
t-SCHREIER DOMAINS

TIBERIU DUMITRESCU AND MUHAMMAD ZAFRULLAH

A�������. We study, under the name t-Schreier, the class of those integral
domains whose group of t-invertible t-ideals satisfies the Riesz interpolation
property. The so called PVMDs and Prüfer domains are special cases of t-
Schreier domains. We show that while a number of results known for Prüfer
domains and PVMDs hold for these domains, the t-Schreier domains have a
remarkable capability of unifying various results in that the results proved for
t-Schreier domains can also be translated to results on pre-Schreier domains
and hence on GCD and Bezout domains.

1. I
����
����
.

The aim of this paper is to study integral domains D whose groups Invt(D)
of t-invertible t-ideals under t-multiplication are Riesz groups. We give the name
t-Schreier to these domains. Special cases of these domains are the Prüfer domains
and the so-called Prüfer v-multiplication domains (PVMDs). A working introduc-
tion to the not so well known notions will be provided below, before a more technical
description of our plan. For now, we characterize these domains, indicate their links
with the notions currently in literature, study their behavior under localizations and
polynomial extensions, and study when they are of finite t-character. Recall that a
domain D is of finite t-character if every nonunit of D belongs to at most a finite
number of maximal t-ideals.

Let G be a directed partially ordered abelian group. G is called a Riesz group if
whenever x ≤ a1 + a2 with x, a1, a2 ≥ 0 elements of G, there exist x1, x2 ∈ G such
that x = x1 + x2 and 0 ≤ xi ≤ ai, i = 1, 2. These groups were initially studied by
various mathematicians as directed groups G that satisfy the Riesz interpolation
property (RIP): given that x1, x2, ..., xm; y1, y2, ..., yn ∈ G such that xi ≤ yj for all
i ∈ [1,m], j ∈ [1, n] there is z ∈ G such that xi ≤ z ≤ yj for all (i, j) ∈ [1,m]×[1, n].
To our knowledge, these groups were studied for their own sake by Roger Teller
[31], where the equivalence of our definition and RIP can be found and in [16], and
that these papers appeared almost simultaneously. The next theorem [16, Theorem
2.2] gives several characterizations of this concept.

Theorem 1. For a directed ordered abelian group G, the following assertions are
equivalent:
(a) G is a Riesz group.
(b) For all ai, bj ∈ G with ai ≤ bj, i, j = 1, 2, there exists c ∈ G such that

ai ≤ c ≤ bj, i, j = 1, 2.
(c) For all m,n ≥ 2 and ai, bj ∈ G with ai ≤ bj, i ∈ [1,m], j ∈ [1, n], there exist

c ∈ G such that ai ≤ c ≤ bj, (i, j) ∈ [1,m]× [1, n].
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Let D be a domain. D is called a pre-Schreier domain cf. [12] and [33] if the
group of nonzero principal fractional ideals of D (ordered by reverse inclusion) is
a Riesz group. D is called a quasi-Schreier domain cf. [13] if the group of nonzero
invertible fractional ideals of D (ordered by reverse inclusion) is a Riesz group.
In this article we study domains D whose groups of t-invertible t-ideals, under
t-multiplication, ordered by reverse inclusion, are Riesz groups. Obviously, this
new concept depends upon the notion of star operations, the v-operation and the
t-operation. We assume this knowledge and refer the reader to sections 32 and 34
of [18] for a quick reference. For our purposes we give a working introduction here,
to the notions involved.

Throughout, the letter D denotes an integral domain with quotient field K and
F (D) denotes the set of nonzero fractional ideals. A star operation ∗ on D is a
function ∗ : F (D)→ F (D) such that for all A,B ∈ F (D) and for all 0 �= x ∈ K

(a) (x)∗ = (x) and (xA)∗ = xA∗,
(b) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B,
(c) (A∗)∗ = A∗.
For A,B ∈ F (D) we define the ∗-multiplication by (AB)∗ = (A∗B)∗ = (A∗B∗)∗.

A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗ and a ∗-ideal of finite
type if A = B∗ where B is a finitely generated fractional ideal. A star operation
∗ is said to be of finite character if A∗ =

⋃
{B∗ | 0 �= B is a finitely generated

subideal of A}. For A ∈ F (D) define A−1 = {x ∈ K | xA ⊆ D} and call A ∈ F (D)
∗-invertible if (AA−1)∗ = D. Clearly every invertible ideal is ∗-invertible for every
star operation ∗. If ∗ is of finite character and A is ∗-invertible, then A∗ is of finite
type. The most well known examples of star operations are: the v-operation defined
by A �→ Av = (A−1)−1, the t-operation defined by A �→ At =

⋃
{Bv | 0 �= B is

a finitely generated subideal of A}. By definition t is of finite character. If ∗ is
a star operation of finite character then using Zorn’s Lemma we can show that a
proper integral ideal maximal w.r.t. being a star ideal is a prime ideal and that
every proper integral ∗-ideal is contained in a maximal ∗-ideal. Denoting the set
of maximal ∗-ideals of D by ∗ −max(D), for a star operation ∗ of finite character,
we have D =

⋂

M∈∗−max(D)

DM [19, Proposition 4]. We call D of finite t-character

if every nonzero nonunit of D belongs to at most a finite number of maximal t-
ideals of D. A v-ideal A of finite type is t-invertible if and only if A is t-locally
principal i.e. for every M ∈ t − max(D) we have ADM principal. An integral
domain D is called a Prüfer v-multiplication domain (PVMD) if every nonzero
finitely generated ideal of D is t-invertible. According to Griffin [19, Theorem 5]
D is a PVMD if and only if DM is a valuation domain for each M ∈ t−max(D).
The set Invt(D) = {A ∈ F (D) | A is a t-invertible t-ideal} is obviously a group
under t-multiplication. If we define an order as A ≤ B if and only if A ⊇ B then
< Invt(D), ≤, ×t > is a directed group [34, Corollar 1.3]. Griffin [19, page 717]
with reference to Jaffard [23, page 55] observes that for a PVMD D < Invt(D), ≤,
×t > is a lattice ordered group, see [34, Proposition 2.4] for a direct proof and note
that for A,B ∈ Invt(D), sup(A,B) = A∩B and inf(A,B) = (A,B)t. Also Griffin
proves in [19, Theorem 7] that every nonzero nonunit of a PVMD belongs to at
most a finite number of maximal t-ideals if and only if Invt(D) satisfies Conrad’s
F-condition: Every positive element is greater than only a finite number of mutually
disjoint positive elements. Now as D is the identity of < Invt(D), ≤, ×t >, by the
definition of order A ≥ D implies that A ⊆ D. So positive elements of < Invt(D),
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≤, ×t > are precisely the integral t-invertible t-ideals. Moreover since in a p.o.
group G two positive elements are disjoint if inf(A,B) = identity of G, two integral
ideals A,B in Invt(D) are disjoint if (A,B)t = D i.e. if A,B are t-comaximal.
Let Inv(D) denote the group of invertible ideals, let P (D) be the group of nonzero
principal fractional ideals of D, and let X ⊳ Y denote “X is a subgroup of Y ". Then
P (D) ⊳ Inv(D) ⊳ Invt(D). The quotient groups Inv(D)/P (D), Invt(D)/P (D)
and Invt(D)/Inv(D) are respectively the Picard group Pic(D), the t-class group
Clt(D) and the local class group G(D). The Picard group is well known and the
other two were introduced in [9].

We say that D is a t-Schreier domain if Invt(D) is a Riesz group. More precisely,
D is a t-Schreier domain if whenever A,B1, B2 are t-invertible ideals of D and
A ⊇ B1B2, then A = (A1A2)t for some (t-invertible) ideals A1, A2 of D with
(Ai)t ⊇ Bi for i = 1, 2. This notion proved useful in the study of factorization of
t-invertible t-ideals with finitely many minimal primes in PVMDs in [15, Lemma
1.8], where it was shown that a PVMD is t-Schreier. Since a Prüfer domain is a
PVMD, studying t-Schreier domains covers a vast area of commutative ring theory
of interest.

We show that D is t-Schreier if and only if every finite intersection of nonzero
principal ideals is a directed union of t-invertible t-ideals, and consequently every
fraction ring of a t-Schreier domain is t-Schreier. Also, we show that D is a Krull
domain if and only if D is a t-Schreier Mori domain. (Recall that D is a Mori
domain if D satisfies ACC on integral divisorial ideals.) We prove that if the
polynomial ring D[X] is t-Schreier, then D is t-Schreier, and the converse is true
provided D is integrally closed. For an h-local domain D, we prove that D is t-
Schreier if and only if DP is t-Schreier for every maximal ideal P . Next we show
that if D is an integrally closed t-Schreier domain, S a multiplicative set in D, and
X an indeterminate over DS, then D + XDS[X] is t-Schreier. We also study t-
Schreier domains of finite t-character and show that a t-Schreier domain is of finite
t-character if and only if every proper integral t-invertible t-ideal is contained in
at most a finite number of mutually t-comaximal proper t-invertible t-ideals if and
only if every t-locally principal t-ideal of D is t-invertible. The latter equivalence
verifies the now famous Bazzoni Conjecture for t-Schreier domains.

Throughout this paper, all rings are commutative and unitary. Our standard
reference for any undefined notation or terminology is [18].

2. t-S������� �����
�

We start by linking t-Schreier domains with some known concepts.

Proposition 2. Let D be a domain.
(a) D is pre-Schreier if and only if D is t-Schreier with zero t-class group.
(b) D is quasi-Schreier if and only if D is t-Schreier with zero local class group.
(c) The following implications hold
D pre-Schreier domain ⇒ D quasi-Schreier domain ⇒ D t-Schreier domain.

Proof. (a). By [10, Proposition 1.4], a pre-Schreier domain has zero t-class
group, that is, every t-invertible t-ideal is principal. Clearly, a domain with zero
t-class group is pre-Schreier if and only if it is t-Schreier.
(b). Similarly, by [13, Corollary 2.5], a quasi-Schreier domain has zero local class

group, that is, every t-invertible t-ideal is invertible. Clearly, a domain with zero
local class group is quasi-Schreier if and only if it is t-Schreier.
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(c) follows from (a) and (b). •

The following theorem provides the characterizations of t-Schreier domains that
we consider important for this and future work on this topic.

Theorem 3. Let D be a domain. The following assertions are equivalent:
(a) D is a t-Schreier domain,
(b) every finite intersection of fractional t-invertible t-ideals is a directed union

of fractional t-invertible t-ideals,
(c) every finite intersection of nonzero principal ideals is a directed union of

t-invertible t-ideals,
(d) if a1,...,an ∈ D \ {0} and I is a finitely generated ideal contained in a1D ∩

· · · ∩ anD, there exists a t-invertible t-ideal J such that I ⊆ J ⊆ a1D ∩ · · · ∩ anD.

Proof. Let K be the quotient field of D. (a) ⇔ (b), by Theorem 1. (b) ⇒ (c) is
obvious. (c)⇒ (b). Every fractional t-invertible t-ideal I of D is a finite intersection
of nonzero fractional principal ideals. Indeed, if (I(y1, ..., yn))t = D with y1, ..., yn ∈
K \ {0}, then It = ((y1, ..., yn)t)

−1 = (y1, ..., yn)
−1 = y−11 D ∩ y−12 D ∩ · · · ∩ y−1n D.

Consequently, every finite intersection of fractional t-invertible t-ideals can be writ-
ten as d−1(a1D ∩ · · · ∩ anD) with d, a1, ..., an ∈ D \ {0}. (c) ⇔ (d) is clear. •

The following corollary is inspired by [26, Theorem 2].

Corollary 4. Let D be a domain with quotient field K. The following assertions
are equivalent:
(a) D is integrally closed and t-Schreier,
(b) for every 0 �= f ∈ K[X], the ideal fK[X]∩D[X] is the union of ideals IfD[X]

where I runs over the set of t-invertible fractional subideals of c(f)−1, where c(f)
denotes the content ideal of f .

Proof. (a)⇒ (b). Let 0 �= f ∈ K[X] and g ∈ fK[X]∩D[X]. Since D is integrally
closed, g belongs to c(f)−1fD[X], cf. [18, Corollary 34.9]. So g/f ∈ c(f)−1D[X];
in particular, g/f ∈ K[X]. Then J := c(g/f) ⊆ c(f)−1. D is t-Schreier, so part
(b) of Theorem 3 implies there exists a t-invertible fractional ideal I such that
J ⊆ I ⊆ c(f)−1. It follows that g/f ∈ ID[X], hence g ∈ IfD[X]. (b) ⇒ (a). We
get fK[X]∩D[X] = c(f)−1fD[X] for each 0 �= f ∈ K[X], so D is integrally closed,
cf. [29, Lemme 1]. Let 0 �= f ∈ K[X], J ⊆ c(f)−1 a finitely generated fractional
ideal and let g ∈ K[X] with J = c(g). Then gf belongs to fK[X] ∩ D[X]. By
hypothesis, there exists a t-invertible ideal I ⊆ c(f)−1 such that gf ∈ IfD[X]. We
get g ∈ ID[X], so J ⊆ I ⊆ c(f)−1. Hence D is t-Schreier, by part (b) of Theorem
3. •

Corollary 5. Let D be a t-Schreier domain and a1,...,an ∈ D \ {0}. If the ideal
I := a1D ∩ · · · ∩ anD is v-finite, then I is t-invertible.

Proof. Assume that I = (b1, ..., bk)v with b1,...,bk ∈ I \ {0}. By part (d) of The-
orem 3, there exists a t-invertible t-ideal J such that (b1, ..., bk) ⊆ J ⊆ I. Hence
I = Jt = J . •

Recall that in [6] and in [2] a domain D was called v-coherent if the intersection
of every pair of nonzero principal ideals is an ideal of finite type. It so happens that
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the term v-coherent has been used by other authors for an apparently more general
concept. To be exact a domain D is called v-coherent in [17] if the intersection
of every pair A,B of v-ideals of finite type is of finite type. They also showed
[17, Proposition 3.6] that D is v-coherent if and only if for each finitely generated
ideal I of D, I−1 is of finite type. In the presence of this usage of “v-coherent" we
have no choice but to call a domain v-finite conductor if the intersection of every
pair of nonzero principal fractional ideals is a v-ideal of finite type, and repair any
damage done by the oversight in [6] and in [2]. As we shall see in the sequel, for
a t-Schreier, quasi Schreier, or for a pre-Schreier domain the property of D being
a v-finite conductor and that of D being a v-coherent domain are equivalent. It is
worth a mention also that as far as the authors know there is no example known of
a v-finite conductor domain that is not v-coherent.

For the next corollary let us note that if I is a finitely generated nonzero ideal
in a PVMD D then I−1 is a v-ideal of finite type, because I is t-invertible. Also
note that D is a Mori domain if and only if for each nonzero ideal I of D there is a
finitely generated ideal F ⊆ I such that Fv = Iv. So, in particular, I−1 is of finite
type. In other words, a Mori domain is v-coherent.

Corollary 6. Let D be a domain.
(a) The following are equivalent: (i) D is a PVMD, (ii) D is v-coherent and

t-Schreier, (iii) D is v-finite conductor and t-Schreier.
(b) D is a Krull domain if and only if D is a t-Schreier Mori domain.

Proof. (a). (i) ⇒ (ii) If D is a PVMD, then every finite intersection of nonzero
principal ideals is a t-invertible ideal, so D is v-coherent and t-Schreier, by part
(c) of Theorem 3. (ii) ⇒ (iii) is obvious. Finally for (iii) ⇒ (i) note that if D is
t-Schreier, then for every pair a, b ∈ D\{0} the ideal aD ∩ bD is t-invertible, by
Corollary 5. From this it follows that for every pair a, b ∈ D\{0} the ideal (a, b) is
t-invertible, a necessary and sufficient condition for D to be a PVMD ([24, Corol-
lary 1.8]). (b) follows from (a), since a Krull domain is precisely a Mori PVMD. •

From part (a) it is evident that for a t-Schreier domain (and hence for a quasi
Schreier domain or pre-Schreier domain) v-finite conductor is equivalent to v-
coherent. Now since [6] and [2] dealt mainly with quasi-Schreier and t-Schreier
domains calling a v-finite conductor domain v-coherent did not have any ill effect.

Theorem 7. Every flat overring (e.g., a fraction ring) of a t-Schreier domain is
t-Schreier.

Proof. Let D be a t-Schreier domain and E a flat overring of D. Let I be a finite
intersection of nonzero principal ideals of E. Then bI = a1E ∩ · · · ∩ anE for some
a1,...,an, b ∈ D \ {0}. By part (c) of Theorem 3, the ideal J := a1D ∩ · · · ∩ anD is
the union of a directed family {Qj}j of t-invertible t-ideals of D. Then I = b−1JE
is the directed union of the t-invertible t-ideals b−1(QjE)t of E. •

To prepare for the next result we recall from [11] that a prime ideal P of D is
called an associated prime of a principal ideal if P is minimal over an ideal of the
type (a) :D (b) for some a, b ∈ D such that (0) �= (a) :D (b) �= D. It was shown in
[32, Lemma 6] that if P is an associated prime of a principal ideal of D then PDP

is a prime t-ideal of DP .
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Corollary 8. Let D be a t-Schreier domain. Then for each associated prime P of
a principal ideal of D the localization DP is a pre-Schreier domain.

Proof. DP is t-Schreier by Theorem 7. But as P is an associated prime of a principal
ideal PDP is a t-ideal. So every t-invertible t-ideal of DP is principal. So any
statement involving t-invertible t-ideals is about principal ideals and combining
this fact with DP being t-Schreier we have the result. �

Theorem 9. Let D be an integrally closed integral domain.
(a) If the polynomial ring D[X] is t-Schreier, then D is t-Schreier.
(b) If D is t-Schreier, then D[X] is t-Schreier.

Proof. (a) Let a1,...,an ∈ D \ {0} and J a nonzero finitely generated ideal of D
contained in a1D∩· · ·∩anD. As D[X] is t-Schreier, there exists a t-invertible t-ideal
I of D[X] such that J ⊆ I ⊆ a1D[X]∩· · ·∩anD[X]. Because D is integrally closed
I = QD[X] for some t-invertible t-ideal Q of D [3, Theorem 3.1]. Contracting to
D we get J ⊆ Q ⊆ a1D ∩ · · · ∩ anD.
(b) Assume that D is an integrally closed t-Schreier domain. Let I be a finite

intersection of nonzero principal ideals of D[X]. As remarked at the end of the
proof of [2, Theorem 9] there exist a1,...,an ∈ D and f, g ∈ D[X] \ {0} such that
fI = g(a1D[X] ∩ · · · ∩ anD[X]). By part (c) of Theorem 3, the ideal J := a1D ∩
· · · ∩anD is the union of a directed family {Qj}j of t-invertible t-ideals of D. Then
I = (g/f)JD[X] is the directed union of the t-invertible t-ideals (g/f)QjD[X] of
D[X]. •

Corollary 10. Let D be an integrally closed t-Schreier domain and let S ⊆ D a
multiplicative set. Then D +XDS[X] is a t-Schreier domain.

Proof. Set E = D +XDS[X] and K = the quotient field of D. Let f1, ...fn ∈
E − {0} and g1, ..., gm ∈ ∩ifiE. Since E = ∪s∈SD[X/s] we can assume that
fi,gj ∈ D[X] and gj ∈ ∩ifiD[X]. D is integrally closed, so as argued in the proof
of part (b) of Theorem 9, there exist 0 �= w ∈ K(X) and a1, ..., ap ∈ D such
that w(∩ifiD[X]) = ∩kakD[X]. So w(g1, ..., gm)D[X] ⊆ ∩kakD[X]. As D is t-
Schreier, c(wg1) + · · · + c(wgm) ⊆ I ⊆ ∩kakD for some t-invertible ideal I of D,
where c(wgj) is the content ideal of wgj . We get (g1, ..., gm)D[X] ⊆ w−1ID[X] ⊆
w−1(∩kakD[X]) = ∩ifiD[X], hence (g1, ..., gm)E ⊆ w−1IE ⊆ ∩ifiE. Finally, since
E is a flat D-module, w−1IE is a t-invertible ideal of E. •

Let D be a domain and F a family of nonzero prime ideals of D. According to
[5] F is called an IFC family if D = ∩P∈FDP , every nonzero x ∈ D belongs to only
finitely many members of F , and if no two members of F contain a nonzero prime
ideal of D. We say that D is an F-IFC domain if D has an IFC family F . The class
of F-IFC domains includes the h-local domains of Matlis [25], Noetherian domains
whose grade-one primes are of height one, Krull domains, the generalized Krull
domains of Ribemboim [30] and independent rings of Krull type of Griffin [20]. Let
F be an IFC family. The mapping I �→ I∗ = ∩P∈F(IDP )t : F (D) → F (D) is a
finite character star operation on D.

Theorem 11. An F-IFC domain D is t-Schreier if and only if DP is t-Schreier
for every P ∈ F .
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Proof. The "only if" follows from Theorem 7. For the "if" part, let I ⊇ AB
with I,A,B t-invertible t-ideals of D and let M1,M2, ...,Mn be the members of
F containing I. For each i, set Di = DMi

, Ii = IDi, Ai = ADi, Bi = BDi.
Clearly, Ii, Ai, Bi are t-invertible t-ideals of Di and Ii ⊇ AiBi. Since Di is t-
Schreier, Ii = (A′′iB

′′
i )t for some t-invertible t-ideals A′′i , B

′′
i of Di with A′′i ⊇ Ai

and B′′i ⊇ Bi. Since D is an F-IFC-domain, the only member of F which can
contain A′i = A′′i ∩D (resp. B′i = B′′i ∩D) is Mi, cf. [5, Lemma 2.3]. Let ∗ be the
star operation on D given by I �→ I∗ = ∩P∈F (IDP )t (see the paragraph preceding
Theorem 11). Set A′ = A′1A

′
2 · · ·A

′
n and B′ = B′1B

′
2 · · ·B

′
n. For i = 1, ..., n, we

get ((AB)Mi
)t = (A

′
iB

′
iDMi

)t = (Ii)t, so I∗ = (A′B′)∗. Hence I = It = (A′B′)t,
because ∗ is a star operation of finite type cf. [1, Theorem 2]. Similarly, we get
that A′t ⊇ At and B′t ⊇ Bt. Thus D is t-Schreier. •

3. t-S������� �����
� �� ��
��� t-���������

In this section we use a modification of the approach of [28] in order to charac-
terize the t-Schreier domains of finite t-character. As a consequence of this work
we can conclude that every nonzero element of a Prüfer domain D belongs to a
finite number of maximal ideals of D if and only if every nonzero finitely generated
ideal of D is contained in at most a finite number of mutually comaximal proper
invertible ideals. The following result extends [28, Proposition 2.1].

Proposition 12. Let D be a t-Schreier domain and x1, ..., xn ∈ D\{0} such that
(x1, ..., xn)v �= D. Then there exists a t-invertible t-ideal H such that (x1, ..., xn) ⊆
H �= D.

Proof. Since (x1, ..., xn)v �= D, we have (x1, ..., xn) ⊆
a
b
D ∩ D, for some

a, b ∈ D \{0} with a not dividing b, cf. [34, Observation A, page 432]. By Theorem
3, there exists a t-invertible t-ideal H such that (x1, ..., xn) ⊆ H ⊆ a

b
D∩D ⊂ D. •

Following [28] we call a t-invertible t-ideal A �= D homogeneous if A �= D and
for all t-invertible t-ideals H,K �= D with H,K ⊇ A we have (H,K)t �= D. The
following result is an extension of [28, Proposition 2.1].

Proposition 13. Let D t-Schreier domain and A a proper t-invertible ideal of D.
Then A is homogeneous if and only if A is contained in a unique maximal t-ideal.

Proof. (⇐). Suppose that A is contained in a unique maximal t-ideal M and let
H,K be proper t-invertible t-ideals containingA. ThenH,K ⊆M , so (H,K)t ⊆M.
(⇒). Suppose that A is contained in two distinct maximal t-ideals M1,M2. Hence
(M1,M2)t = D, so we can choose finitely generated ideals Fi ⊆ Mi, i = 1, 2, such
that A ⊆ (Fi)t and (F1, F2)t = D. By Proposition 12, there exist proper t-invertible
t-ideals Gi such that Fi ⊆ Gi, i = 1, 2. Hence A ⊆ G1, G2 and (G1, G2)t = D, so
A is not homogeneous. •

Recall that a domain D is said to be of finite t-character if every nonzero element
of D belongs to finitely many maximal t-ideals. Recently the authors [14] have
used the property of t-Schreier domains given in Proposition 12 to call an integral
domain D ∗-sub-Prüfer, for a finite character star operation ∗, if every nonzero
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finitely generated ideal I of D with I∗ �= D is contained in a ∗-invertible ∗-ideal
of D. The results that follow are consequences of considerations in [14]. But since
[14] is very compact and essentially proves only one very general theorem it would
be useful to go through the proofs of the following results, step by step.

Theorem 14. For a t-Schreier domain D, the following assertions are equivalent:
(a) D is of finite t-character.
(b) Every infinite family of proper mutually t-comaximal t-invertible t-ideals has

zero intersection.

Proof. The implication (a)⇒ (b) is clear since a maximal t-ideal cannot contain
two t-comaximal t-ideals. Conversely, assume that (b) holds. Denote by Γ the
set of proper t-invertible t-ideals of D. First we show the following property: (♯)
every ideal in W ∈ Γ is contained in some homogeneous ideal. Deny. As W is
not homogeneous, there exist P1, N1 ∈ Γ containing W such that (P1, N1)t = D.
Since N1 is not homogeneous, there exist P2, N2 ∈ Γ containing N1 such that
(P2, N2)t = D. Note that (P1, P2)t = (P1, N2)t = D. By induction, we can
construct an infinite sequence (Pk)k≥1 of mutually t-comaximal ideals in Γ with
W ⊆ Pk, k ≥ 1. This fact contradicts condition (b). So (♯) holds.

Now, let I be a proper t-invertible t-ideal of D. By (♯), I is contained in some ho-
mogeneous ideal H1. Assume there is some J1 ∈ Γ containing I with (J1,H1)t = D.
By (♯), J1 is contained in some homogeneous ideal H2. So H1,H2 are t-comaximal.
Assume there is some J2 ∈ Γ containing I with (J2,Hi)t = D, i = 1, 2. By (♯),
J2 is contained in some homogeneous ideal H3. So H1,H2,H3 are mutually t-
comaximal. We can continue in this way. By (b), this process has to stop after
a finite number of steps. At that moment we find a finite set H1, ...,Hn ∈ Γ of
mutually t-comaximal homogeneous ideals containing I such that there is no J ∈ Γ
containing I with (J,Hi)t = D, 1 ≤ i ≤ n. Let M be a maximal t-ideal containing
I and 0 �= x ∈ M . Then (I, x) is not t-comaximal with some ideal Hj . Since Hj

is homogeneous, we get x ∈ (I, x) ⊆ Mj , where Mj the unique maximal t-ideal
containing Hj (cf. Lemma 13). So M ⊆ M1 ∪ · · · ∪Mn. By the Prime Avoidance
Lemma, M is contained in some Mk, hence M = Mk. Thus M1, ...,Mn are the
maximal t-ideals containing I. Hence (a) holds. •

We recall that Griffin [20] called a PVMD of finite t-character a ring of Krull
type. Since a PVMD is a t-Schreier domain we have the following corollary.

Corollary 15. A PVMD is a ring of Krull type if and only if every infinite family
of proper mutually t-comaximal t-invertible t-ideals has zero intersection.

Next, we adapt a recent result proved by the second author [35] for PVMDs to
show that for a t-Schreier domain D to be of finite t-charater it is enough to show
that every t-locally principal ideal is t-invertible. We need the following lemma.
Let us first recall that if {Mα} is the set of all maximal t-ideals of D, then the
operation A �→ Aw = ∩ADMα

is a star operation of finite character and so w ≤ t,
i.e. (Aw)t = At.

Lemma 16. If A1, A2, ..., An are mutually t-comaximal ideals then (A1 ∩A2∩ ...∩
An)t = (A1A2...An)t.

Proof. Since Ai are mutually t-comaximal, they do not share a maximal t-
ideal. Now if M is a maximal t-ideal that does not contain any of Ai then DM =
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(A1 ∩A2 ∩ ...∩An)DM = (A1A2...An)DM . If on the other hand M is a maximal t-
ideal that contains at least one and hence exactly one of them, say Ai then AiDM =
(A1∩A2∩...∩An)DM = (A1A2...An)DM . Thus (A1∩A2∩...∩An)w = (A1A2...An)w,
but this means (A1 ∩A2 ∩ ... ∩An)t = (A1A2...An)t. •

Proposition 17. A t-Schreier domain D is of finite t-character if and only if every
t-locally principal t-ideal of D is t-invertible.

Proof. If D is of finite t-character, then every t-locally principal ideal is t-
invertible, cf. [4, Lemma 2.2]. Conversely, assume that D is not of finite t-character.
We shall construct a t-locally principal ideal which is not t-invertible. By Theorem
14, there is an integral t-invertible t-ideal A and an infinite sequence (Hn)n≥1
of proper mutually t-comaximal t-invertible t-ideals such that A is contained in
every Hn. Let x ∈ A\{0}. By Lemma 16, x ∈ (H1 · · ·Hn)t for each n ≥ 1, so
(H−1

1 · · ·H−1
n )tx ⊆ D. We get the ascending sequence of t-ideals

(H−1
1 )tx ⊂ (H

−1
1 H−1

2 )tx ⊂ ... ⊂ (H−1
1 · · ·H−1

n )tx ⊂ ... .

Each inclusion is strict since (H−1
1 · · ·H−1

n )tx = (H−1
1 · · ·H−1

n H−1
n+1)tx implies

Hn+1 = D, because every Hi is t-invertible. So F = ∪n≥1(H
−1
1 · · ·H−1

n )tx is a
t-ideal but is not of finite type, hence is not t-invertible. We show that F is t-
locally principal. Let M be a maximal t-ideal of D. If M contains no Hn, then
FDM = xDM . Otherwise, M contains exactly one Hn, say Hn0 , because the ideals
Hn are mutually t-comaximal. In this latter case, as Hn0 is t-invertible, we get that
FDM = xH−1

n0
DM = x(Hn0DM)−1 is principal. So F is a t-locally principal ideal

which is not t-invertible. •

Note that since a PVMD is t-Schreier and since a Prüfer domain is a PVMD in
which every nonzero ideal is a t-ideal, every result proved for t-Schreier domains
involving the t-operation is a result proved for PVMDs involving the t-ideals and
is a result for Prüfer domains involving nonzero ideals. So we have the following
corollary.

Corollary 18. A PVMD (resp., a Prüfer domain) D is of finite t-character (re-
spectively, of finite character) if and only if every t-locally principal (respectively,
locally principal) nonzero ideal of D is t-invertible (resp., invertible).

Bazzoni conjectured in [7] and [8] that if D is a Prüfer domain such that every
locally principal ideal is finitely generated then D is of finite character. Part of
Corollary 18 resolves Bazzoni’s conjecture, hopefully, in a manner simpler than
earlier verifications of her conjecture by Holland et al. [22], McGovern [27] and
Franz Halter-Koch [21]. Franz Halter-Koch worked with specializations of PVMDs
called ∗-Prüfer domains for ∗ of finite character, using the language of monoids and
of ideal systems. As it was indicated in [35] it is sufficient, in this case, to deal
with PVMDs. Our work extends the work done for PVMDs, in [35], to t-Schreier
domains. However remaining within t-Schreier domains we cannot cover the more
general approach of [35].
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