*-finite ideals contained in infinitely many maximal $*_s$ -ideals

D. D. Anderson and Muhammad Zafrullah

ABSTRACT. We give a new characterization of *-finite ideals that are contained in infinity many $\ast_s\text{-maximal ideals.}$

Assuming familiarity with star operations, for now, we give a new proof of Theorem 1 below. This result was proved in [1] using reductio ad absurdum, essentially proving the equivalent statement, given within the parentheses in the statement of Theorem 1. In this note we offer (a) a direct proof of it and (b) the equivalent statement mentioned above in a more general form. The purpose here is (α) to show that with a suitable approach the infinitely many sets involved can be "displayed" and (β) to give a more general characterization of domains of finite $*_s$ -character.

THEOREM 1. Let D be an integral domain, * a finite character star operation on D, and Γ a set of proper *-finite *-ideals of D such that every proper *-finite *ideal of D is contained in some member of Γ . Let A be a nonzero finitely generated ideal of D with $A^* \neq D$. Then A is contained in an infinite number of maximal *-ideals if and only if there exists an infinite family of mutually *-comaximal ideals in Γ containing A. (Equivalently, with the same assumptions on A, A is contained in at most a finite number of maximal *-ideals if and only if A is contained in at most a finite number of mutually *-comaximal members of Γ .)

The reader may consult Sections 32 and 34 of [2] for results on star operations. We include below a working introduction.

Let D denote an integral domain with quotient field K and let F(D) be the set of nonzero fractional ideals of D. A star operation * on D is a function $*: F(D) \rightarrow F(D)$ such that for all $A, B \in F(D)$ and for all $0 \neq x \in K$:

(a) $(x)^* = (x)$ and $(xA)^* = xA^*$,

(b) $A \subseteq A^*$ and $A^* \subseteq B^*$ whenever $A \subseteq B$, and

(c) $(A^*)^* = A^*$.

For $A, B \in F(D)$ we have $(AB)^* = (A^*B)^* = (A^*B^*)^*$ and $(A + B)^* = (A^* + B)^* = (A^* + B^*)^*$. A fractional ideal $A \in F(D)$ is called a *-*ideal* if $A = A^*$ and a *-*ideal of finite type* if $A = B^*$ where B is a finitely generated fractional ideal. Also, $A \in F(D)$ is called *-*finite* if A^* is of finite type. To each star operation * we can associate another star operation $*_s$ by defining $A^{*s} = \bigcup \{B^* \mid 0 \neq B \text{ is a finitely generated subideal of } A\}$ for all $A \in F(D)$. It is easy to see that for a finitely

¹⁹⁹¹ Mathematics Subject Classification. 13A15; 13F05.

Key words and phrases. *-comaximal, star operation, finite *-character.

generated $A \in F(D)$ we have $A^* = A^{*s}$ and that $(*_s)_s = *_s$. A star operation * is said to be of *finite character* if $* = *_s$; so $*_s$ is of finite character. If * is a finite character star operation on D, then by Zorn's Lemma a proper integral *-ideal is contained in a proper integral ideal maximal with respect to being a *-ideal, called a *maximal* *-*ideal*, and each such maximal *-ideal is prime. We call proper ideals A and B of D *-*comaximal* if $(A + B)^* = D$. If * is of finite character, then $(A + B)^* = D$ if and only if A and B share no maximal *-ideals if and only if there exist finitely generated ideals $\mathbf{a} \subseteq A$, $\mathbf{b} \subseteq B$ such that $(\mathbf{a}, \mathbf{b})^* = D$. An integral domain D is said to be of *finite* *-*character*, for a finite character star operation *, if every nonzero nonunit of D is contained in at most a finite number of maximal *-ideals of D. Obviously, D is of finite *-character if and only if every nonzero finitely generated ideal I with $I^* \neq D$ is contained in at most a finite number of maximal *-ideals. So D is not of finite character if and only if D contains a finitely generated ideal I with $I^* \neq D$ such that I is contained in infinitely many maximal *-ideals.

One part of the proof of Theorem 1 is to show that if a *-finite ideal A is contained in infinitely many maximal *-ideals then A must be contained in an infinite number of mutually *-comaximal members of Γ . For this we need to prepare a little. Let A be as in the statement and let F be the (infinite) set of maximal *-ideals containing A. Let us call a subset $S = \{A_1, A_2, ..., A_n\}$ of Γ a state S_n of height n for A if |S| = n, each $A_i \supseteq A$, and the elements of S are mutually *-comaximal. Note that every proper nonempty subset of a state is also a state. Call a state S_n unsaturated if we can find at least one $M \in F$ such that M does not contain any member of S_n . So a state S_n is saturated if for every $M \in F$, Mcontains some member of S_n . Note also that any member of F can contain at most one member of a state because the members of a state are mutually *-comaximal.

LEMMA 1. Let $S_n = \{A_1, A_2, ..., A_n\}$ be an unsaturated state for A and let M be a maximal *-ideal in F such that M does not contain any member of S_n . Then there is a state $S_{n+1} = \{A_1, A_2, ..., A_n, A_{n+1}\}$ for A.

PROOF. Let $S_n = \{A_1, A_2, ..., A_n\}$ and let M be as in the statement of the lemma. Since $A_i \not\subseteq M$ we have $(M + A_i)^* = D$ and so there are finitely generated ideals $m_i \subseteq M$ such that $(m_i + A_i)^* = D$ for i = 1, 2, ..., n. Let $B = A + m_1 + m_2 + \cdots + m_n$. Clearly as A and m_i are all contained in M, we have $B^* \neq D$. Hence according to the condition, B is contained in a *-ideal A_{n+1} of finite type in Γ . Also, because of the presence of $m_i \subseteq A_{n+1}$ we have $(A_{n+1} + A_i)^* = D$. Thus $S_{n+1} = \{A_1, A_2, ..., A_n, A_{n+1}\}$ is a state for A.

LEMMA 2. Let A be a proper *-ideal of finite type. If A is contained in two or more maximal *-ideals of D, then A is contained in at least two proper *-comaximal *-ideals of finite type in Γ .

PROOF. Let P, Q be two distinct maximal *-ideals containing A. Since $(P + Q)^* = D$ we have finitely generated ideals $p \subseteq P$ and $q \subseteq Q$ such that $(p+q)^* = D$. Since $A, p \subseteq P$ and $A, q \subseteq Q$ are such that $D \neq (A+p)^*$, $(A+q)^*$ are of finite type there exist *-ideals of finite type, H and K, in Γ with $H \supseteq A + p$ and $K \supseteq A + q$. Because $p \subseteq H$ and $q \subseteq K$, H and K are *-comaximal. \Box

LEMMA 3. Let S_n be a saturated state for A with infinite F. Then there is a state S_{n+1} for A.

PROOF. In this case if $S_n = \{A_1, A_2, ..., A_n\}$, then $T = \{M \in F \mid M \text{ contains} \text{ some } A_i\}$ is precisely F. So A_j , for some j, is contained in an infinite subset of F. By Lemma 2 A_j has a state $\{H_j, K_j\} \subseteq \Gamma$. Since A_j is *-comaximal with each of A_i for $i \neq j$ we conclude that H_j and K_j are *-comaximal with each A_i for $i \neq j$. Since A_j contains A the collection $\{A_1, A_2, ..., A_n\} \setminus \{A_j\} \cup \{H_j, K_j\}$ is a state of height n + 1 for A.

PROOF. (of Theorem 1) Let us first consider a *-ideal A of finite type for which we can find a sequence of unsaturated states $S_1, S_2, ..., S_n, ...$ such that $S_i \subseteq S_{i+1}$. Then $S = \bigcup_{i=1}^{n} S_i$ contains an infinite set of mutually *-comaximal members of Γ . Call such ideals A terminal. Note that a *-ideal C of finite type contained in a terminal member of Γ is itself a terminal ideal and hence is contained in infinitely many mutually *-comaximal members of Γ . This leaves us with ideals B that, are contained in infinitely many maximal *-ideals, yet are not contained in any terminal ideals. Call such ideals nonterminal. This means that any member of Γ that contains B is either contained in only a finite number of maximal *-ideals or is such that after a finite number of applications of Lemma 1 there is a saturated state $T_1 = \{B_{11}, B_{12}, \dots, B_{1n_1}\}$. Now because n_1 is finite, at least one of the B_{1i} is contained in infinitely many maximal *-ideals and so is nonterminal. Let us, by a relabeling, assume that B_{1n_1} is nonterminal. By Lemma 3, B_{1n_1} is contained in at least two *-comaximal $H, K \in \Gamma$ which are *-comaximal with each B_{1i} for $i = 1, 2, ..., n_1 - 1$; in fact, any proper ideal containing B_{1n_1} is *comaximal with each B_{1i} for $i = 1, 2, ..., n_1 - 1$. So again by a finite number of applications of Lemma 1 we get a saturated state $T_2 = \{B_{21}, B_{22}, ..., B_{2(n_2-1)}, B_{2n_2}\}$. We can select B_{2n_2} as the nonterminal member and continue as before. Now suppose that we have thus reached the rth state, emanating from nonterminal $B_{(r-1)n_{r-1}}, T_r = \{B_{r1}, B_{r2}, \dots, B_{r(n_r-1)}, B_{rn_r}\}$. Since the number of steps taken is finite and since n_r is finite we have at least one of the B_{ri} is contained in infinitely many maximal *-ideals and so is nonterminal. Selecting as before B_{rn_r} as the nonterminal member of the state T_r , using Lemmas 1 and 2, we can generate the state $T_{r+1} = \{B_{(r+1)1}, B_{(r+1)2}, \dots B_{(r+1)(n_{(r+1)}-1)}, B_{(r+1)n_{r+1}}\}$. Since each of $B_{(r+1)j}$ contains B_{rn_r} and since T_r is a state, each $B_{(r+1)j}$ is *-comaximal with B_{ri} for $i = 1, 2, ..., n_r - 1$.

By induction we have an infinite sequence $T_1, T_2, ..., T_r, T_{r+1}, ...$ of states containing *B*. By Lemma 2, each of T_r contains at least two elements. Of these exactly one element, B_{rn_r} , is taken to generate the next state. So essentially we have from state $T_r = \{B_{r1}, B_{r2}, ...B_{r(n_r-1)}, B_{rn_r}\}$ the state $U_r = \{B_{r1}, B_{r2}, ...B_{r(n_r-1)}\}$, and from T_{r+1} the state $U_{r+1} = \{B_{(r+1)1}, B_{(r+1)2}, ..., B_{(r+1)(n_{(r+1)}-1)}\}$. By our earlier comments each member of U_{r+1} is *-comaximal with each member of U_r and for each r, U_r has at least one element, which we can select to be B_{r1} . This gives us an infinite sequence of members of Γ , $B_{11}, B_{21}, B_{31}, ..., B_{r1}$ To see that the B_{i1} are mutually *-comaximal, take a pair of distinct elements of the sequence, say B_{i1}, B_{j1} , where $i \neq j$. We can assume that i < j. Now argue as follows: $B_{j1} \supseteq B_{(j-1)n_{j-1}} \supseteq B_{(j-2)n_{j-2}} \supseteq ... \supseteq B_{in_i}$ and B_{in_i} and B_{i1} are *-comaximal. Thus $B_{11}, B_{21}, B_{31}, ..., B_{r1}$... is an infinite sequence of mutually *-comaximal members of Γ containing the nonterminal ideal *B*. Now as a *-ideal *A* of finite type that is contained in an infinite number of maximal *-ideals can either be terminal or nonterminal the proof is complete. The converse is obvious because no maximal *-ideal can contain two *-comaximal ideals.

As indicated in the introduction, we can associate a star operation $*_s$ of finite character with every star operation *. The fact that for every finitely generated $A \in F(D)$ we have $A^* = A^{*_s}$, allows us to state Theorem 1 in the following form.

THEOREM 2. Let D be an integral domain, * a star operation on D, and Γ a set of proper *-ideals of finite type of D such that every proper *-finite *-ideal of D is contained in some member of Γ . Let A be a nonzero finitely generated ideal of D with $A^* \neq D$. Then A is contained in an infinite number of maximal $*_s$ -ideals if and only if there exists an infinite family of mutually $*_s$ -comaximal ideals in Γ containing A. (Equivalently, with the same assumptions on A, A is contained in at most a finite number of $*_s$ -maximal ideals if and only if A is contained in at most a finite number of mutually $*_s$ -comaximal members of Γ .)

References

- T. Dumitrescu and M. Zafrullah, Characterizing domains of finite *-character, J. Pure Appl. Algebra 214 (2010), 2087-2091.
- [2] R. Gilmer, Multiplicative Ideal Theory, Dekker, 1972.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF IOWA, IA 52242

57 COLGATE STREET, POCATELLO, ID 83201, USA., *E-mail address*: dan-anderson@uiowa.edu *E-mail address*: mzafrullah@usa.net *URL*: for Zafrullah: http://www.lohar.com