
The Schreier Property and Gauss’ Lemma

D. D. Anderson and M. Zafrullah

Abstract

Let D be an integral domain with quotient field K. Recall that D is
Schreier if D is integrally closed and for all x, y, z ∈ D\{0}, x|yz implies
that x = rs where r|y and s|z. A GCD domain is Schreier. We show that
an integral domain D is a GCD domain if and only if (i) for each pair a, b ∈
D\{0}, there is a finitely generated ideal B such that aD ∩ bD = Bv and
(ii) every quadratic in D[X] that is a product of two linear polynomials in
K[X] is a product of two linear polynomials in D[X]. We also show that
D is Schreier if and only if every polynomial in D[X] with a linear factor
in K[X] has a linear factor in D[X] and show that D is a Schreier domain
with algebraically closed quotient field if and only if every nonconstant
polynomial over D is expressible as a product of linear polynomials. We
also compare the two most common modes of generalizing GCD domains.
One is via properties that imply Gauss’ Lemma and the other is via the
Schreier property. The Schreier property is not implied by any of the
specializations of Gauss’ Lemma while all but one of the specializations
of Gauss Lemma are implied by the Schreier property.
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1 Introduction and basics
Let D be an integral domain with quotient field K. Call D pre-Schreier if
for all x, y, z ∈ D∗ = D\{0}, x|yz implies that x = rs where r|y and s|z.
An integrally closed pre-Schreier domain is called a Schreier domain. Schreier
domains were introduced by Cohn [9] where it was shown that a GCD domain
is a Schreier domain. In this note we show that an integral domain D is a GCD
domain if and only if (i) for each pair a, b ∈ D∗, there is a finitely generated
ideal B such that aD ∩ bD = Bv = (B

−1)−1 and (ii) every quadratic in D[X]
that is a product of two linear polynomials in K[X] is a product of two linear
polynomials in D[X]. We also show that D is Schreier if and only if every
polynomial in D[X] that has a linear factor in K[X] has a linear factor in D[X]
and show that D is a Schreier domain with algebraically closed quotient field
if and only if every nonconstant polynomial over D is expressible as a product
of linear polynomials. We give non-Bezout examples of Schreier domains with
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algebraically closed quotient fields. We also compare the two most common
modes of generalizing GCD domains. Of these one is via properties that imply
Gauss’ Lemma and the other is that a GCD domain is Schreier which in turn is
pre-Schreier. It appears that Cohn’s Schreier property is not implied by any of
the specializations of Gauss’ Lemma while all but one of the specializations of
Gauss Lemma are implied by the Schreier property. Yet, both approaches when
applied to atomic domains produce UFD’s. We also show how to avoid using
Gauss’ Lemma via Nagata type theorems.
To keep the article self contained we include a brief description of the v-

operation and related notions. For more information see Gilmer [12, Sections
32 and 34].
Let D be an integral domain with quotient field K. A fractional ideal F of

D is a D-submodule of K such that dF is an ideal of D for some d ∈ D∗. Let
F (D) be the set of nonzero fractional ideals of D. For each A ∈ F (D) define
A−1 = D :K A = {x ∈ K|xA ⊂ D}. Denote (A−1)−1 by Av. The association
A 7→ Av is a function on F (D), called the v-operation, that has the following
easy to establish properties: for a ∈ K∗ and B,C ∈ F (D)
(1) (aD)v = aD, (aA)v = aAv,
(2) A ⊆ Av and A ⊆ B implies Av ⊆ Bv, and
(3) (Av)v = Av.

In addition to these, the v-operation can be shown to satisfy the following
properties:
(4) (Av)

−1 = A−1,
(5) if Ai ∈ F (D) and if

P
Ai ∈ F (D), (

P
Ai)v = (

P
(Ai)v)v,

(6) (AB)v = (AvB)v = (AvBv)v (usually called v-multiplication), and
(7) if Ai ∈ F (D) and ∩Ai ∈ F (D) then (∩(Ai)v)v = ∩(Ai)v.

Call A ∈ F (D) a v-ideal if A = Av and call A a v-ideal of finite type if A = Bv

for a finitely generated fractional ideal B. Combining (1) and (7) a nonzero
intersection of principal fractional ideals is a v-ideal.

In Section 2 we show that D is a GCD domain if and only if every quadratic
polynomial f(X) over D that splits as a product of two linear polynomials in
K[X] also splits as a product of two linear polynomials over D[X] and aD∩ bD
is a v-ideal of finite type for every pair a, b ∈ D∗. Recall that an integral
domain D is called a GCD domain if GCD(a, b) exists for each pair a, b ∈ D∗.
Equivalently, D is a GCD domain if and only if LCM(a, b) exists for each pair
a, b ∈ D∗ if and only if aD ∩ bD is principal for each pair a, b ∈ D∗ if and
only if (a, b)v is principal for all a, b ∈ D∗. Using the last characterization and
the properties of the v-operation it can be shown that D is a GCD domain if
and only if (a1, a2, . . . , an)v is principal for ai ∈ D∗. For more on v-ideals and
GCD domains the reader can consult Gilmer [12]. An integral domain is called
a v-coherent domain if aD∩bD is a v-ideal of finite type for each a, b ∈ D∗, and
a v-coherent domain in which ((a, b)(a, b)−1)−1 = D for each pair a, b ∈ D∗ is
called a Prüfer v-multiplication domain (PVMD) [25].
Gauss’ Lemma, initially proved for the ring of integers Z, gives that the

product of primitive polynomials is again primitive. Here a polynomial f(X) is
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primitive if the coefficients of f have no nonunit common factor. Let us call an
integral domain D a Gauss’ Lemma (GL) domain if the product of every pair of
primitive polynomials over D is again primitive. It can be shown that in a GL
domain every irreducible element (atom) is a prime. So if every nonzero nonunit
element of D is a product of atoms (e.g., D has the ascending chain condition
on principal ideals) and D has the GL property, then D is a UFD. Now the
GL property is also satisfied by GCD domains. Note that over a GCD domain
a polynomial f(X) is primitive if and only if (Af )v = D, here Af denotes the
fractional ideal generated by coefficients of f . Call a polynomial f superprimi-
tive if (Af )v = D. Now a superprimitive polynomial is obviously primitive and
as we indicate in the sequel the product of two superprimitive polynomials is
again superprimitive. This led to the study of domains in which every primi-
tive polynomial is superprimitive, such domains are called PSP domains. These
considerations were made by Arnold and Sheldon [6]. Some further strength-
enings of the Gauss’ Lemma property were made in Anderson [5] of which the
strongest is: For every nonzero integral ideal A the associated v-ideal Av is
the intersection of all the integral principal ideals containing A. He called this
property the IP property. All these strengthenings of Gauss’ Lemma were stud-
ied in [2] where the following diagram was given: GCD⇒ IP⇒ PSP⇒ GL⇒
atoms are prime (AP), with examples showing that no implications could be
reversed. In Section 3 we show that while the IP property is independent of the
Schreier property, the rest are implied by the Schreier property. Our example
is somewhat simpler than that of [5, Example 3.2] and leads to a whole class of
pre-Schreier domains that do not satisfy the IP property.
One application of Gauss’ Lemma is to show that if D is a GCD domain then

so is the polynomial ring D[X]. This is done by showing that the product of two
primitive polynomials is again primitive. Since every polynomial f ∈ D[X]∗ is
expressible as a product f = af1 where a ∈ D∗ and f1 is primitive, combining
this with Gauss’ Lemma gives that every pair of elements of D has a GCD. In
[9] Cohn showed that if D is a Schreier domain then so is D[X]. Products of
primitive polynomials are primitive over a Schreier domain but this does not
help in the proof that D[X] is a Schreier domain. In order to accomplish this
task Cohn used a Nagata type theorem. In Section 4 we redo Cohn’s proof
from a slightly different point of view and show that using the notion of LCM
splitting sets we can use a Nagata type theorem to directly show that if D is a
GCD domain then so is D[X].

2 Polynomial characterization of Schreier
domains

Recently there has been some activity in using quadratic polynomials to deter-
mine the divisibility properties of integral domains, see for instance Waterhouse
[22] and Rush [20]. This reminded us of a paper by Malik, Mott and Zafrullah
[16]. In [16] the following basic result was proved: Let D be a PVMD with quo-
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tient field K such that for each pair a, b ∈ D∗ there exist c, d ∈ K∗ such that
(a, b)−1 = (c, d)v. Then D is a GCD domain if and only if every irreducible
quadratic polynomial over D is prime. The proof of the if part was based on the
idea of taking a quadratic polynomial g(X) of a specific type in D[X] that splits
in K[X] as a product of two linear polynomials and concluding that g(X) must
be a product of two linear polynomials in D[X] and then using the rather strin-
gent conditions to show that aD∩bD is indeed principal for each pair a, b ∈ D∗.
One aim of this section is to use the current state of knowledge to prove the
following improved version of the above theorem.

Theorem 2.1. A v-coherent domain D is a GCD domain if and only if
every quadratic polynomial in D[X] that splits in K[X] as a product of linear
polynomials also splits in D[X] as a product of linear polynomials.

The proof of this theorem consists of bringing together various pieces com-
plete the picture. We shall use the notions of Schreier and pre-Schreier domains.
Several characterizations of pre-Schreier domains are found in McAdam and
Rush [18] and some more in [23] where the term pre-Schreier was coined. We
use the following characterization of pre-Schreier domains.

Proposition 2.2. [23, Theorem 1.1(3)] An integral domain D is a pre-Schreier
domain if and only if for each pair a, b ∈ D∗ and for all x1, x2, . . . , xr ∈ aD∩ bD
there exists d ∈ aD ∩ bD such that d|xi for all i = 1, 2, . . . , r.
This proposition can also be traced back to [18] but as stated in [23] it tells

us that if D is a pre-Schreier domain and if a, b are two nonzero elements in
D then every finite subset {x1, x2, . . . , xr} of aD ∩ bD has a common factor in
aD ∩ bD. This is all we need to prove the following proposition.
Proposition 2.3. An integral domain D is a GCD domain if and only if D is

pre-Schreier and v-coherent.

Proof. Let a, b be any two nonzero elements of D. Since D is v-coherent
there exist x1, x2, . . . , xn ∈ D such that aD ∩ bD = (x1, x2, . . . , xn)v. Since D
is pre-Schreier and since x1, x2, . . . , xn ∈ aD ∩ bD there is an m ∈ aD ∩ bD
such that m|xi for each i = 1, . . . , n. Thus (x1, x2, . . . , xn) ⊆ mD and hence
aD∩ bD = (x1, x2, . . . , xn)v ⊆ mD. But since m ∈ aD∩ bD we have aD∩ bD =
mD. So aD ∩ bD is principal for each pair a, b ∈ D∗ and hence D is a GCD
domain. For the only if part note that a GCD domain is Schreier [9] and a GCD
domain is obviously v-coherent.¤
To complete the proof of Theorem 2.1, we need to show that if every quadratic

polynomial over D that splits in K[X] as a product of linear polynomials also
splits in D[X] as a product of linear polynomials, then D is pre-Schreier. We
want the pre-Schreier property, but we do not care if it is delivered by con-
sidering a specific type of quadratic polynomials or considering all quadratic
polynomials over D. This is where special quadratics over D come in. These
are polynomials of the type f(X) = a(X + m

a )(X + n
a ) such that a,m, n ∈ D

and f(X) ∈ D[X] which means that a|mn in D. These polynomials are sure to
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split in K[X]. These polynomials were recently used by Waterhouse [22]. Now
Rush [20] has shown that an integral domain D is a pre-Schreier domain if and
only if every special quadratic polynomial in D[X] is expressible as a product
of linear polynomials in D[X]. Since [20] has not yet appeared and since the
procedure involved is pretty, we include the statement and proof below.

Theorem 2.4. An integral domainD is pre-Schreier if and only if every special
quadratic f(X) = a(X+ m

a )(X+
n
a ) with a,m, n ∈ D such that f(X) ∈ D[X] is

expressible as a product of linear polynomials f(X) = (αX +β)(γX + δ) where
α, β, γ, δ ∈ D.

Proof. Let a|mn in D, a,m, n ∈ D∗ and construct the following quadratic
polynomial: aX2 + (m + n)X + mn

a in D[X]. By the condition there exist
α, β, γ, δ ∈ D such that aX2+(m+n)X+ mn

a = (αX+β)(γX+δ). Comparing
coefficients we get (a) a = αγ, (b) m + n = αδ + βγ, and (c) mn

a = βδ. Then
(d) set αδ = u, βγ = v.
(1) From (b) and (d) we get u+ v = m+ n or u+ v −m = n.
(2) From (a), (c) and (d) we get mn = uv.
Substituting for n in (2) we getm(u+v−m) = uv which givesm(u+v)−m2 =

uv or m2− (u+ v)m+uv = 0. Factoring we get (m−u)(m− v) = 0. If m = u
then m = αδ which forces n = βγ (cf (b) above). But a = αγ by (a). Thus in
this case a|mn implies that a = αγ where α|m and γ|n.
If on the other hand m = v, we get m = βγ, n = αδ, and a = αγ. So, in

both cases a = rs where r|m and s|n. Now as a,m, n ∈ D∗ are arbitrary, D is
a pre-Schreier domain.
Conversely, suppose that D is pre-Schreier and let for a,m, n ∈ D∗, f(X) =

a(X + m
a )(X + n

a ) ∈ D[X]. Then a|mn and since D is pre-Schreier we have
a = rs such that r|m and s|n. Let m = rk and n = sh, k, h ∈ D. Then
f(X) = a(X + m

a )(X + n
a ) = rs(X + rk

rs )(X + sh
rs ) = rs(X + k

s )(X + h
r ) =

(s(X + k
s ))(r(X + h

r )) = (sX + k)(rX + h) and both factors are in D[X].¤
Proof of Theorem 2.1. Let D be a v-coherent domain such that every

quadratic polynomial over D that splits inK[X] also splits in D[X] as a product
of two linear polynomials. Then in particular D is a v-coherent domain such
that every special quadratic in D[X] is a product of linear polynomials in D[X].
By Theorem 2.4, D is a pre-Schreier v-coherent domain and by Proposition
2.3, D is a GCD domain.
Conversely, let D be a GCD domain and let f(X) = aX2 + bX + c be any

quadratic polynomial inD[X] such that inK[X] we have f(X) = aX2+bX+c =
(rX + t)(sX + u) where r, s, t, u ∈ K. Since D is a GCD domain GCD(a, b, c)
exists and is a unit in K[X], so we can divide out by the GCD and assume that
GCD(a, b, c) = 1, that is, we can assume that f(X) is a primitive polynomial.
But then it is well known that D[X] is a GCD domain and every primitive
polynomial in D[X] is a product of primes in D[X] [12, Theorem 34.10]. Now
f can not be a prime in D[X], for then it is a prime in K[X]. Hence f is a
product of linear polynomials in D[X].¤
>From a slightly different angle we can state the following result.
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Corollary 2.5. For a v-coherent domain D the following are equivalent.
(1). For every polynomial f ∈ D[X] of positive degree with f = gh where

g, h ∈ K[X] are both of positive degree, there exist r, s ∈ D[X] such that r has
the same degree as either g or h and f = rs.
(2). For every polynomial f ∈ D[X] of positive degree, f has the same

number of linear factors in D[X] as it has in K[X].
(3). Every polynomial of positive degree in D[X] that has a linear factor in

K[X] has a linear factor in D[X].
(4). Every quadratic polynomial of D[X] that splits as a product of linear

polynomials in K[X] also splits in D[X].
(5). Every special quadratic of Rush in D[X] has a linear factor in D[X].
(6). D is a GCD domain.

Proof. That (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) is obvious with or without the
hypothesis that D is v-coherent. Now by the proof of Theorem 2.1, (5) ⇒ (6)
under the assumption that D is v-coherent. To show that (6) ⇒ (1) note
that D[X] is a GCD domain [12, Theorem 34.10] and that a GCD domain is
Schreier [9]. Let f = gh where g, h ∈ K[X] and let α, β ∈ D∗ be such that
αg, βh ∈ D[X]. So if r = αβ, then rf = (αg)(βh). This implies that r|(αg)(βh).
But since D[X] is a Schreier domain r = st such that s|αg and t|βh in D[X].
This forces f = (αg)

s
(βh)
t .¤

It may be noted that the presence of v-coherence is not the only condition
that makes the six conditions of Corollary 2.5 equivalent. As Waterhouse [22]
pointed out, the presence of (5) makes every irreducible element of D a prime.
Thus if we replace “D is v-coherent” by “D is atomic” the six conditions of
Corollary 2.5 will still be equivalent. The well known examples of v-coherent
domains are Prüfer domains, PVMD’s, and coherent domains. Interested read-
ers may state their own corollaries as “A Prüfer domain is a Bezout domain if
and only if...”, “A PVMD or coherent domain is GCD if and only if...”, etc.
Now it often happens with a bunch of equivalent conditions with an accom-

panying hypothesis, some conditions are more equivalent than others. Here con-
ditions (1)-(3) of Corollary 2.5 are all equivalent to a fourth one: D is Schreier.
Let us put this as the following proposition.

Proposition 2.6. For an integral domainD with quotient fieldK the following
are equivalent.
(1). For every polynomial f ∈ D[X] of positive degree with f = gh where

g, h ∈ K[X] are both of positive degree there exist r, s ∈ D[X] such that r has
the same degree as either g or h and f = rs.
(2). For every polynomial f ∈ D[X] of positive degree f has the same

number of linear factors in D[X] as it has in K[X].
(3). Every polynomial of positive degree in D[X] that has a linear factor in

K[X] has a linear factor in D[X].
(4). D is integrally closed and every quadratic polynomial of D[X] that

splits as a product of linear polynomials in K[X] also splits in D[X].
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(5). D is integrally closed and every special quadratic in D[X] has a linear
factor in D[X].
(6). D is a Schreier domain.

Proof. As before (1) ⇒ (2) ⇒ (3). For (3) ⇒ (4) note that if u ∈ K is an
element integral over D then u satisfies a monic polynomial f(X) of minimal
degree over D. Now note that (3) guarantees a linear factor of f(X) in D[X],
say f(X) = (αX − β)g(X). But since f is monic α must be a unit and so we
can put α = 1 to get f(X) = (X − β)g(X) where β ∈ D and g(X) ∈ D[X].
Now 0 = f(u) = (u− β)g(u) and g(u) 6= 0 because of the minimality condition
on f . So u = β ∈ D. Having seen that D must be integrally closed, we again
note that if f ∈ D[X] is a quadratic that has a linear factor in K[X] then
(3) guarantees a linear factor of f in D[X]. But this forces f to be a product
of linear polynomials in D[X]. This completes the proof of (3) ⇒ (4). Now
(4) ⇒ (5) is clear and for (5) ⇒ (6) we may use Theorem 2.4 and the fact
that a Schreier domain is an integrally closed pre-Schreier domain. Finally for
(6)⇒ (1) note [9] that if D is Schreier then so is D[X] and use the same proof
as that of (6)⇒ (1) in Corollary 2.5.¤
Note 2.7. The equivalences: (4) ⇔ (5) ⇔ (6) can be found in [20] and

(1)⇔ (6) is in [18] while (2) and (3) appear to be new.

Now looking at (2) one may ask: What if the quotient field of the Schreier
domain is algebraically closed? The answer is quite apparent in light of Propo-
sition 2.6, yet for the record we state the following result.

Corollary 2.8. An integral domain D is a Schreier domain with algebraically
closed quotient field K if and only if every polynomial f(X) over D is a product
of linear polynomials.

Proof. If every polynomial over D is expressible as a product of linear poly-
nomials then the same holds over the quotient field K and so K is algebraically
closed. Next if every polynomial over D splits as a product of linear polyno-
mials then every monic over D has a linear factor. So D is integrally closed.
Finally since every polynomial splits over D, so do all the special quadratics
and by Proposition 2.6, D is a Schreier domain. Conversely if D is Schreier
with algebraically closed quotient field, then Proposition 2.6 ensures that every
polynomial over D splits as a product of linear polynomials.¤
It may be noted that any Schreier domain D with algebraically closed quo-

tient field is a domain in which there are no irreducible elements, because for
each nonzero nonunit α ∈ D∗, X2 − α is a product of two linear polynomials
over D which gives α = (

√
α)2 a product of two nonunits. Such domains are

called antimatter domains in [10].
The ring of algebraic integers is an example of a Schreier domain with alge-

braically closed quotient field. It would be interesting to find other examples.
The rather obvious other examples are valuation domains with algebraically
closed quotient fields. There are indeed plenty of them. For a start let P be
a prime ideal in the ring of algebraic integers. Then RP is a valuation domain
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with the property that every polynomial over DP splits as a product of linear
polynomials over DP . This of course is not a groundbreaking discovery but does
lead us to a slightly better result.

Proposition 2.9. Let D be an integral domain with quotient field K 6= D.
Then there exists a valuation domain V containingD such that every polynomial
over D is expressible as a product of linear polynomials over V .

Proof. Let K be the algebraic closure of K and let Da be the integral
closure of D in K. Then Da is integrally closed and so has a valuation overring
V containing Da and hence V is a valuation domain with quotient field K. Now
as D ⊆ Dα ⊆ V ⊆ K we have the result.¤
This proposition leads to the question: Must each Dα as constructed in

Proposition 2.9 be a Schreier domain? This question seems to be a bit hard and
so is left to an interested reader. Up to now we have seen examples of Bezout
domains each with algebraically closed quotient field, is there an example of
a non-Bezout Schreier domain with algebraically closed quotient field? The
answer is yes as shown in the following example.

Example 2.10. (Coykendall) Let C denote the complex numbers, D = C[X],
K = C(X), K the algebraic closure of K and let Da be the integral closure of
D in K. Further let M be a maximal ideal in Da and let Q be the algebraic
closure of the rationals Q. Then R = Q +MDa

M is a Schreier domain with
quotient field K and S = Q+MDa

M is a pre-Schreier domain. Neither domain
is a Bezout domain.
Illustration. Let M be a maximal ideal of Da. Since Da is a Prüfer domain

[15, Theorem 101] Da
M is a valuation domain. We show that Da

M = C+MDa
M .

For this note that Da
M/(MDa

M ) ≈ Da/M which is algebraic over D/(M ∩D).
ButM∩D is a nonzero prime ideal of D = C[X] and soM∩D is generated by a
linear polynomial, because C is algebraically closed. But then D/(M ∩D) ≈ C.
This makes Da

M/(MDa
M ) algebraic over C. Next Da

M ⊇ C and so Da
M ⊇

C+MDa
M . To see that the containment is not proper let v ∈ Da

M\ C+MDa
M .

Then for no m ∈ MDa
M can we have v + m ∈ C. But since Da

M/(MDa
M ) is

algebraic over C, v +MDa
M should be algebraic over C, which is algebraically

closed and so v +MDa
M = c+MDa

M for some c ∈ C.
Now set R = Q +MDa

M and note that R is a D+M construction of [7] and
that R is integrally closed [7, Theorem 2.1 (b)]. Next, since (MDa

M )
−1 = Da

M ,
R is a pseudo valuation domain. (Recall that a quasi-local domain (D,M) with
maximal ideal M is called a pseudo valuation domain (PVD) if for all ideals
A,B of D we have A ⊆ B or BM ⊆ AM [14].) So, MDa

M is a divisorial ideal
of R. Finally since Da

M is a valuation domain with algebraically closed quotient
field, Da

M is antimatter and so for each nonzero x ∈MDa
M we have r, s ∈MDa

M

such that x = rs. This forces (MDa
M )

2 = MDa
M . But a PVD with maximal

ideal idempotent is a pre-Schreier ring by Proposition 3.7 of this article and an
integrally closed pre-Schreier domain is Schreier. That R and S are not Bezout
follows from [7, Theorem 2.1 (i)].
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Now, a special quadratic in D[X] looks very factorable. Is there an example
that shows that sometimes a special quadratic may not be factorable in D[X]?
In other words, is there an element that is not primal? The answer can be given
in a number of ways. For instance in a non-integrally closed one-dimensional
local domain no irreducible element is prime but an irreducible primal element
is prime. But here we give a concrete example that has some other uses.

Example 2.11. Let (V,M) be a valuation domain with quotient field K 6=
V such that M−1 = V and let L be a nontrivial extension of K. Then in
D = V +XL[[X]] the element X is not primal and so for α ∈ L\K the special
quadratic X(t+ αX

X )(t+ X/α
X ) cannot factor in the polynomial ring D[t].

Illustration. Factoring the special quadratic requires that X = rs where
r|αX and s|X/α. Exactly one of r, s can be of degree one in X. Say r is of
degree one in X then s(0) 6= 0 and hence must be (an associate of) an element
of V , so there is no harm in assuming that s = s(0). On the other hand
r = γX|αX. So α

γ must be an associate of an element of V . Since α ∈ L\K,
γ must be in L\K. But this is impossible because rs = X = γXs which forces
γs = 1 or s = 1

γ ∈ L\K. This is a contradiction delivering the conclusion that
we cannot write X = rs such that r|αX and s|X/α.

The above example may also serve as an example of a domain that is not
pre-Schreier.

3 Mixing Gauss’ Lemma and the Schreier
property

There are many ways unique factorization domains can be generalized. Of these,
two ways in which an atomic domain is still a UFD are the following.

(1). Cohn’s Approach
We know from [9] that a GCD domain is a Schreier domain, a Schreier

domain is pre-Schreier, and in pre-Schreier domains every atom (irreducible
element) is prime. So a pre-Schreier domain has the atoms are primes (AP)
property. This gives the following diagram:

(A) GCD ⇒ Schreier ⇒ pre-Schreier ⇒ AP property

As we shall find out in the sequel, none of these implications can be reversed.

(2). The Gauss’ Lemma Approach
We note that a UFD D satisfies Gauss’ lemma: Over a UFD the product of

two primitive polynomials over D is again primitive.
By a primitive polynomial f(X) ∈ D[X] here we mean the coefficients of

f(X) = Σni=0aiX
i do not have nonunit common factor. Stated in ring-theoretic

terms, a polynomial is primitive if the ideal generated by the coefficients of f(X),
that is, Af = (a0, a1, . . . , an) is not contained in any proper principal ideal. Let
us call a domain D a GL domain (GL for Gauss’ Lemma) if over D the product

9



of two primitive polynomials is again primitive. It is well known that domains
that satisfy Gauss’ Lemma do not have to be GCD domains. Here’s an indirect
way of finding out. A primitive polynomial f ∈ D[X] is called superprimitive
if (Af )

−1 = D, or equivalently (Af )v = D. Not all primitive polynomials are
superprimitive. Here is a quick example.

Example 3.1. Take a one dimensional local domainD which is not a valuation
domain. ThenDmust have two irreducible elements a, b which are not associates
of each other. Then h = aX + b is primitive but not superprimitive.
Illustration. Suppose that (a, b)v = D. Now since D is one dimensional lo-

cal, according to Kaplansky [15, Theorem 108], there is a least positive integer
n such that a|bn. Now note that (a) = (a, bn) = (a, bn)v = (a, abn−1, bn)v =
(a, (abn−1, bn)v)v = (a, bn−1(a, b)v)v = (a, bn−1)v which means that a|bn−1 con-
tradicting the minimality of n.

Example 3.1 gives us an example of a primitive polynomial that is not super-
primitive. On the other hand a superprimitive polynomial is always primitive.
For if not, let f be a superprimitive polynomial over D and suppose that there
is d ∈ D such that Af ⊆ dD. Then, D = (Af )v ⊆ dD and so d must be a unit.
We say that a, b ∈ D are v-coprime if (a, b)v = D, i.e., aX+ b is superprimitive.
A domain in which a primitive polynomial is superprimitive is said to have

the PSP property. Now all these concepts have been well studied in Arnold and
Sheldon [6] and at a later date in Anderson and Quintero [2]. But for the sake
of completeness we shall make necessary statements and give their proofs. First
let us see how PSP works, but for this we need the Dedekind-Merten’s Lemma:
Let f and g be two polynomials in D[X] and suppose that deg(g) = m. Then
(Af )

m+1Ag = (Af )
mAfg [12].

Proposition 3.2. A PSP domain is a GL domain and a GL domain has the
AP property.

Proof. Let f and g be two primitive polynomials over the PSP domain
D. So (Af )v = D = (Ag)v. We have to show that (Afg)v = D. Now by
Dedekind-Merten, we have (Af )

m+1Ag = (Af )
mAfg. Hence ((Af )

m+1Ag)v =
((Af )

mAfg)v. Now using the v-product rule we see that the LHS is ((Af )
m+1Ag)v =

(((Af )v)
m+1(Ag)v)v = D. Now the RHS using the v-product is ((Af )

mAfg)v =
(((Af )v)

mAfg)v = (Afg)v. Thus (Afg)v = D.
Next suppose that D satisfies the GL property and assume that D has an

atom a that is not a prime. Then there exist b, c ∈ D such that a|bc but a
does not divide either of b, c. Then bX + a and cX + a are both primitive. But
in the product (bX + a)(cX + a) = bcX2 + (b + c)aX + a2 every coefficient is
divisible by a, a contradiction forcing the conclusion that there is no atom in a
GL domain D that is not a prime.¤
Now looking at the domain D = V +XL[[X]] constructed in Example 2.11

it is easy to see that a polynomial f ∈ D[X] is primitive if and only if f has
a unit coefficient. So D has PSP and hence GL, yet D is not pre-Schreier and
hence not GCD.

10



>From the above considerations of the Gauss’ Lemma approach we can
construct the following picture:

(B) GCD property ⇒ PSP property ⇒ GL property ⇒ AP property

Now we have two diagrams, (A) and (B); so the question arises: Both of
them end at the same property (AP), are they equivalent?
We now use some more of our knowledge of the pre-Schreier property and

Example 2.11 to show that the pictures (A) and (B) are two different pictures.
First let us recall from [24] that if A = (a0, a1, a2, . . . , an) is a finitely generated
nonzero ideal in a Schreier domain such that a0, a1, a2, . . . , an have no nonunit
common factor then A−1 = D. In other words, if f(X) = Σni=0aiX

i is a
primitive polynomial over a Schreier domain then (Af )

−1 = D. That is, a
Schreier domain has the PSP property. Now because in [24] the author only
used the characterization of pre-Schreier domains the same proof applies to the
following proposition.

Proposition 3.3. A pre-Schreier domain has PSP. In particular, in a pre-
Schreier domain every pair of coprime elements is v-coprime.

Now dropping the word “property” to save space we have the following
picture

GCD ⇒ Schreier ⇒ pre-Schreier ⇒ AP
⇓ .. ⇓

GCD ⇒ PSP ⇒ GL ⇒ AP

or GCD⇒ Schreier ⇒ pre-Schreier ⇒ PSP ⇒ GL ⇒ AP

Now we prepare to show that this picture is the best possible. Recall that
an integral domain D has the IP property if for each nonzero integral ideal A
of D, Av is the intersection of principal integral ideals . That is, D has IP
if for each integral nonzero ideal A we have Av = ∩dD where dD ranges over
principal integral ideals of D that contain A. As indicated in [2], the IP property
implies the PSP property. So if we give an example of a domain D that is not
a pre-Schreier domain but has the AP property we have established that the
PSP property does not imply the pre-Schreier property. This can be amply
established if we show that the ring constructed in Example 2.11 satisfies the
IP property. For this we first note that the construction in Example 2.11 is a
D +M construction from a valuation domain of the type L +M where L is a
field. Now we quote the following result from Anderson [5].

Theorem 3.4. [5, Proposition 2.3 (1)] Let V be a nontrivial valuation domain
of the form K +M where K is a field and M is the maximal ideal of V . Let
R be the subring D +M where D is a proper subring of the field K. Then R
satisfies the IP property if and only if D satisfies the IP property and D is not
a field.

Corollary 3.5. The construction in Example 2.11 is an IP domain that is not
Schreier.
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This means that IP; pre-Schreier. Now our study of mixing Gauss’ Lemma
and the (pre-) Schreier property would be complete if we can show either that
IP; pre-Schreier or that pre-Schreier⇒ IP.
To show that IP; pre-Schreier we need a quasi-local pre-Schreier domain

that has a divisorial maximal ideal that is not principal. (Any maximal ideal
that is contained in a principal integral ideal would have to be that principal
ideal!). Let us look for quasi-local domains that have divisorial maximal ideals
which are not principal. It is easy to see that if (D,M) is a PVD that is not
a valuation domain then M = D ∩ xD for some x ∈ K [23, Proposition 4.1].
Now since an intersection of principal fractional ideals is a v-ideal, in light of
the above discussion we have the following proposition.

Proposition 3.6. A PVD (D,M) that is not a valuation domain does not
satisfy the IP property.

Now all we need is a pre-Schreier (or Schreier) PVD that is not a valuation
domain. Here we quote parts of Theorem 4.4 of [23].

Proposition 3.7. [23, Theorem 4.4 (i) and (iii)] Let (D,M) be a PVD that
is not a valuation domain. Then D is a pre-Schreier domain if and only if
M2 =M .

Now it so happens that the rings R,S of Example 2.10 have the precise
credentials for the Schreier property and for the pre-Schreier property and both
are PVD’s. Now we include, just for record, the following well known result.

Proposition 3.8. A PVD (D,M) with the GCD property is a valuation
domain.

Proof. We show that if D is a PVD that is not a valuation domain then it
cannot be a GCD domain. If D is a PVD that is not a valuation domain then
(a) the maximal ideal M is divisorial as we have remarked earlier. So for all
A ⊆ M we have Av ⊆ M and (b) there must be a pair of elements a, b in D
such that a - b and b - a. Now suppose on the contrary that D has the GCD
property. Then d = GCD(a, b) implies that a = a1d, b = b1d where a1 and b1
are coprime. But since a GCD domain is Schreier, a1, b1 coprime implies a1, b1
v-coprime, i.e., ( a1, b1)v = D. This means that at least one of a1, b1 is a unit.
But then a|b or b|a, a contradiction.¤
>From Example 2.10 we have a pre-Schreier PVD that is not a valuation

domain and hence not a GCD domain by Proposition 3.8.

Theorem 3.9. The pre-Schreier (Schreier) property implies neither GCD nor
IP property.

We must point out that the case of IP; Schreier has been dealt with in [5],
but as our procedure provides a whole class of such domains and is simpler, we
have included it here.
Now let us recall the last diagram and adjust it with our current state of

knowledge. We had:
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GCD ⇒ Schreier ⇒ pre-Schreier ⇒ PSP ⇒ GL ⇒ AP

>From [5] we recall that GCD ⇒ IP and from the above discussion we
know that IP; pre-Schreier and pre-Schreier; IP. This gives us the following
picture:

GCD ⇒ Schreier⇒ pre-Schreier ⇒ PSP ⇒ GL ⇒ AP
&& %%

IP

Looking at the diagram we note that IP is the strongest property in the
Gauss’ Lemma mode of generalizing GCD domains and IP has no relationship
with the pre-Schreier property as Examples 2.10 and Example 2.11 show. Finally
with reference to [2] and [5] no arrows can be reversed.
Let us get back again to Example 2.11. In [8] a somewhat elaborate con-

struction is employed to construct an antimatter domain that is not pre-Schreier.
Below we offer Example 2.11 as an easier alternative.

Proposition 3.10. The construction V + XL[[X]] in Example 2.11 is an
antimatter domain.

Proof. Recall from [10] that a valuation domain (V,M) is an antimatter
domain if and only if M−1 = V and this was required in Example 2.11. So in
V +XL[[X]] all the nonunits that are associates of elements of V do not have
any atomic factor. This leaves us with associates of elements of the form lXn

where l ∈ L∗. Now clearly lXn is not an atom for n > 1. But lX is not an atom
because for every nonunit v ∈ V ∗ we have lX = v( lXv ).¤

4 Schreier property or Gauss’ Lemma?
Having seen how the Schreier property fares in comparison with various stronger
forms of Gauss’ Lemma one may ask: Is Gauss’ Lemma a must?
The answer seems to be: Gauss’ Lemma is a part of our heritage and so is

a must. However, there are situations in which Gauss’ Lemma does not help
and there are results that help us bypass Gauss’ Lemma. Nagata’s theorem
for UFD’s shows that if D is a UFD then so is D[X] without even touching a
polynomial and Cohn’s “Nagata’s theorem for Schreier domains” does precisely
the same for Schreier domains. Before we go on further it seems pertinent to
recall a few facts along with Cohn’s Nagata type theorem.
Recall that a nonzero element x is called completely primal if every factor of

x is again primal. By definition every factor of a completely primal element is
again completely primal. According to Cohn [9] the product of two completely
primal elements is again completely primal [9, Lemma 2.5]. Thus, with the same
proof as in [9, Lemma 2.5], we have the following lemma.

Lemma 4.1. If S is a multiplicative set of a domain D generated by a set of
completely primal elements and if S0 is the saturation of S then S0 consists of
completely primal elements which are either in S or factors of elements of S.
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Theorem 4.2. [9, Theorem 2.6] Let R be an integrally closed integral domain
and S a multiplicative subset of R.
(i) If R is a Schreier domain, then so is RS .
(ii) (Nagata type theorem) If RS is a Schreier domain and S is the saturation

of the set generated by a set of completely primal elements of R, then R is a
Schreier domain.

Remarks 4.3. (1). Note that our wording of (ii) of Theorem 4.2 is slightly
different from that of Cohn’s actual theorem. This is because Cohn’s statement
is slightly vague. His proof works quite nicely if we assume that Cohn identifies
S with its saturation (cf Lemma 4.1 here).
(2). In the proof of [9, Theorem 2.6], Cohn does not use the assumption

that R is integrally closed. So, Theorem 4.2 above also holds for pre-Schreier
domains. For the sake of clarity we restate this theorem below.

Theorem 4.4. (Cohn’s Theorem for pre-Schreier domains). Let D be an
integral domain and S a multiplicative set of D.
(i) If D is pre-Schreier, then so is DS .
(ii) (Nagata type theorem) If DS is a pre-Schreier domain and S is the

saturation of the set generated by a set of completely primal elements of D,
then D is a pre-Schreier domain.

Now the main use for Gauss’ Lemma is to show that if D is a GCD do-
main and if X is an indeterminate over D then D[X] is a GCD domain. The
proof that D[X] is a GCD domain then involves noting that every nonconstant
polynomial f(X) ∈ D[X] can be written as f(X) = af1(X), where f1(X) is a
primitive polynomial etc. In the case of Schreier domains we cannot write every
nonconstant polynomial f(X) ∈ D[X] as af1(X) where f1(X) is primitive. For
it can be shown that this is equivalent to D being a GCD domain. Theorem
4.2 (Theorem 2.6 of [9]) holds an answer to this but for that we need to prepare
a little. This preparation is essentially to promote our view of the pre-Schreier
property; we believe that completely primal elements are the building blocks of
the pre-Schreier property.

Lemma 4.5.[3, Theorem 3.1] A nonzero element c of D is completely primal
if and only if for all d ∈ D∗, cD∩dD is locally cyclic. Moreover, if {c1, c2, ..., cn}
is a set of nonzero completely primal elements of D then ∩ciD is locally cyclic.

Proof. This lemma is part (3) of Theorem 3.1 of [3], except for the moreover
part. For that we proceed by induction. Note that the case of n = 1 is clear
and n = 2 follows from the first part. Suppose that ∩ciD is locally cyclic for
i = n − 1. Let x1, x2, . . . , xr ∈ ∩ni=1ciD. Then x1, x2, . . . , xr ∈ ∩n−1i=1 ciD and
by the induction hypothesis there is t ∈ ∩n−1i=1 ciD such that x1, x2, . . . , xr ∈ tD.
But then x1, x2, . . . , xr ∈ tD ∩ cnD and since cn is completely primal there is
s ∈ tD ∩ cnD such that x1, x2, . . . , xr ∈ sD. But sD ⊆ tD ∩ cnD ⊆ ∩ni=1ciD.¤
Lemma 4.6. A nonzero element c of D is completely primal if and only if

c|aibj for i = 1, . . . ,m, and j = 1, . . . , n implies that c = c1c2 where c1|ai for all
i and c2|bj for all j.
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Proof. Suppose that c is completely primal and that c|aibj for i = 1, . . . ,m,
and j = 1, . . . , n. Now since c is primal in D and ai, bj ∈ D we have for i = 1
the following picture: c|a1b1, a1b2, a1b3, . . . , a1bn ⇒ c = c

(j)
1 c

(j)
2 where c

(j)
1 |a1

and c
(j)
2 |bj for j = 1, . . . , n. Since each of c(j)1 is completely primal because

c is and since a1, c ∈ ∩c(j)1 D, we conclude by Lemma 4.5 that there is an
r ∈ D such that c(j)1 |r|a1, c. Thus c = r( cr ) = c

(j)
1 c

(j)
2 . Since for each j we

have c
(j)
1 |r we conclude that ( cr )|c(j)2 |bj for each j = 1, . . . , n. Thus we have

shown that c|a1b1, a1b2, a1b3, . . . , a1bn implies that c = r1s1 where r1|a1 and
s1|bj for all j. Using the same procedure we can show for each i = 1, . . . ,m
that c|aib1, aib2, aib3, . . . , aibn implies that c = risi where ri|ai and si|bj for all
j = 1, . . . , n.
Since c, b1, b2, ..., bn ∈ ∩siD and since the si are completely primal (being

factors of c) we conclude that there is a t such that si|t and t|c, bj . Set c =
t( ct ) = risi and note that si|t for all i which forces ( ct )|ri for all i = 1, . . . ,m.
But ri|ai for i = 1, . . . ,m. Thus we conclude that c|aibj for i = 1, . . . ,m and
j = 1, . . . , n implies that c = c1c2 where c1|ai for all i and c2|bj for all j.
Conversely, suppose that c|aibj for i = 1, . . . ,m, and j = 1, . . . , n implies

that c = c1c2 where c1|ai for all i and c2|bj for all j and consider (c)∩(x) for any
x ∈ D∗. We show that (c)∩(x) is locally cyclic. For this let x1, x2, . . . , xr ∈ (c)∩
(x). We can write xi = xhi and conclude that c|xhi. Then by our assumption
c = c1c2 such that c1|x and c2|hi for i = 1, . . . , r. But then m = xc2 ∈ (c)∩ (x)
and m|xi for each i. Thus (c) ∩ (x) is locally cyclic for each x ∈ D∗ and by
Lemma 4.5 c is completely primal.¤
Lemma 4.7. If D is integrally closed then every completely primal element

of D is a completely primal element of the polynomial ring D[X].

Proof. Let c be a completely primal element of D and suppose that for
f, g ∈ D[X] we have c|fg. Let f = Σmi=0aiXi and let g = Σnj=0bjX

j . Recall
that D is integrally closed if and only if forh, k ∈ K[X], Ahk ⊆ D implies that
AhAk ⊆ D (see [17, Theorem 1.5] for an easy proof). Replacing f by f

c in
the above statement we conclude that in our case c|fg implies that c|aibj for
i = 1, . . . ,m and j = 1, . . . , n. Now since c is completely primal in D and
ai, bj ∈ D we have by Lemma 4.6 that c = c1c2 where c1|ai and c2|bj . But then
c|fg in D[X] implies that c = c1c2 such that c1|f and c2|g. This shows that
every completely primal element of an integrally closed D is primal in D[X].
But then every factor of a completely primal element in D is completely primal
in D and hence is primal in D[X]. ¤
Theorem 4.8.[9, Theorem 2.7] Let D be an integral domain. Then D is a

Schreier domain if and only if D[X] is a Schreier domain.

Proof. Let D[X] be a Schreier domain. Then since D[X] is integrally closed
we have D integrally closed. Now let c, a, b ∈ D∗ such that c|ab in D. But
then c|ab in D[X] and so c = c1(X)c2(X) where c1(X)|a and c2(X)|b. But by
degree considerations ci(X) ∈ D. So every nonzero element of D is primal in
D. Conversely let D be Schreier. Then by Lemma 4.7, all the elements of D∗
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are completely primal in D[X] and indeed D∗ is a saturated multiplicative set
in D[X]. Now D[X]D∗ = K[X] is a PID and hence a Schreier domain. Thus
Theorem 4.2, forces D[X] to be a Schreier domain.¤
Now the role of Gauss’ Lemma in showing that if D is a GCD domain then so

isD[X] is the following. It shows that if D is a GCD domain then the product of
any two primitive polynomials overD is again primitive. But as we have already
noted in Section 3, if D is (pre-) Schreier then D has PSP, so we can conclude
that if D is Schreier then the products of primitive polynomials in D[X] is again
primitive. Now recall from [9] that a GCD domain is a Schreier domain. So by
Theorem 4.8, if D is a GCD domain then D[X] is at least a Schreier domain.
It is easy to see that over any domain D the factors in D[X] of a primitive
polynomial are again primitive. Now using the GCD property of D we can show
that every polynomial f(X) = Σmi=0aiX

i in D[X]∗ can be written as f(X) =
d(Σmi=0

ai
d X

i) where d = GCD(a1, a2, ..., am) and (Σmi=0
ai
d X

i) is primitive. Note
that a primitive polynomial of degree 0 is a unit inD. Next because of the degree
restrictions every primitive polynomial can be expressed as a finite product of
irreducible elements, and in a Schreier domain every irreducible element is a
prime. So every primitive polynomial in D[X] is a product of primes and the
task of showing that D[X] is a GCD domain can be accomplished as in the
last part of [12, Theorem 34.10]. Recent work has provided a more efficient
method of showing that if D is a GCD domain then so is D[X]. But for that
we need to prepare a little. A saturated multiplicative set S of D is called a
splitting multiplicative set of D if every nonzero element d of D can be written
as d = st where s ∈ S and t is v-coprime to every member of S. A splitting
multiplicative set S is called an lcm splitting set if in addition, for every pair of
elements a, b ∈ S we have aD ∩ bD in S. For a detailed study of these concepts
the reader may consult [1] where the following result is attributed (on page 30)
to [13] and to [19]. ([19] came from Schexnayder’s dissertation [21] which was
cited in [13].)

Theorem 4.9. Let S be an lcm splitting set of an integral domain D. If DS

is a GCD domain, then so is D.

Based on these observations we state and prove the following well known
theorem.

Theorem 4.10. If D is a GCD domain and X an indeterminate over D, then
D[X] is a GCD domain.

Proof. Note that by Theorem 4.8, D[X] is a Schreier domain, and that in
a Schreier domain every pair of coprime elements is v-coprime (cf Proposition
3.3). Now we show that D∗ is a splitting set in D[X]. Let f ∈ D[X]∗. If
deg(f) = 0, then f = f · 1, so let us assume that deg(f) > 0. Then because
D is a GCD domain, f = ag where a ∈ D∗ is the GCD of the coefficients of
f and g is a primitive polynomial and hence is coprime to every element of
D∗. But since D[X] is Schreier, g is v-coprime to every element of D∗. This
establishes that D∗ is a splitting set of D[X]. That D∗ is an lcm splitting set
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follows from the fact that for all x, y ∈ D∗ we have xD ∩ yD principal and that
leads to xD[X] ∩ yD[X] principal. Now to complete the proof we note that
(D[X])D∗ = K[X] a PID and hence a GCD domain, forcing by Theorem 4.9,
D[X] to be a GCD domain.¤
There are of course other results that give the same conclusion as in Theorem

4.10. Look up for example [4, Theorem 2.2] where it is shown that D[X] is a
GCD domain if and only if D∗ is a splitting set of D[X].
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