FACTORIZATION OF CERTAIN SETS OF POLYNOMIALS IN AN INTEGRAL DOMAIN

D. D. ANDERSON, PRAMOD K. SHARMA, AND MUHAMMAD ZAFRULLAH

ABSTRACT. Let D be an integral domain with quotient field K and let S be a set of nonconstant polynomials of D[X]. We say S satisfies property (P) (resp., the extension $D[X] \subseteq K[X]$ is S-inert) if whenever $f \in S$ factors as f = gh in K[X] where deg g, deg $h \ge 1$, then $f = \alpha\beta$ where $\alpha, \beta \in D[X]$ with deg α , deg $\beta \ge 1$ (resp., there is a $0 \ne u \in K$ with $ug, u^{-1}h \in D[X]$). Then Dis integrally closed (resp., integrally closed with Pic(D) = 0, integrally closed with t-class group $Cl_t(D) = 0$, Schreier) \Leftrightarrow the extension $D[X] \subseteq K[X]$ is S-inert $\Leftrightarrow S$ satisfies property (P), where S is the set of monic polynomials of D[X] (resp., $S = \{f \in D[X] \mid \deg f \ge 1$ and $A_f = D\}$, $S = \{f \in D[X] \mid$ deg $f \ge 1$ and $A_f^{-1} = D\}$, S is the set of all nonconstant polynomials of D[X]). Here A_f is the ideal of D generated by the coefficients of f.

Throughout this note D will be an integral domain with quotient field K. It is known that D is integrally closed if and only if each irreducible monic polynomial of D[X] is prime ([2, Theorem 3.2], [7, Theorem]). This is easily seem to be equivalent to the condition that each monic polynomial of D[X] that has a nontrivial factorization in K[X] has a nontrivial factorization in D[X]. The purpose of this paper is to prove similar results for other sets of nonconstant polynomials. For example, we show that D is integrally closed with Pic(D) = 0 if and only if each nonconstant irreducible polynomial of D[X] with unit content is prime if and only if each nonconstant polynomial of D[X] with unit content that factors nontrivially in K[X] also factors nontrivially in D[X]. To state our results we need the following definition.

Definition 1. Let D be an integral domain with quotient field K and let S be a set of nonconstant polynomials of D[X]. Then the set S satisfies property (P) (resp., the extension $D[X] \subseteq K[X]$ is S-inert) if for each $f \in S$, whenever f = gh in K[X] where deg g, deg $h \ge 1$, then $f = \alpha\beta$ where $\alpha, \beta \in D[X]$ with deg $\alpha, \text{deg } \beta \ge 1$ (resp., there exists $0 \ne u \in K$ with $ug, u^{-1}h \in D[X]$).

For $f \in K[X]$, the content A_f of f is the (fractional) ideal of D generated by the coefficients of f. Recall that for a nonzero fractional ideal I of D, $I^{-1} = [D:I] = \{x \in K \mid xI \subseteq D\}$ and $I_v = (I^{-1})^{-1}$. Also, recall that if D is integrally closed, then $(A_{fg})_v = (A_f A_g)_v$ for all nonzero $f, g \in K[X]$ [6, Proposition 34.8]. For a survey of results concerning the contents of polynomials see [1]. We next show that under certain conditions the set S satisfies property (P) if and only if each irreducible element of S is prime.

²⁰⁰⁰ Mathematics Subject Classification. 13B21, 13B25, 13G05.

 $Key\ words\ and\ phrases.$ Integral closure, monic polynomial, Schreier domain, inert extension, t-operation.

Proposition 2. Let D be an integral domain with quotient field K and let $S \subseteq D[X]$ be a set of nonconstant polynomials where each $f \in S$ satisfies $A_f^{-1} = D$ (or equivalently, $(A_f)_v = D$). Then S satisfies property (P) if and only if each irreducible element of S is prime.

Proof. (⇒) Suppose that S satisfies property (P). Let $f \in S$ be irreducible in D[X]. Then property (P) gives that f is irreducible (and hence prime) in K[X]. We can then quote [9, Theorem A], but we prefer to sketch the proof. Since $A_f^{-1} = D$, it is easily checked that $fK[X] \cap D[X] = fD[X]$ [9, Lemma 1]. Since fK[X] is a prime ideal, so is fD[X]. (⇐) Assume that each irreducible element of S is prime. Suppose that some $f \in S$ has a factorization f = gh in K[X] where deg g, deg $h \ge 1$, but no such factorization exists in D[X]. Since $A_f^{-1} = D$, f has no nonunit constant factor, so f is irreducible in D[X]. Thus f is prime in D[X] and hence prime and irreducible in K[X], a contradiction.

The next theorem gives a number of conditions equivalent to D being integrally closed.

Theorem 3. Let D be an integral domain with quotient field K and let S be the set of nonconstant monic polynomials of D[X]. Then the following conditions are equivalent.

- (1) D is integrally closed.
- (2) The extension $D[X] \subseteq K[X]$ is S-inert.
- (3) The set S satisfies property (P).
- (4) Each irreducible element of S is prime.
- (5) Each element of S is a product of prime monic polynomials.
- (6) The elements of S have unique factorization into monic irreducible polynomials.

Proof. (1) \Rightarrow (2) Let $f \in D[X]$ be monic. Suppose that f = gh in D[X] where deg g, deg $h \geq 1$. Choose $0 \neq u \in K$ so that $ug, u^{-1}h$ are monic in K[X]. Now $A_f = D$, so $D = (A_f)_v = (A_{ugu^{-1}h})_v = (A_{ug}A_{u^{-1}h})_v \supseteq A_{ug}A_{u^{-1}h} \supseteq A_{ugu^{-1}h} = A_f = D$. Since $A_{ug}, A_{u^{-1}h} \supseteq D$, $A_{ug} = A_{u^{-1}h} = D$. Hence $ug, u^{-1}h \in D[X]$. (2) \Rightarrow (3) Clear. (3) \Rightarrow (4) Proposition 2. (4) \Rightarrow (1) Let $\alpha \in K$ be integral over D. Let f be the monic polynomial in D[X] of least degree with $f(\alpha) = 0$. Certainly f is irreducible. Thus f is prime in D[X] and hence prime and irreducible in K[X]. But since $X - \alpha$ is a factor of f in K[X], we must have $f = X - \alpha$. Thus $\alpha \in D$. (4) \Rightarrow (5) This follows since each monic polynomial is a product of irreducible monic polynomials. (5) \Rightarrow (6) This follows from the well known fact that factorization into primes is unique. (6) \Rightarrow (1) [7, Theorem].

Concerning Theorem 3, we remark that the implication $(1) \Leftrightarrow (5)$ is given in [2, Theorem 3.2] and the implication $(1) \Leftrightarrow (6)$ is given in [7, Theorem].

For the next theorem, our main result, we need some remarks on star operations. For an introduction to star operations, see [6]. Let F(D) be the set of nonzero fractional ideals of D. A closure operation * on F(D) is called a *star operation* if $D^* = D$ and $(aA)^* = aA^*$ for each $0 \neq a \in K$ and $A \in F(D)$. Further, * has finite character if $A^* = \bigcup \{B^* \mid 0 \neq B \subseteq A \text{ is finitely generated}\}$. The function $A \to A_v$ is a star operation. Two examples of finite character star operations are the doperation $A \to A_d = A$ and the t-operation $A \to A_t = \bigcup \{B_v \mid 0 \neq B \subseteq A \text{ is finitely} \text{ generated}\}$. Observe that if A is finitely generated, then $A_t = A_v$; in particular for a polynomial $f \in K[X]$, $(A_f)_t = (A_f)_v$. An ideal $A \in F(D)$ is *-invertible if $(AB)^* = D$ for some $B \in F(D)$; we can then take $B = A^{-1}$. If * has finite character and A is *-invertible, then A has finite type, that is, $A^* = (c_1, \ldots, c_n)^*$ for some $c_1, \ldots, c_n \in K$. The ideal A is a *-ideal if $A = A^*$. The set of *-invertible *-ideals forms a group under the product $A * B = (AB)^*$ and this group modulo its subgroup of principal fractional ideals is called the *-class group of D and is denoted by $\operatorname{Cl}_*(D)$. For the case * = d, we get the usual Picard group $\operatorname{Pic}(D)$ and for the case * = t, we get the t-class group $\operatorname{Cl}_t(D)$.

Theorem 4. Let D be an integral domain with quotient field K and let * be a finite character star operation on D. Let $S_* = \{f \in D[X] \mid (A_f)^* = D \text{ and } \deg f \ge 1\}$. Then the following conditions are equivalent.

- (1) D is integrally closed and $Cl_*(D) = 0$.
- (2) The extension $D[X] \subseteq K[X]$ is S_* -inert.
- (3) The set S_* satisfies property (P).
- (4) Each irreducible element of S_* is prime.
- (5) Each element of S_* is a product of primes from S_* .

Proof. (1) \Rightarrow (2) Write f = gh in K[X] where $f \in S_*$ and deg g, deg $h \ge 1$. Note that $(A_f)^* = D$ gives $(A_f)_v = (A_f)_t = D$. Now D integrally closed gives $A_g A_h \subseteq$ $(A_g A_h)_v = (A_{gh})_v = (A_f)_v = D$. Thus $D \supseteq (A_g A_h)^* \supseteq (A_{gh})^* = (A_f)^* = D$ and so $(A_g A_h)^* = D$. Hence A_g and A_h are *-invertible and thus principal; say $(A_q)^* = \alpha D$ and so $(A_h)^* = \alpha^{-1} D, 0 \neq \alpha \in K$. Then $\alpha^{-1} g, \alpha h \in D[X]$. (2) \Rightarrow (3) Clear. (3) \Rightarrow (4) Proposition 2. (4) \Rightarrow (5) Clear. (5) \Rightarrow (1) Note that each monic polynomial of D[X] is a product of prime monic polynomials. By Theorem 3 D is integrally closed. Let $I \subseteq D$ be *-invertible. Say $I^* = (a_0, \ldots, a_n)^*$ and $I^{-1} = (b_0, \dots, b_m)^*$ where $a_0, \dots, a_n, b_0, \dots, b_m \in K$. Put $f = a_0 + a_1 X + \dots + a_n X^n$ and $g = b_0 + b_1 X + \dots + b_m X^m$. Now since A_f is *-invertible $(A_{fg})^* = a_1 X + \dots + a_n X^n$. $(A_f A_q)^* = D.$ (Indeed, by the Dedekind–Mertens Theorem [6, Theorem 28.1] $A_f^n A_{fg} = A_f^n A_f A_g$ for some *n*. Then $(A_f^n)^{-1} A_f^n A_{fg} = (A_f^n)^{-1} A_f^n A_f A_g$ and hence $(A_{fg})^* = (A_f A_g)^*$ since A_f^n is *-invertible.) Now in D[X] we can factor fg = $f_1 \cdots f_s$ where each f_i is prime and has $(A_{f_i})^* = D$. Hence f_i is prime in K[X]. By unique factorization in K[X] (and re-ordering if necessary), $g = \lambda f_1 \cdots f_l$, say, where $1 \leq l < s$ and $0 \neq \lambda \in K$. Then $f_1 \dots f_s = fg = f(\lambda f_1 \cdots f_l)$ so $f_{l+1} \cdots f_s = fg$ λf . Hence $\lambda (A_f)^* = (A_{\lambda f})^* = (A_{f_{l+1}\cdots f_s})^* = (A_{f_{l+1}}\cdots A_{f_s})^* = D$. Thus $I^* =$ $(A_f)^* = \lambda^{-1}D$ is principal.

The implication $(1) \Leftrightarrow (5)$ of Theorem 4 for a special class of finite-character star operations is given in [3, Theorem 4].

The last theorem considers the case where S is the set of all nonconstant polynomials of D[X]. We recall the notion of a Schreier domain which was introduced by P.M. Cohn [5]. An element c of a domain D is primal if $c \mid a_1a_2$ implies that $c = c_1c_2$ such that $c_1 \mid a_1$ and $c_2 \mid a_2$. A Schreier domain is an integrally closed domain in which every element is primal. For a survey of Schreier domains, see [1].

Theorem 5. Let D be an integral domain with quotient field K and let S be the set of nonconstant polynomials of D[X]. Then the following conditions are equivalent.

- (1) D is a Schreier domain.
- (2) The extension $D[X] \subseteq K[X]$ is an S-inert extension.
- (3) The set S satisfies property (P).

Proof. (1) \Leftrightarrow (2) [4, page 562]. (1) \Leftrightarrow (3) [8, Theorem 3].

References

- D. D. Anderson, GCD domains, Gauss' lemma, and contents of polynomials, Non-Noetherian Commutative Ring Theory (S.T. Chapman and S. Glaz, eds.), Mathematics and Its Applications, vol. 520, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000, pp. 1–31.
- 2. D.D. Anderson and M. Zafrullah, On t-invertibility, III, Comm. Algebra 21 (1993), 1189–1201.
- D.D. Anderson and M. Zafrullah, Star operations and primitive polynomials, Comm. Algebra 27 (1999), 3137–3142.
- 4. J.T. Arnold and R. Gilmer, On the contents of polynomials, Proc. Amer. Math. Soc. 24 (1970), 556–562.
- 5. P.M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251–264.
- R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Appl. Math., vol. 90, Queen's University, Kingston, Ontario, 1992.
- 7. S. McAdam, Unique factorization of monic polynomials, Comm. Algebra 29 (2001), 4341-4343.
- 8. S. McAdam and D.E. Rush, Schreier rings, Bull. London Math. Soc. 10 (1978), 77-80.
- 9. H.T. Tang, Gauss' lemma, Proc. Amer. Math. Soc. 35 (1972), 372-376.

Department of Mathematics, The University of Iowa, Iowa City, IA 52242 $E\text{-}mail\ address: dan-anderson@uiowa.edu$

SCHOOL OF MATHEMATICS, VIGYAN BHAWAN, KHANDWA ROAD, INDORE-452017, INDIA *E-mail address*: pksharma1944@yahoo.com

DEPARTMENT OF MATHEMATICS, IDAHO STATE UNIVERSITY, POCATELLO, ID 83209-8085 *E-mail address*: mzafrullah@usa.net