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Abstract. Let D be an integral domain with quotient field K. A multiplica-

tive subset S of D is a t-splitting set if for each 0 6= d ∈ D, dD = (AB)t

for some integral ideals A and B of D, where At ∩ sD = sAt for all s ∈ S

and Bt ∩ S 6= ∅. A t-splitting set S of D is a t-lcm (resp., Krull) t-splitting

set if sD ∩ dD is t-invertible (resp., sD is a t-product of height-one prime

ideals of D) for all nonunits s ∈ S and 0 6= d ∈ D. Let S be a t-splitting

set of D, T = {A1 · · ·An|Ai = diDS ∩ D for some 0 6= di ∈ D}, and
DT = {x ∈ K|xC ⊆ D for some C ∈ T }. We show that S is a t-lcm (resp.,

Krull) t-splitting set if and only if DT is a PVMD (resp., Krull domain), if

and only if every finite type integral v-ideal (resp., every integral ideal) of D

intersecting S is t-invertible. We also show that D \ {0} is a t-splitting set

in D[X ] if and only if D is a UMT-domain and that every nonempty multi-

plicative subset of D[X ] contained in G = {f ∈ D[X ]|(Af )v = D} is a t-lcm

t-complemented t-splitting set of D[X ]. Using this, we give several Nagata-like

theorems.

1. introduction

Let D be an integral domain. A saturated multiplicative subset S of D is called

a splitting set if for each 0 6= d ∈ D, d = sa for some s ∈ S and a ∈ D with

aD ∩ s0D = as0D for all s0 ∈ S. If S is a splitting set, then the set T = {x ∈

D|(x, s)v = D for all s ∈ S} is also a splitting set called the m-complement of S. A

splitting set S is said to be an lcm splitting set if sD∩ dD is principal for all s ∈ S

and 0 6= d ∈ D. Following [6], we call a (not necessarily saturated) multiplicative

subset S of D a t-splitting set if for each 0 6= d ∈ D, dD = (AB)t for some integral

ideals A and B of D, where At∩sD = sAt for all s ∈ S and Bt∩S 6= ∅ and ‘t’ is the

well-known t-operation, equivalently, for each 0 6= d ∈ D, dDS ∩D is t-invertible

[6, Proposition 3.1]. Let S be the saturation of a multiplicative subset S of D.

Then DS = DS [21, Proposition 5.1], and hence S is a t-splitting set if and only

if S is a t-splitting set. One aim of this paper is to demonstrate that by adopting
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this t-splitting approach, we can provide direct and simple proofs of results that

otherwise need elaborate constructions or longer proofs. Briefly, in this article we

study various aspects of t-splitting sets and find for example that D\{0} is a t-

splitting set of D[X] if and only if D is a so-called UMT-domain. Parallel to the

notion of an lcm-splitting set, we introduce the notion of a t-lcm t-splitting set and

use it to prove a number of more general Nagata-like theorems in the spirit of [3,

Proposition 4.3]. For example, we show that the set G = {f ∈ D[X] | (Af )v = D}

is a t-lcm t-splitting set in D[X] and give a simple proof of the fact that D is a

PVMD if D[X]G is a PVMD. To give a complete introduction, however, we need

to introduce the reader to the notions involved.

Throughout this paper, D will denote an integral domain, K is the quotient field

of D, U(D) is the group of units in D, and X1(D) is the set of height-one prime

ideals of D. Recall that for a nonzero fractional ideal I of D, I−1 = {x ∈ K|xI ⊆

D}, Iv = (I−1)−1, and It = ∪{(a1, . . . , an)v|0 6= (a1, . . . , an) ⊆ I}. We say that I

is a divisorial ideal or v-ideal (resp., t-ideal) if Iv = I (resp., It = I) and that I is

a finite type v-ideal if I = (a1, . . . , an)v for some 0 6= (a1, . . . , an) ⊆ I . It is well

known that every proper integral t-ideal is contained in some (necessarily prime)

t-ideal maximal among proper integral t-ideals and that every prime ideal minimal

over a t-ideal is a t-ideal, in particular, height-one prime ideals are t-ideals. The

set of all maximal t-ideals of D is denoted by t-Max(D), while we say that D has

t-dimension one, written t-dimD = 1, if each maximal t-ideal of D has height-one,

i.e., t-Max(D) = X1(D). A fractional ideal I of D is said to be t-invertible if

(II−1)t = D. If a fractional ideal I is t-invertible, then It is a finite type v-ideal.

The set of t-invertible fractional t-ideals of D forms an abelian group under the

t-product I ∗ J = (IJ)t. The (t-)class group of D is Cl(D) − the abelian group

of t-invertible fractional t-ideals of D, modulo its subgroup of principal fractional

ideals. IfD is a Krull domain, then Cl(D) is the usual divisor class group of D; and

if D is a Prüfer domain or one-dimensional integral domain, then Cl(D) = Pic(D),

the ideal class group (or Picard group) of D.

Let D be an integral domain. Then D is called a weakly Krull domain if D =

∩P∈X1(D)DP and the intersection has finite character. A nonzero element a of

D is said to be primary if aD is a primary ideal of D. As in [10], we call D

a weakly factorial domain (WFD) if each nonzero nonunit of D is a product of

primary elements. In [10, Theorem], it was proved that D is a WFD if and only

if D is a weakly Krull domain and Cl(D) = 0. An integral domain D is said to
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be a generalized weakly factorial domain (GWFD) if each nonzero prime ideal of

D contains a primary element [13]. It is known that a WFD is a GWFD and a

GWFD is a weakly Krull domain. Recall that an integral domain D is a UMT-

domain if every upper to zero in D[X] is a maximal t-ideal. Also, recall that an

integral domain D is a Prüfer v-multiplication domain (PVMD) if each finite type

v-ideal of D is t-invertible. It is well known that D is a PVMD if and only ifDP is a

valuation domain for each maximal t-ideal P of D ([23, Theorem 5] or [26, Theorem

3.2]), if and only if D is an integrally closed UMT-domain [24, Proposition 3.2].

Let S be a t-splitting set of an integral domain D and let T = {A1 · · ·An|Ai =

diDS ∩D for some 0 6= di ∈ D}. Then DS = ∩{DP |P ∈ t-Max(D) and P ∩S = ∅},

DT = ∩{DP |P ∈ t-Max(D) and P ∩ S 6= ∅}, and D = DS ∩ DT [6, Lemma 4.2

and Theorem 4.3]. A t-splitting set S of D is called the t-complemented t-splitting

set if DT = DT for some multiplicative subset T of D, and the saturation of T is

called the t-complement of S. It is clear that a splitting set is a t-complemented

t-splitting set.

It is known that every (saturated) multiplicative subset of D is a t-splitting set

if and only if D is a weakly Krull domain [6, page 8]; and that every saturated

multiplicative subset of D is a splitting set if and only if D is a weakly Krull

domain and Cl(D) = 0, if and only if D is a WFD [10, Theorem]. In Section

2, we show that every (saturated) multiplicative subset of D is a t-complemented

t-splitting set if and only if D is a GWFD. Let S be a t-splitting set of D and

T = {A1 · · ·An|Ai = diDS ∩ D for some 0 6= di ∈ D}. We also prove that

DT = {x ∈ K|xC ⊆ D for some C ∈ T } is a Krull domain if and only if each

nonunit s ∈ S is a t-product of (height-one) prime ideals of D; that if S is generated

by principal primes, then S is a splitting set; and that D \ {0} is a t-splitting set

in D[X] if and only if D is a UMT-domain.

As a t-splitting set analog of an lcm splitting set, we call a t-splitting set S

of an integral domain D a t-lcm t-splitting set if for all s ∈ S and 0 6= d ∈ D,

sD ∩ dD is t-invertible. In Section 3, we prove that S is a t-lcm t-splitting set if

and only if A is t-invertible for all finite type integral v-ideals A of D such that

A ∩ S 6= ∅, if and only if DT = {x ∈ K|xC ⊆ D for some C ∈ T } is a PVMD;

this is an analog of a similar result for lcm splitting sets [3, Proposition 2.4]. Let

G = {f ∈ D[X]|(Af)v = D} and ∅ 6= S ⊆ G be a multiplicative subset of D[X].

We also show that S is a t-lcm t-complemented t-splitting set of D[X]. As indicated
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above, we use this fact to provide the following Nagata-like theorem: D is a PVMD

if and only if D[X]G is a PVMD. We also include a brief history of this result.

2. t-splitting sets

AKrull domain D is called an almost factorial domain if Cl(D) is torsion (equiv-

alently, if for each pair 0 6= a, b ∈ D, there exists an integer n = n(a, b) ≥ 1 such

that anD∩bnD is principal [19, Proposition 6.8]). Almost factorial (Krull) domains

were first studied by U. Storch [35].

Recall that every saturated multiplicative subset of an integral domain D is

a splitting set (resp., t-splitting set) if and only if D is a WFD [10, Theorem]

(resp., weakly Krull domain [6, page 8]) and that if D is a Krull domain, then D

is an almost factorial domain if and only if every multiplicative subset of D is a t-

complemented t-splitting set [6, page 15]. It was shown in [13, Proposition 3.1] that

a Krull domain D is an almost factorial domain if and only ifD is a GWFD, whence

every multiplicative subset of a Krull domain D is a t-complemented t-splitting set

if and only if D is a GWFD.

Theorem 2.1. Let D be an integral domain. Then every (saturated) multiplicative

subset of D is a t-complemented t-splitting set if and only if D is a GWFD.

Proof. (⇒) Assume that every (saturated) multiplicative subset ofD is a t-complemented

t-splitting set. Then D is a weakly Krull domain [6, page 8], and hence t-dimD = 1

[9, Lemma 2.1]. So by [13, Theorem 2.1], it suffices to show that each P ∈ X1(D) is

the radical of a principal ideal. To do this, let P ∈ X1(D) and T = D \P . Then T

is a t-complemented t-splitting set by assumption. Let S be the t-complement of T .

Then S is a t-complemented t-splitting set and T is the t-complement of S (cf. [6,

Theorem 4.3]). Let F = {Q ∈ X1(D)|Q∩S = ∅} and G = {Q ∈ X1(D)|Q∩S 6= ∅}.

Then ∩GDQ = DT = DP [6, Lemma 4.2], and hence G = {P}. Thus, if a ∈ P ∩ S,

then P =
√
aD.

(⇐) Assume that D is a GWFD. Let S be a multiplicative subset of D and

T = {a1 · · ·an| each ai ∈ D is primary and
√
aiD ∩ S = ∅}. Recall that a GWFD

is a weakly Krull domain [13, Corollary 2.3]; hence S is a t-splitting set [6, page

8], D = ∩Q∈X1(D)DQ, and the intersection has finite character. In particular,

DT = (∩Q∈X1(D)DQ)T = ∩Q∈X1(D)(DQ)T [21, Proposition 43.5]. Also, note that

for each Q ∈ X1(D), Q ∩ T 6= ∅ ⇔ (DQ)T = K, the quotient field of D, and

Q ∩ T = ∅ ⇔ Q ∩ S 6= ∅ by the construction of T (also refer to [13, Theorem 2.2]).
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Thus DT = ∩Q∈X1(D)(DQ)T = ∩{DQ|Q ∈ X1(D) and Q ∩ T = ∅} = ∩{DQ|Q ∈

X1(D) and Q ∩ S 6= ∅} = ∩{DQ|Q ∈ t-Max(D) and Q ∩ S 6= ∅}, and hence S is a

t-complement t-splitting set. ¤

Let D be an integral domain. An element a ∈ D is called a t-invertibility element

if for each integral ideal A of D, a ∈ A implies that A is t-invertible. According to

[22, Theorem 1.3], an element a ∈ D is a t-invertibility element if and only if aD is

a t-product of maximal t-ideals of D.

Let S be a multiplicative subset of an integral domain D. Recall that a prime

ideal Q of D with Q ∩ S 6= ∅ is said to intersect S in detail if P ∩ S 6= ∅ for each

nonzero prime ideal P ⊆ Q of D. Let T be the m-complement of a splitting set

S of D. In [3, Theorem 2.6], the authors proved that S is generated by principal

primes if and only if DT is a factorial domain. We now give a t-splitting set analog.

Theorem 2.2. Let D be an integral domain with quotient field K, S a t-splitting

set of D, T = {A1 · · ·An|Ai = diDS ∩D for some 0 6= di ∈ D}, and G = {P ∈ t-

Max(D)|P ∩ S 6= ∅}. Then the following statements are equivalent.

(1) For each nonunit s ∈ S, sD is a t-product of prime ideals.

(2) For each nonunit s ∈ S, sD is a t-product of height-one prime ideals.

(3) DT = {x ∈ K|xC ⊆ D for some C ∈ T } is a Krull domain.

(4) Every integral ideal of D intersecting S is t-invertible.

In this case, X1(DT ) = {PDP ∩DT |P ∈ G} and DP is a DVR for each P ∈ G.

Proof. (1)⇒ (2) It suffices to show that if P is a prime t-ideal of D with P ∩S 6= ∅,

then P is of height-one. Let P be a prime t-ideal of D such that P ∩ S 6= ∅ and

let s ∈ P ∩ S. Then sD = (P1 · · ·Pn)t for some prime t-ideals Pi of D. Since

sD is t-invertible, each Pi is t-invertible, and hence a maximal t-ideal of D [24,

Proposition 1.3]. Also, since sD ⊆ P , Pi ⊆ P for some Pi; so Pi = P . Thus P is a

maximal t-ideal of D. Moreover, since P intersects S in detail [6, Lemma 4.2], P

is of height-one.

(2) ⇒ (3) This appears in the proof of [6, Theorem 4.14].

(3)⇒ (4) and (1) Assume that DT is a Krull domain. If P ∈ G, then (PDT )t (
DT since P = Pt = (PDS)t ∩ (PDT )t [6, Theorem 4.10] and (PDS)t = DS . Let

Q be a prime ideal of DT minimal over (PDT )t such that Q ⊆ PDP ∩DT . Then

Q is a prime t-ideal of DT and P = Q ∩ D. Thus Q has height-one, and hence



6 G.W. CHANG, T. DUMITRESCU, AND M. ZAFRULLAH

(DT )Q = DP = (DT )PDP∩DT is a DVR. In particular, since DT = ∩P∈GDP [6,

Theorem 4.3(2)], X1(DT ) = {PDP ∩DT |P ∈ G} [21, Corollary 43.9].

Let s ∈ S be a nonunit ofD. ThenD∩sDT = DS∩sDT = (sDS)t∩(sDT )t = sD

[6, Theorem 4.10]. Since DT is a Krull domain, the intersection ∩P∈GDP has

finite character; hence sDT = ∩P∈GsDP = sDP1 ∩ · · · ∩ sDPn ∩ DT for some

P1, . . . , Pn ∈ G (note that n ≥ 1 since sDT ( DT ). Also, since each DPi is a DVR,

sDPi = P ei
i DPi = (P

ei
i )tDPi for some integer ei ≥ 1. Note that since each Pi is a

maximal t-ideal ofD, (P ei
i )t is Pi-primary [4, Lemma 1]; so (P

ei
i )tDPi∩D = (P ei

i )t.

Thus sD = sDT ∩D = (P e1
1 )tDP1 ∩ · · ·∩ (P

en
n )tDPn ∩D = (P e1

1 )t ∩ · · ·∩ (P
en
n )t =

(P e1
1 · · ·P en

n )t, where the last equality follows from the fact that each Pi is a maximal

t-ideal. Moreover, since sD is t-invertible, each Pi is also t-invertible. This also

shows that s is a t-invertibility element of D [22, Theorem 1.3], and thus every

integral ideal of D intersecting S is t-invertible.

(4) ⇒ (1) Let s ∈ S be a nonunit of D. Then s is a t-invertibility element since

every ideal of D containing s intersects S. Thus sD is a t-product of maximal

t-ideals [22, Theorem 1.3]. ¤

Let us call the t-splitting set of Theorem 2.2 a Krull t-splitting set. Clearly an

integral domain D is a Krull domain if and only if D \ {0} is a Krull t-splitting

set, and hence D is a Krull domain if and only if every (saturated) multiplicative

subset of D is a Krull t-splitting set (cf. [6, page 8]).

Corollary 2.3. An integral domain D is an almost factorial domain if and only

if every (saturated) multiplicative subset of D is a t-complemented Krull t-splitting

set.

Proof. Recall that D is a Krull domain if and only if every nonzero integral ideal

of D is t-invertible [27, Theorem 3.6] and that D \ {0} is a t-splitting set; hence

D \ {0} is a Krull t-splitting set if and only if D is a Krull domain. Also, since a

Krull domain is almost factorial if and only if it is a GWFD [13, Proposition 3.1],

the result follows directly from Theorem 2.1 (or see [6, page 15]). ¤

Proposition 2.4. Let D be an integral domain. Then the following statements are

equivalent.

(1) D is a factorial domain.

(2) Every saturated multiplicative subset of D is generated by principal primes.
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(3) Every saturated multiplicative subset of D has the property that for each

integral ideal A intersecting S, At is principal.

(4) Every saturated multiplicative subset of D is a splitting set which is also a

Krull t-splitting set.

Proof. (1) ⇔ (2) ⇔ (3) Clearly D \ {0} is a splitting set of D, and thus the results

follow from the well-known fact that D is a factorial domain if and only if At is

principal for all nonzero integral ideals A of D. (1) ⇔ (4) As noted in the proof of

Corollary 2.3, D \ {0} is a Krull t-splitting set if and only if D is a Krull domain.

Hence the result is an immediate consequence of [10, Theorem]. ¤

It is clear that a splitting set is a t-splitting set. In general, a t-splitting set

need not be a splitting set. For example, let D be a weakly Krull domain with

Cl(D) 6= 0. Then there is a saturated multiplicative subset S of D that is not

a splitting set [10, Theorem]. But S is a t-splitting set since every multiplicative

subset of a weakly Krull domain is a t-splitting set [6, page 8].

Corollary 2.5. Let S be a t-splitting set of an integral domain D. If S is generated

by principal primes, then S is a splitting set of D.

Proof. Let the notation be as in Theorem 2.2 and let P be the set of principal

primes of D generating S. Then G = {pD|p ∈ P} since a principal prime ideal

is a maximal t-ideal [24, Proposition 1.3]. Thus for all p ∈ P, DpD is a DVR by

Theorem 2.2, and hence ∩n≥0pnD = 0. Also, note that DT is a Krull domain and

X1(DT ) = {pDpD ∩DT |p ∈ P}; hence ∩αpαD = 0 for any infinite sequence {pα}

of nonassociated members of P . Thus S is a splitting set [3, Proposition 2.6]. ¤

Recall that an integral domainD is called a locally factorial domain ifDf = D[ 1f ]

is factorial for all nonzero nonunit f of D. It is clear that a factorial domain is

locally factorial. [16, Examples 3.1 and 3.2] show that a locally factorial domain

need not be factorial. Another simple example is Z(2) + XQ[[X]] which has two
proper overrings Q[[X]] and Q((X)). The following corollary shows that a locally
factorial domain which is not factorial does not contain a height-one principal prime.

Corollary 2.6. Let D be a locally factorial domain that contains a height-one

principal prime. Then D is a factorial domain.

Proof. Let p be a height-one principal prime of D. If D \ pD = U(D), then D is

a local PID with maximal ideal pD; so we may assume that D \ pD 6= U(D). Let
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f ∈ D \ pD be a nonunit of D. Then (f, p)v = D, and hence D = Df ∩ Dp [1,

Lemma 2.1]. Since D is locally factorial, both Df and Dp are factorial (and hence

Krull domains). Hence D is a Krull domain [19, Proposition 1.4], and thus D is a

factorial domain [1, Corollary 2.9]. (Another proof : Let S = {upn ∈ U(D)| and

n ≥ 0}. Then S is a splitting set by Corollary 2.5 since a multiplicative subset of a

(weakly) Krull domain is a t-splitting set [6, page 8]. Thus Dp = DS being facotrial

implies that D is factorial [3, Theorem 4.4].) ¤

Remark 2.7. Let D be a locally factorial Krull domain. Then a nonzero principal

prime of D has height-one. Thus if D contains a nonzero principal prime, then D

is a factorial domain by Corollary 2.6. This recovers [1, Corollary 2.9].

Theorem 2.8. Let D be an integral domain and S a multiplicative subset of D

such that DS is a PID. Then S is a t-splitting set if and only if every prime ideal

of D disjoint from S is t-invertible.

Proof. (⇒) Assume that S is a t-splitting set of D. Let P be a prime ideal of D

disjoint from S and p ∈ P with PDS = pDS . Then P = PDS ∩ D = pDS ∩ D

is t-invertible [6, Corollary 2.3]. (⇐) Let G be the set of nonzero prime t-ideals of

D disjoint from S. Let 0 6= g ∈ D \ S. Clearly I0 = gD is a t-invertible t-ideal

and I0 ⊆ P1 for some P1 ∈ G. Then I0 = (I1P1)t, where I1 = (I0P
−1
1 )t is again

a t-invertible t-ideal. We repeat the procedure with I1. After a finite number of

steps, we get I0 = (P1 · · ·PnIn)t with Pi ∈ G and In t-ideal with In∩S 6= ∅. Indeed,

since I0 ⊆ (P1 · · ·Pn)tDS = P1 · · ·PnDS , we see that n ≤ the length of g in the

PID DS . Since each Pi is t-coprime with every element of S, so is P1 · · ·Pn. ¤

Let D be an integral domain with quotient field K and X an indeterminate

over D. Then for f ∈ K[X], the content Af of f denotes the fractional ideal of

D generated by the coefficients of f . If A is a fractional ideal of D[X], then the

fractional ideal c(A) =
P

f∈AAf of D is also called the content of A.

In [12, Theorem 2.2], it was proved that S ⊆ D is a splitting set in D[X] if and

only if S is an lcm splitting set of D. Recall from [3, Proposition 2.4] that if T is

the m-complement of a splitting set S, then S is an lcm splitting set if and only if

DT is a GCD-domain. Thus D \ {0} is a splitting set in D[X] if and only if D is

a GCD-domain [3, Example 4.7]. The following corollary is a t-splitting set analog

of this result. This also gives another characterization of a UMT-domain.



t-SPLITTING SETS IN INTEGRAL DOMAINS 9

Corollary 2.9. Let D be an integral domain. Then D \ {0} is a t-splitting set in

D[X] if and only if D is a UMT-domain.

Proof. Clearly D[X]D\{0} is a PID. Thus the result follows directly from Theorem

2.8 and the fact that D is a UMT-domain if and only if every upper to zero in D[X]

is t-invertible [24, Theorem 1.4]. ¤

We end this section with some applications of Corollary 2.9. Recall that a weakly

Krull domain D is called a generalized Krull domain if DP is a valuation domain

for all P ∈ X1(D).

Corollary 2.10. Let D be an integral domain.

(1) (cf. [7, Proposition 4.11]) If D[X] is a weakly Krull domain, then D is a

weakly Krull UMT-domain.

(2) (cf. [7, Corollary 4.13]) If D is an integrally closed weakly Krull domain,

then D[X] is a weakly Krull domain if and only if D is a generalized Krull

domain.

Proof. (1) This follows from the facts that D[X] is a weakly Krull domain if and

only if every multiplicative subset of D[X] is a t-splitting set [6, page 8] and that

D\{0} is a (saturated) multiplicative subset ofD[X]. But thenD is a UMT-domain

by Corollary 2.9. That D is a weakly Krull domain can now be easily established.

(2) This follows from (1) above and the fact that an integrally closed UMT-

domain is a PVMD [24, Proposition 3.2]. ¤

Now here is a serious question. It has been shown that D \ {0} is a splitting set

in D[X] if and only if D \ {0} is an lcm splitting set in D[X] (if and only if D is

a GCD-domain). How do we explain that result using the fact that D is a UMT-

domain if and only if D \ {0} is a t-splitting set in D[X]. The following corollary

answers this question.

Corollary 2.11. Let D be an integral domain.

(1) If D is a UMT-domain, then D is a PVMD if and only if for every 0 6= f ∈

D[X], fD[X] = (Af [X]B)t, where B is the t-product of uppers to zero.

(2) D \ {0} is a splitting set of D[X] if and only if D is a GCD-domain.

Proof. (1) Assume that for every 0 6= f ∈ D[X], fD[X] = (Af [X]B)t, where B

is the t-product of uppers to zero in D[X]. Then for each 0 6= f ∈ D[X], Af

is t-invertible, and so every finitely generated ideal A of D is t-invertible, which
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makes D a PVMD. Conversely, let D be a PVMD and let 0 6= f ∈ D[X]; then Af

is t-invertible. Next, by the UMT condition we have that fD[X] = (AB)t, where

A and B are integral ideals of D[X] such that A ∩D 6= (0) and B is the t-product

of uppers to zero in D[X]. Next, fD[X] = (AtB)t ⊆ At. Because a PVMD is

integrally closed, we have At = (c(A)[X])t = (c(A))t[X] [8, Theorem 3.2]. Now as

f ∈ fD[X] ⊆ At = (c(A))t[X], we have Af ⊆ (c(A))t, and so (Af)t ⊆ (c(A))t. For

the reverse containment, note that fD[X] ⊆ Af [X] and so (c(A)[X]B)t ⊆ Af [X].

Since B is a t-product of maximal t-ideals that do not contain Af [X], we conclude

that (c(A)[X])t ⊆ (Af [X])t. This shows that fD[X] = (Af [X]B)t = ((Af )t[X]B)t.

(2) Note that D \ {0} being a splitting set requires that for each 0 6= f ∈ D[X],

fD[X] = agD[X] where a ∈ D and g ∈ D[X] with (g, s)v = D[X] for all 0 6= s ∈ D.

This means that (Ag)v = D and so (Af )v = (Aag)v = a(Ag)v = aD. The converse

is easy to see. ¤

3. t-lcm t-splitting sets

Let D be an integral domain. A splitting set S of D is called a t-lcm splitting set

if sD∩dD is t-invertible for all s ∈ S and 0 6= d ∈ D. This concept was introduced

by the third author at the conference held in Incheon, Korea (May, 2001). He also

observed : Let S be a splitting set of D and T the m-complement of S in D. Then

(i) S is a t-lcm splitting set if and only if A is t-invertible for all finitely generated

integral ideals A of D with A ∩ S 6= ∅. (ii) If S is a t-lcm splitting set, then DT is

a PVMD. (iii) If S is a t-lcm splitting set, then D is a PVMD if and only if DS

is a PVMD, if and only if A is t-invertible for all finitely generated integral ideals

A of D with A ∩ T 6= ∅. The purpose of this section is to study these concepts in

a more general setting. To do this, we introduce a new concept “t-lcm t-splitting

set”, which is a generalization of a t-lcm splitting set.

Let S be a t-splitting set of an integral domain D. Then we will call S a t-lcm

t-splitting set if sD∩ dD is t-invertible for all s ∈ S and 0 6= d ∈ D. Recall from [6,

Lemma 4.2] that if S is a t-splitting set, then a prime t-ideal Q of D that intersects

S, intersects S in detail i.e., every nonzero prime ideal contained in Q also intersects

S. Note also that if P is a prime t-ideal of D such that P ∩ S 6= ∅, then for every

0 6= x ∈ P , we have xD = (AB)t, where A and B are integral ideals of D such

that (A, s)t = D for all s ∈ S and B ∩ S 6= ∅, which forces A * P . This is because

(A, s)t = D for all s ∈ S and so for s ∈ P ∩ S.



t-SPLITTING SETS IN INTEGRAL DOMAINS 11

We begin this section by studying an integral domain in which every saturated

multiplicative subset is a t-lcm splitting set. Recall that a WFD is a generalized

UFD if every pair of non v-coprime primary elements is comparable (i.e., one of

the two divides the other). For more on generalized UFDs, see [5].

Proposition 3.1. Let D be an integral domain. Then the following statements are

equivalent.

(1) Every saturated multiplicative subset of D is a t-lcm splitting set.

(2) Every saturated multiplicative subset of D is a lcm splitting set.

(3) D is a weakly factorial PVMD.

(4) D is a weakly factorial GCD-domain.

(5) D is a GCD generalized Krull domain.

(6) D is a generalized UFD.

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) follow from the following facts that every

saturated multiplicative subset of D is a splitting set if and only if D is a WFD,

if and only if D is a weakly Krull domain and Cl(D) = 0 [10, Theorem]; that a

PVMD D is a GCD-domain if and only if Cl(D) = 0 [15, Proposition 2]; and that

D \ {0} is a t-lcm (resp., lcm) splitting set if and only if D is a PVMD (resp.,

GCD-domain). For (4) ⇔ (6), see [5, Theorem 7]. ¤

Let S be a splitting set of an integral domain D. It is well known that S is an

lcm splitting set if and only if DT is a GCD-domain, where T is the m-complement

of S [3, Proposition 2.4]. We would like to prove a t-lcm t-splitting set analog of

this result (Theorem 3.4). For this some preparation seems to us necessary.

Lemma 3.2. Let D be a quasilocal domain with maximal ideal M . If there is a

nonzero element α ∈ M such that for all x ∈ M, (α,x) is principal, then D is a

t-local domain.

Proof. We first show that if h is a nonunit factor of α, then (h, x) is also a (proper)

principal ideal of D. For this, let b = α
h
. Then b(h, x) = (α, bx) which is prin-

cipal by the stated property of α, and hence 1
b (α, bx) = (h, x) is principal. Now

consider (α, x1, x2, . . . , xn) for any x1, . . . , xn ∈ M. Then as (α, x1, x2, . . . , xn) =

((α,x1), x2, . . . , xn) = (h1, x2, . . . , xn) where h1|α, we can carry out the proce-

dure to conclude that (α,x1, x2, . . . , xn) is principal. Now as (α,x1, x2, . . . , xn) is

principal, (α,x1, x2, . . . , xn)t = (α,x1, x2, . . . , xn) ⊆ M ; hence (x1, x2, . . . , xn)t ⊆

(α,x1, x2, . . . , xn)t ⊆M for all x1, x2, . . . , xn ∈M. ¤
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This result has an immediate consequence.

Lemma 3.3. Let S be a t-lcm t-splitting set of an integral domain D. Then for

every maximal t-ideal P of D with P ∩ S 6= ∅, DP is t-local.

Proof. Let s ∈ P ∩ S. Then (s, x) is t-invertible for every x ∈ P since S is a t-lcm

t-splitting, and hence (s, x)DP is principal for every x ∈ PDP . Thus DP is t-local

by Lemma 3.2. ¤

Theorem 3.4. Let D be an integral domain with quotient field K, S a t-splitting

set of D, and T = {A1 · · ·An|Ai = diDS ∩ D for some 0 6= di ∈ D}. Then the

following statements are equivalent.

(1) S is a t-lcm t-splitting set.

(2) Every finite type integral v-ideal of D intersecting S is t-invertible.

(3) DT = {x ∈ K|xC ⊆ D for some C ∈ T } is a PVMD.

Proof. (1)⇒ (2) Let A be a finite type integral v-ideal of D such that A ∩ S 6= ∅,

and let P be a maximal t-ideal of D. If P contains A, then P ∩ S 6= ∅; hence ADP

is principal by the proofs of Lemmas 3.2 and 3.3. If P does not contain A, then

ADP =DP . Thus A is t-locally principal, and hence A is t-invertible [26, Corollary

2.7].

(2)⇒ (1) Let s ∈ S and 0 6= d ∈ D. Then (s, d)v is a finite type integral v-ideal

of D intersecting S; so (s, d)v is t-invertible. Thus (s, d)
−1 = 1

sd
(sD ∩ dD), and

hence sD ∩ dD, is t-invertible.

(2) ⇒ (3) Let P be a prime t-ideal of D such that P ∩ S 6= ∅. We first

show that DP is a valuation domain. Let 0 6= x, y ∈ PDP . We can assume

that x, y ∈ P . Now as S is a t-splitting set, we can write xD = (A1B1)t and

yD = (A2B2)t, where Ai are t-coprime with every member of S and Bj inter-

sect S, and hence Ai are not contained in P . Next by [6, Lemma 4.5], we have

(x, y)t = (A1B1,A2B2)t = ((A1,A2)(B1, B2))t. Now (B1,B2) is contained in P

and intersects S, and so (B1,B2)DP is principal (see the proof of (1)⇒ (2) above).

Also, since (A1,A2) * P we have that (A1, A2)(B1,B2)DP is principal, and thus

((x, y)DP )t = ((x, y)tDP )t = (((A1,A2)(B1, B2))tDP )t = ((A1, A2)(B1,B2)DP )t

= (A1, A2)(B1,B2)DP is principal (see [26, Lemma 3.4] for the first and the third

equalities). Moreover, since DP is t-local by Lemma 3.3, we have that (x, y)DP is

invertible. Thus every two generated ideal of DP is invertible, and hence DP is a

valuation domain [21, Theorem 22.1].



t-SPLITTING SETS IN INTEGRAL DOMAINS 13

Let Q be a maximal t-ideal of DT and P = Q∩D. Then P is a prime t-ideal of

D such that P ∩ S 6= ∅ (cf. [6, Theorems 4.3 and 4.10]); hence DP is a valuation

domain by the above paragraph. Also, since DP ⊆ (DT )Q, (DT )Q is a valuation

domain [21, Theorem 17.6]. Thus DT is a PVMD [23, Theorem 5].

(3)⇒ (2) Let A be a finite type integral v-ideal of D such that A∩S 6= ∅, and let

P be a maximal t-ideal of D. If P ∩S = ∅, then A * P ; so AA−1 * P . Now assume

that P∩S 6= ∅. Then (PDT )t ( DT (cf. [6, Theorem 4.10]). LetQ be a prime ideal

of DT minimal over (PDT )t such that Q ⊆ PDP ∩DT . Then Q is a t-ideal of DT

such that Q∩D = P , and henceDP ⊆ (DT )Q ⊆ (DP )PDP = DP ; so DP = (DT )Q.

Since DT is a PVMD and Q is a t-ideal, DP is a valuation domain [23, Theorem

5]. Hence DP = (ADP )(ADP )
−1 = (ADP )(A

−1DP ) = (AA
−1)DP ; so AA

−1 * P

(see [26, Lemma 3.4] for the second equality). Therefore (AA−1)t = D; hence A is

t-invertible. ¤

The following corollary appears in the proof of (2) ⇒ (3) of Theorem 3.4. This

also strengthens Lemma 3.3 since a valuation domain is t-local.

Corollary 3.5. Let S be a t-lcm t-splitting set of an integral domain D, and let P

be a maximal t-ideal of D intersecting S. Then DP is a valuation domain.

Corollary 3.6. Let S be a t-lcm t-splitting set of an integral domain D. Then D

is a PVMD (resp., UMT-domain) if DS is a PVMD (resp., UMT-domain).

Proof. Assume that DS is a PVMD (resp., UMT-domain), and let P be a maximal

t-ideal of D. CASE 1. P ∩S = ∅. Then PDS is a prime t-ideal of DS [6, Theorem

4.9], and hence DP = (DS)PDS is a valuation domain [23, Theorem 5] (resp., the

integral closure of DP = (DS)PDS
is a Prüfer domain [18, Theorem 1.5]). CASE 2.

P ∩ S 6= ∅. Then DP is a valuation domain by Corollary 3.5. Thus D is a PVMD

[23, Theorem 5] (resp., a UMT-domain [18, Theorem 1.5]). ¤

Let D be an integral domain with quotient fieldK and let X be an indeterminate

over D. Let G = {f ∈ D[X]|(Af )v = D}. This set was first used by Gilmer [20],

who showed that if D is a v-domain, then D is a PVMD if and only if D[X]G is

a Bezout domain. (Recall that D is a v-domain if every finitely generated ideal

I of D is v-invertible, i.e., (II−1)v = D.) The v-domain condition was relaxed

first to integrally closed integral domains by Zafrullah [36] and then shown to be

completely unnecessary by Kang [26]. Huckaba and Papick [25] have also used this

set in the more general setting of rings with zero divisors and so has Kang [28]. We
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note that if we show that G is a t-lcm t-splitting set of D[X], then we have actually

shown that if D[X]G is a PVMD, then D is a PVMD.

Proposition 3.7. Let D be an integral domain, X an indeterminate over D, G =

{f ∈ D[X]|(Af )v = D}, and ∅ 6= S ⊆ G a multiplicative subset of D[X]. Then

S is a t-lcm t-complemented t-splitting set of D[X]. In particular, if N is the t-

complement of S, then D[X]N is a PID.

Proof. Let P be the set of all uppers to zero in D[X] that intersect S. Then by [24,

Theorem 1.4], every member of P is a maximal t-ideal and t-invertible. Thus (∗)

if A is an integral ideal of D[X] such that A is not contained in any member of P ,

then (A, g)t = D[X] for all g ∈ S. Indeed, (A, g) is contained in no upper to zero,

so it contains some nonzero a ∈ D. Consequently, (A, g)t contains (a, g)t =D[X].

Now let 0 6= f ∈ D[X]. If f does not belong to any member of P, then by (∗)

above (f, g)t = D[X] for all g ∈ S, and so we can write fD[X] = (fD[X])D[X] =

((fD[X])D[X])t, where obviously D[X] is t-invertible such that D[X] ∩ S 6= ∅.

Next let f be in some members of P. Then, as f belongs to only a finite number

of uppers to zero in D[X], f belongs to only finitely many members of P . Suppose

that f ∈ P1, . . . , Pr only. Let us start with P1. Since P1 is t-invertible and f ∈ P1,

we have fD[X] = (A1P1)t where A1 = fP−11 . If A1 * P1, we are done and

move to the next stage. Yet if A1 ⊆ P1, we can write (A1)t = (A2P1)t and so

fD[X] = (A2(P1)
2)t, and since D[X]P1 is a DVR, continuing this way we come

to a stage where fD[X] = (An1(P1)
n1)t and An1 * P1. Repeating this procedure

with P2, . . . , Pn, we conclude that fD[X] = (AP
n1
1 · · ·Pnr

r )t where At and hence A

is not contained in any member of P. For if A were in any member P of P , then

P 6= Pi and P would contain At which contains f , and this would contradict the

assumed fact that f ∈ P1, . . . , Pr only. Now by (∗), (A, g)t = D[X] for all g ∈ S.

Finally since (Pn1
1 · · ·Pnr

r )t = B intersects S, S is a t-splitting set.

Let K be the quotient field of D, T = {A1 · · ·An|Ai = fiD[X]S ∩D for some

0 6= fi ∈ D[X]}, and D[X]T = {x ∈ K(X)|xC ⊆ D[X] for some C ∈ T }. Then

K[X] ⊆ D[X]T since dD[X]S ∩D[X] = dD[X] for all 0 6= d ∈ D. Also, since K[X]

is a PID, D[X]T = K[X]T for some saturated multiplicative subset T of K[X] [21,

Proposition 27.3]. Let N = T ∩D[X]; then clearly D[X]T = D[X]N , and thus S is

a t-lcm t-complemented t-splitting set by Theorem 3.4. ¤

Recall that an integral domain D is a Mori domain if D satisfies the ascending

chain condition on integral divisorial ideals. The most important examples of Mori
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domains include Noetherian domains and Krull domains. Also, recall that D is a

P-domain if for every associated prime ideal P of D, DP is a valuation domain.

Clearly PVMDs are P-domains since an associated prime ideal is a t-ideal [23,

Theorem 5]. But a P-domain need not be a PVMD (see [31]).

Corollary 3.8. Let D be an integral domain, X an indeterminate over D, G =

{f ∈ D[X]|(Af )v = D}, and ∅ 6= S ⊆ G a multiplicative subset of D[X]. Then

D[X] is a Krull domain (resp., Mori domain, integrally closed, completely integrally

closed, P-domain, UMT-domain, PVMD) if D[X]S is a Krull domain (resp., Mori

domain, integrally closed, completely integrally closed, P-domain, UMT-domain,

PVMD).

Proof. We first note that S is a t-complemented t-splitting set by Proposition 3.7.

Let T be the t-complement of S. Then D[X]T is a PID by Proposition 3.7 and

D[X] = D[X]S ∩ D[X]T [6, Theorem 4.3]. Thus D[X] is a Krull domain (resp.,

Mori domain, integrally closed, completely integrally closed) by [19, Proposition

1.4] (resp., [32, Théorème 1], [29, Theorem 52], [21, Ex. 11, page 145]).

Suppose that D[X]S is a P-domain, and let P be an associated prime ideal of

D[X]. Then P is minimal over an ideal of the form (fD[X] : gD[X]) for some

0 6= f, g ∈ D[X]; so P is a t-ideal. Since S is a t-splitting set, either P ∩ S = ∅

or P ∩ T = ∅ (cf. [6, Theorem 4.10]); hence PD[X]S0 is minimal over (fD[X]S0 :

gD[X]S0) ( D[X]S0 [21, Theorem 4.4], where S0 = S or T . Also, since D[X]S0

is a P-domain in any case, we have that D[X]P = (D[X]S0)PD[X ]S0 is a valuation

domain, and thus D[X] is a P-domain. The UMT-domain and PVMD cases follow

directly from Corollary 3.6 and Proposition 3.7. ¤

In [11], it was shown that an integral domain D is integrally closed if and only if

every irreducible monic polynomial over D is a principal prime. Recently, McAdam

[30] has shown that D is integrally closed if and only if every (non constant) monic

polynomial over D is uniquely expressible as a product of irreducible (monic) poly-

nomials. Let us see how to put to use this windfall of information, i.e., the fact that

if D is integrally closed then every irreducible (non constant) monic polynomial in

D[X] is a principal prime. Our application is for the ring DhXi = D[X]U , where U

is the multiplicative subset of D[X] generated by monic polynomials in D[X]. This

ring was used by Quillen [33] in solving the Serre conjecture and it is considered

worth-while to check the transfer of properties from D to DhXi and vice versa.

This construction has been studied by several authors including D.D. Anderson,
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D.F. Anderson, and R. Markanda [2] and Le Riche [34]. The properties we have

in mind are of interest in that they are the most basic and other properties can be

derived from these. We also provide more direct proofs of other results via Nagata’s

theorem for UFD’s and its modification for Krull domains.

Let us recall that an element 0 6= x ∈ D is a primal element if for all 0 6= a, b ∈ D,

x|ab implies that x = rs where r|a and s|b. A primal element x is said to be

completely primal if every factor of x is primal. An integrally closed integral domain

D is called Schreier if every nonzero element ofD is primal. The notion of a Schreier

domain was introduced by Paul Cohn [17]. In [17], the following statements were

established: (1) LetD be an integrally closed integral domain and S a multiplicative

subset of D. Then (i) if D is Schreier, so is DS and (ii) if DS is Schreier and S

is generated by completely primal elements of D, then D is Schreier [17, Theorem

2.6]. (2) Let D be a Schreier domain and X an indeterminate over D, then D[X]

is again a Schreier domain [17, Theorem 2.7]. Indeed, if D[X] is Schreier, then D

is also Schreier since D\{0} is a saturated multiplicative subset of D[X] consisting

of completely primal elements of D[X] and hence of D, via degree considerations,

and further since D[X] being integrally closed implies D integrally closed.

Proposition 3.9. Let D be an integral domain, X an indeterminate over D, and

let U be the set of all monic polynomials in D[X]. Then D is a Schreier domain if

and only if D[X]U = DhXi is a Schreier domain.

Proof. Assume thatD[X]U =DhXi is a Schreier domain. ThenD[X]U is integrally

closed, and hence D[X] is integrally closed by Corollary 3.8. This means that U

is generated by principal primes of D[X] (cf. [11, Theorem 3.2] or [30, Theorem]).

Hence U is a splitting set of D[X] generated by principal primes (Corollary 2.5

and Proposition 3.7), and thus D[X] is Schreier by [17, Theorem 2.6] mentioned

above. Now D[X] being Schreier implies that D is Schreier as we remarked above.

The converse is obvious via Cohn’s results [17, Theorems 2.6 and 2.7] mentioned

above. ¤

Now we attend to another basic property, that of being a PVMD.

Proposition 3.10. Let D be an integral domain, X an indeterminate over D, and

let U be the set of all monic polynomials in D[X]. Then D is a PVMD if and only

if D[X]U =DhXi is a PVMD.
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Proof. Since U is a subset of G = {f ∈ D[X]|(Af )v = D}, it follows directly from

Corollary 3.8 that if D[X]U is a PVMD then D[X] is a PVMD, and thus D is a

PVMD (cf. [8, Corollary 3.3 (3)] or [26, Theorem 3.7]). The converse follows from

the well-known facts that if D is a PVMD then D[X] is a PVMD [26, Theorem 3.7]

and that rings of fractions of PVMDs are PVMDs. ¤

The fun starts when we note that D is a GCD-domain if and only if D is a

PVMD and Schreier [37, Theorem 3.6]. So, combining Propositions 3.9 and 3.10

we have the following result due to Le Riche [34, Proposition 1.1]

Proposition 3.11. Let D be an integral domain, X an indeterminate over D, and

let U be the set of all monic polynomials in D[X]. Then D is a GCD-domain if

and only if D[X]U = DhXi is a GCD-domain.

Proposition 3.11 can be proved more directly with a very short proof via a

Nagata-type Theorem: If S is an lcm-splitting set of D such that DS is a GCD-

domain, then D is a GCD-domain (cf. [3, Theorem 4.3]). But then we would miss

Propositions 3.9 and 3.10 completely.

Proposition 3.12. ([2, Theorems 5.2 and 5.3] and [34, Proposition 1.2]) Let D

be an integral domain, X an indeterminate over D, and let U be the set of all

monic polynomials in D[X]. Then D is a Krull domain (resp., UFD) if and only

if D[X]U =DhXi is a Krull domain (resp., UFD).

Proof. Clearly if D is a Krull domain (resp., UFD), then so is DhXi. For the

converse, we note that by Corollay 3.8, D is a Krull domain anyway. For the UFD

part, we note that D is a UFD if and only if D is Krull and Schreier, and apply

Proposition 3.9. Or note that DhXi UFD implies that D is integrally closed and

so U is generated by principal primes, and then apply Nagata’s theorem for UFDs

to conclude that D[X] is a UFD, which forces D to be a UFD. ¤

Recall that an integral domain D is an almost GCD-domain (AGCD-domain)

if for each 0 6= a, b ∈ D, there is an integer n = n(a, b) ≥ 1 such that anD ∩ bnD

is principal. It is well known that if D is an AGCD-domain then Cl(D) is torsion

and that D is an integrally closed AGCD-domain if and only if D is a PVMD with

Cl(D) torsion.

Corollary 3.13. Let D be an integral domain, X an indeterminate over D, and

let U be the set of all monic polynomials in D[X]. Then D is an integrally closed



18 G.W. CHANG, T. DUMITRESCU, AND M. ZAFRULLAH

AGCD-domain (resp., almost factorial Krull domain) if and only if D[X]U = DhXi

is an integrally closed AGCD-domain (resp., almost factorial Krull domain).

Proof. Recall that if D is integrally closed then Cl(D) = Cl(DhXi) [14, Corollary

1.3], and thus the results follow from Propositions 3.10 and 3.12. ¤
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