G, does there exist

an AGCD domain whose group of divisibility is G?
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Question 2. Under what conditions is an almost lattice ordered group

a lattice ordered group?

In [9], Paul Conrad studies lattice ordered groups G that satisfy the

following condition:

(F) Each strictly positive element x 2 G is greater than at

most a �nite number of mutually disjoint elements of G.

(Here, by a strictly positive element x we mean x > e,

where e denotes the identity of G.)

In the case of an AGCD domain D we have translated condition (F) to:

the span of the nonzero nonunit x 2 D, contains at most a �nite number

of mutually v-coprime elements. Looking at the de�nition of the span of

x, it appears that the corresponding condition for almost lattice ordered

groups G will be:

(F0) For every strictly positive element x 2 G, C(x), the smallest

convex subsemi-group of G+ containing x, contains at most a

�nite number of mutually disjoint elements.

This leads to our next question, which we pose as a problem.

Problem 3. Study the structure of almost lattice ordered groups that

satisfy condition (F0).
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