T-SPLITTING MULTIPLICATIVE SETS OF IDEALS IN
INTEGRAL DOMAINS

GYU WHAN CHANG, TIBERIU DUMITRESCU, AND MUHAMMAD ZAFRULLAH

Abstract. Let D be an integral domain. We study those multiplicative sets
of ideals S of D with the property that every nonzero principal ideal dD of
D can be written as dD = (AB)¢ with A, B ideals of D such that A contains
some ideal in § and (C'+ B)¢ = D for each C € S.

Let D be an integral domain with quotient field K and let F(D) be the set of
nonzero fractional ideals of D. Clearly, for A € F(D), A=t = D :i A is again in
F (D). Recall that a mapping A — A* of F'(D) into itself is called a star operation
on D if the following conditions hold for all @ € K \ {0} and A, B € F(D): (1)
(aD)* = aD, (aA)* = aA*, (2) A C A*, it A C B, then A* C B*, and (3)
(A*)* = A*. Ais a x-ideal if A = A*. For standard material about star operations,
see sections 32 and 34 of [9]. Three well-known examples of star operations are
the maps A — A (the d-operation), A — A, (the v-operation) and A +— A; (the t-
operation), where A, = (A71)~ and A, = U{B,| 0 # B C A is finitely generated}.
Clearly, A, = A; if A is finitely generated. An ideal A € F'(D) is t-invertible if
(AA1), = D. In this case A has finite type, that is, A, = (21, ..., 2,); for some
X1y ..y € Ao D is called a Prifer v-multiplication domain (PVMD), if every
finitely generated ideal A € F(D) is t-invertible. The t-class group Cl;(D) of D
is the group of t-invertible fractional t-ideals, under the product A« B = (AB)y,
modulo its subgroup of principal fractional ideals.

The following concept was introduced and studied in [3]. A multiplicative subset
S of D is said to be t-splitting, if for each d € D\ {0}, dD = (AB); for some ideals
A,B of D with 4, NS # 0 and (B,s); = D for each s € S. The main result of
[3] asserts that D + X Dg[X] is a PVMD if and only if D is a PVMD and S is a
t-splitting set of D, where D+ X Dg[X] is the subring of Dg[X] consisting of those
f € Dg[X] with constant term in D. The t-splitting sets are investigated further
in [6].

The main purpose of this note is to extend certain results from [3] and [6] to
the case of multiplicative sets of ideals. We aim to show that by using the notion
of t-splitting sets of ideals, we can explain a number of multiplicative phenomena
that cannot be explained otherwise or are hard to explain. The main concept we
use is that of a t-splitting set of ideals S of a domain D (see Definition 1). We
show that many results from [3] and [6] can be stated for t-splitting sets of ideals.
A characterization of S being t-splitting using the S-transform of D (see definition
below) is given in Proposition 5. In Theorem 12, we show that the presence of a
t-splitting set of ideals induces a natural cardinal product decomposition of the or-
dered monoid of fractional t-ideals of D (with the t-product and ordered by reverse
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inclusion). Restricting to t-prime ideals, this decomposition gives a well-behaved
partition of the set of t-prime (resp. t-maximal) ideals of D (see Remark 14 and
Corollary 15). Some applications for PVMDs and Krull domains are given in Propo-
sitions 16 and 17. The final part of this note contains several Nagata-type theorems.

Throughout this note, all rings are integral domains. All undefined terminology
is standard as in [9]. Let D be an integral domain with quotient field K, S a
multiplicative set of ideals of D and Ds = {z € K| A C D for some A € S} the
S-transform of D (see [4] for basic properties of this construction). If T is an ideal
of D, then Is = {z € K| zA C I for some A € S} is an ideal of Dg containing
I. Denote by S* the set of all ideals B of D with (A+ B); = D for all A € S.
Note that S+ is also a multiplicative set of ideals. Call it the t-complement of
S. Consider also, the multiplicative set of ideals sp(S) 2 S consisting of all ideals
C of D with C; D A for some A € S. It is easy to see that sp(sp(S)) = sp(S),
S])(S)l = Sl and Ds = Dsp(S)-
We begin by providing a formal definition of the notion of t-splitting sets of ideals.

Definition 1. Let S be a multiplicative set of ideals of D and S+ its t-complement.
We call § a t-splitting set of ideals if every nonzero principal ideal dD of D can be
written as dD = (AB), with A € sp(S) and B € S*.

Clearly, S is t-splitting if and only if sp(S) is t-splitting. If S C D is a saturated
multiplicative set of D and S = {sD| s € S}, then S is t-splitting in the sense of
[3] if and only if S is t-splitting in our sense.

In a Krull domain E, every nonzero proper principal ideal can be (uniquely) written
as a t-product of height-one primes [7, Theorem 3.12], so every set of height-one
prime ideals of E generates a t-splitting set (see also Proposition 17). Some easy
consequences of Definition 1 are given below.

Proposition 2. If S is a t-splitting set of ideals of D, then the following assertions
hold.

(a) S* is t-splitting.

(b) For every C' € S, C, contains some t-invertible ideal of sp(S).

(c) The set S; of all t-invertible ideals in sp(S) is a t-splitting set with t-complement
St and sp(S;) = sp(S).

Proof. (a) is clear from Definition 1. For (b) and (c¢), note that when0 #d e C € S
and dD = (AB); with A € sp(S) and B € S*, it follows that A is t-invertible and
C; D A. Indeed, as C € S and B € S*, we get (C+ B); = D, s0o A C A, =
(A(C'+ B)): C Cy. So, (b) follows, and, consequently, sp(S;) D sp(S). Thus (c)
follows from the remarks accompanying Definition 1. o

In [8], a multiplicative set of ideals S of D is said to be v-finite if for each
A € S, A, contains some v-finite ideal J € sp(S). Since an invertible t-ideal is
v-finite, part (b) of the preceding result shows that a t-splitting set is v-finite. Our
next result shows that, when § is t-splitting, the t-product decomposition imposed
in Definition 1 for the principal ideals extends to all t-ideals (thus extending [3,
Lemma 4.6]).

Proposition 3. Let S be a t-splitting set of ideals of D. Then for every nonzero
ideal I of D, I, can be written as I, = (AB), with A € sp(S) and B € S*.
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This decomposition is unique in the following sense. If (AB); = (A'B’); with
A A" € sp(S) and B, B’ € S*, then A, = A, and B; = B,. In particular, if I, is
of finite type, then we can choose A and B to be finite type ¢-ideals.

Proof. Let I be a nonzero ideal of D and set J = I'\{0}. As S is a t-splitting set, for
epsh j € J, wpran write jD =gbA; B;), with A; gsp(S) and Bjs S*. Then I, =
(iD= J(AB)i=( ABe But ( ABy) = (C , A Bi).
Indeed, the inclusion C is clear. gor 2, let h,i € J, h # 1. The@(Ai + By) =D,
BAILBi - (A}LBl(AZ +Bh))t - ( jAij)t- Finally, note that jAj S sp(S) and

j Bj eSt.

For the uniqueness part, assume that (AB), = (A’B’); with A, A’ € sp(S) and
B,B" € §*. Since (A+ B'); = (A + B); = D, we get A, = (A(A' + B)); =
(AA"+ (AB)y); = (AA + (A’B')y): = ((A+ B")A"), = A}. Similarly, B, = B;.

The “in particular” part was proved on the way. o

As a consequence, ST+ = sp(S). Indeed, let C be in the t-complement of S*.
As shown above, C; = (AB); for some A € sp(S) and B € S*. Since (C+ B); = D
and C' C By, we get By = D. So C; = A; € sp(S), hence C' € sp(S).

In Proposition 5, we generalize [3, Lemma 4.2]. We need the next lemma which
relies on [14, Lemma 3.4] and [8, Proposition 1.2].

Lemma 4. Let S be a multiplicative set of ideals of D and I a nonzero ideal of D.
Then

(a) (IDs)e = (1iDs):-

(b) If I is a t-invertible ideal of D and (IDs); = Ds, then I € sp(S).

Proof. (a) is a part of [14, Lemma 3.4]. For (b), assume that I is t-invertible. By
[8, Proposition 1.2, (JDs): = (J;)s for each finitely generated nonzero ideal J of
D with D : J v-finite. As [ is t-invertible, I; = J; for some finitely generated ideal
J C I. Moreover, D : I = D : J is v-finite and, by (a), (IDs); = (JDs):. So,
Ds =(IDs); = (JDs); = (Ji)s = (I)s. Hence 1 € (I})s, that is, H C I; for some
H € S. Consequently, I € sp(S). o

Proposition 5. Let S be a multiplicative set of ideals of D. Then S is t-splitting
if and only if S is v-finite and dDs N D is a t-invertible ideal for each 0 # d € D.

Proof. Assume that S is t-splitting. Then S is v-finite, as shown in the paragraph
after Proposition 2. Let 0 # d € D. Then dD = (AB); for some A € Sand B € S+.
As B is t-invertible, it suffices to show that dDs N D = B;. In particular, it will
follow that dDs N D € S*. As A(d™*B;) C d"Y(AB); = D, we get d"'B; C Dsg,
hence B; € dDs N D. On the other hand, let * € dDs N D. Then C(d~tz) C D
for some C' € S. So Cx C dD C By, hence z € By, because (C + B); = D.
Conversely, assume that S is v-finite and dDs N D is a t-invertible ideal for each
0#£deD. Let 0 £d e D. As B=dDs N D is a t-invertible ideal containing
dD, dD = (AB); for some (t-invertible) ideal A of D. Note that BDs C dDs. By
part (a) of Lemma 4, we get dDs = ((AB)¢Ds): = (ABDs): C (dADs):, hence
(ADs); = Ds. By part (b) of Lemma 4, A € sp(S). To verify that B € S+ =
sp(S)*, it suffices to show that (B + H); = D for each t-ideal H € sp(S). By the
second part of our assumption, we may assume that H is v-finite. If x € H-1NB~1,
then x € Dg, so Bx C BDsND =dDsND = B. As B is t-invertible, x € D. Thus
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(H+B)™' = H*nB~! = D, thatis, (H+B), = D. So (H+B); = (H+B), = D,
because H and B are v-finite ideals. Thus B € S*+. o]

To see that in the ’if” part of the preceding proposition, the assumption that S is
v-finite is essential, we may use the following example from [8]. Let V be a nontrivial
valuation domain whose maximal ideal M is idempotent and S = {D, M}. Then
Vs =V, because V : M = V. So dVs NV is t-invertible for each 0 # d € V.
However, S is not v-finite.

Remark 6. Let S be a t-splitting set of ideals of D, I a nonzero ideal of Dg and
0 #d e IND. As shown in the proof of Proposition 5, dDs N D € S*. Hence
IND e S*, because IND D dDs N D. Similarly, I N D € sp(S) whenever I is a
nonzero ideal of Dg. .

The next proposition is only a restatement, in our setup, of [3, Theorem 4.10].
The proof is virtually the same. We begin with a simple lemma.

Lemma 7. If S is a multiplicative set of ideals of D, then D = Ds N Dg..

Proof. Let x € DsNDg:. Then A C D and 2B C D for some A € S and B € S+.
SozD =x(A+ B); = (¢A+xB); C D, hence x € D. o

Proposition 8. Let S be a t-splitting set of ideals of D and I a nonzero ideal of
D. Then
I, =(IDs)iN(UDg1)y = (((IDs): N D)((IDs1): N D))y.

Proof. By Lemma 7, D = Ds N Dg1. Hence by [1, Theorem 2|, the map sending a
nozero fractional ideal A of D into A* = (ADs);N(ADg1 ), is a finite character star-
operation on D. Consequently, I; D I*. Part (a) of Lemma 4 supplies the opposite
inclusion. For the second equality, set U = (IDs); N D and V = (IDg. ), N D. By
Remark 6, U € S+ and V € sp(S), so (U + V); = D. Consequently, I, =U NV =
UnNV),=UV),. -

Remark 9. Let S be a t-splitting set of ideals of D and I a nonzero ideal of D. By
Proposition 3, I; = (AB); with A € sp(S) and B € S*. Combining the previous
result, Remark 6 and Proposition 3, we get A, = (IDg.);ND and B, = (IDg);ND.
Note that (IDs); N D and (IDg1); N D are t-ideals of D, c¢f. Lemma 4 and [5,
Proposition 1.1].

Let D be a domain. By definition, a t-prime ideal of D is a nonzero prime ideal of
D which is also a t-ideal. It is well-known that a prime ideal which is minimal over
a nonzero principal ideal is t-prime. Also, a maximal t-ideal, that is, a maximal
element of the set of all proper t-ideals, is a t-prime ideal (see e.g. [12]).

Proposition 10. Let S be a t-splitting set of ideals of D with t-complement S+
and let P be a prime t-ideal of D. Then P is either in sp(S) or in S*+. Moreover,
if Pc St and Q C P is a nonzero prime ideal, then Q € S*. A similar assertion
holds for sp(S).

Proof. If 0 # d € P and dD = (AB); with A € S and B € S*, then P D A or
P2 B. So P € sp(S) or P € S*, but not both because P; # D. For the second
part, we may assume that @ is a prime t-ideal, so Q € S, by the first part. o
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Lemma 11. Let S be a t-splitting set of ideals of D. Then
(a) (ADs); = Ds for each A € sp(S), and
(b) I=((IND)Ds); = (IND)g for each t-ideal I of Ds.

Proof. S is v-finite cf. Proposition 5, so we may apply [8, Proposition 1.8] and part
(iv) of [8, Proposition 1.5] to finish the proof. o

Denote by T'(D) the ordered monoid of fractional t-ideals of D with the t-product
and ordered by reverse inclusion and denote by T (D) its positive cone, that is,
T+ (D) = {A € T(D)| A C D}. When § is a multiplicative set of ideals of D,
T(Ds) x. T(Dg1) stands for the cardinal product of the monoids T'(Ds) and
T(Ds.). Our next result is an extension of [3, Theorem 4.12].

Theorem 12. If S is a t-splitting set of ideals of D, the map o : (D) — T(Ds) x
T(Dsv1), a(I) = ((IDs):,(IDg1):) is @ monoid order-isomorphism.

Proof. Clearly, « is an order-preserving monoid homomorphism. It suffices to show
that v = o |, (py: T+ (D) — T4 (Ds) x T+(Dg+) is a monoid order-isomorphism.
Consider the map § : T4 (Ds) x. T (Dsr) — T4 (D), p(I,J) = (I N D)(J N
D)); (note that IN'D € St and JN D € sp(S), cf. Remark 6). We prove
that v and 8 are inverse to each other. Indeed, if A € T4 (D), then S(y(4)) =
((ADs); N D)((ADg.); N D), = A cf. Proposition 8. Conversely, let (I,J) €
Ty (Ds) % Tw(Dgs) and set A = S(I,J) = ((IND)(JND));. Since JND € sp(S),
((JN D)Ds); = Ds, cf. Lemma 11. Again by Lemma 11, ((I N D)Dgs); = I.
So (ADs): = (I ND)Ds)y = I. Similarly, (ADg.); = J. Thus v(8(I,J)) =
(1,J). o

The next result extends [3, Remark 4.13]. Denote by T'I(D) the group of frac-
tional t-invertible t-ideals of D with the t-product and by CI,(D) the t-class group
of D, that is, the factor group of T'I(D) modulo its subgroup of principal fractional
ideals. For I € TI(D), let [I| denote the image of I in Cl;(D).

Remark 13. Let S be a t-splitting set of ideals of D. By Theorem 12, the map
a given there induces an isomorphism T'I(D) — TI(Ds) x TI1(Dg.). Moreover, if
A is a principal fractional ideal of D, then both components of «(A) are principal.
Consequently, v induces a surjective group homomorphism & : Cly (D) — Cly(Ds) %
Cliy(Dgv), a([I]) = ([(IDs)¢], [(IDg1)s]). As documented in [3, Remark 4.13], &
need not be a monomorphism.

For a domain D, let t-Spec(D) (resp., t-Max(D)) denote the set of all t-prime
ideals (resp., maximal t-ideals) of D.

Remark 14. Let S be a t-splitting set of ideals of D. From the proof of Theorem
12, we get a one-to-one correspondence between S+ N T4 (D) and T4 (Ds) given
by A+ (ADgs); and I — I N D. Restricting, we get a one-to-one correspondence
between S+ N¢-Spec(D) and t-Spec(Ds). By [4, Theorem 1.1], if Q € t-Spec(Ds),
then (Ds)q = Donp- Also, we get a one-to-one correspondence between sp(S) N
t-Spec(D) and t-Spec(Dg1 ). Note that by Proposition 10, the sets sp(S)Nt-Spec(D)
and S* N t-Spec(D) give a partition of t-Spec(D). Similar correspondences hold
when replacing t-Spec by t-Max.

Therefore, by Remark 14 and [4, Theorem 1.1], ¢-Max(Dg1) = {Psi;
sp(S)Nt-Max(D)} and (Ds1 )pg, = Dp for each P € sp(S)Nt- Max( ). Slmllarly,
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t-Max(Ds) = {Ps; P € St Nnt-Max(D)} and (Ds)ps = Dp for each P € St n
t-Max(D).

Corollary 15. Let S be a t-splitting set of ideals of D. Then Ds = N{Dp| P €
t-Max(D) NSt} and Dg. = N{Dp| P € t-Max(D) N sp(S)}.

Proof. By the preceding paragraph, Dg: = N{(Ds1)q| @ € t-Max(Dg.)} =
N{Dp| P € t-Max(D) N sp(S)}. The other equality can be proved similarly. o

Let us recall from [10] that D is a PVMD if and only if Dp is a valuation domain
for each maximal t-ideal P of D.

Proposition 16. Let S be a ¢-splitting set of ideals of D. Then every finite type
t-ideal in sp(S) is t-invertible if and only if Ds. is a PVMD.

Proof. (=) Let @ € t-Max(Dg.) and P = QN D. Then P € t-Max(D) N sp(S) by
Lemmas 4 and 11.

Let J be a nonzero finitely generated ideal of Dp. Then J = IDp where [ is a
finitely generated ideal of D. Then I; = (AB); for some A € sp(S) and B € S+.
Since P € sp(S), B* P, and so (IDp); = (I;Dp); = ((AB);Dp); = ((AB)Dp); =
(ADp);. Also, since [ is finitely generated, I;, and hence A; is of finite type; so A;
is t-invertible. Note that P is a prime t-ideal of D; so AA~! * P. Hence ADp and
IDp are invertible, and thus I Dp is principal. So Dp is a valuation domain. Thus
as Dp C (Ds1)q, (Ds1)q is a valuation domain, and thus Dg. is a PVMD.

(<) Let I € sp(S) be a finite type t-ideal of D, and let P € ¢t-Max(D). If
P & sp(S), then I * P, and hence IDp = Dp. Assume that P € sp(S). Then Pg.
is a t-ideal of Dg1 and Dp = (Dg1)p, - Since Dg1 is a PVMD, Dp is a valuation
domain. Also, since [ is a finite type t-ideal, I Dp is principal. Hence [ is t-locally
principal, and thus I is ¢-invertible, cf. [14, Proposition 2.6]. o

Our next result is a variant of [6, Theorem 2.2].

Proposition 17. Let I' be a collection of t-invertible prime t-ideals of D and S the
multiplicative set generated by I". Then the following statements are equivalent.
(a) S is a t-splitting set.
(b) N, Py --- P, =0 for each sequence (P,) of elements of I'.
(¢) Ds+ is a Krull domain.

Proof. Clearly, S+ is the set of ideals I of D contained in no P € I'. Note that
I' C t-Max(D) cf. [13, Proposition 1.3].

(a) = (c¢) Let Q € t-Max(D)Nsp(S) and @' C @ a minimal prime of a principal
ideal. Then @’ is a t-ideal and @’ € sp(S) cf. Proposition 10. Then Q' O P, --- P,
for some P, € I'. Hence Q' = P; = @ because P; € t-Max(D). Thus t-Max(D) N
sp(S) =T and each P € T" has height one. By Lemma 4, Ps. is t-invertible in Dg.
for each P € T'. By the paragraph after Remark 14, t-Max(Dg1) = {Ps.| P € T'}
and each Ps: has height one, because (Dgt) = Dp. By [15, Theorem 3.6],
Dg. is a Krull domain.

(¢) = (b) Let (P,) be a sequence of elements of I' and P = P,, for some n.
Clearly P ¢ St. As P is t-invertible, we have (PDg.); = Ps. (see the proof of
Lemma 4), so Ps. is a prime t-ideal of Dg.. Since Dg. is a Krull domain, we get
NP+ P, C mn(P]_)sL cee (Pn)sL =0.

(b) = (a) Assume that N, Py - -- P, = 0 for each sequence (P,) of ideals of I". Let
0+# d € D. Since each P € T is t-invertible, if I is a nonzero ideal contained in P,

Pgy
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we get I; = (PJ); with J = P~1I. We use repeatedly this factorization property
starting with I = dD. By our assumption on I', we get dD = (Py - - - P, J); for some
Pi,..,P, €T, n >0 and some ideal J contained in no P € T, thus J € S*. o

We recall that a Mori domain is a domain satisfying the ascending chain condition
on integral divisorial ideals.

Corollary 18. A collection of ¢-invertible prime ¢-ideals of a Mori domain gener-
ates a t-splitting set.

Corollary 19. A collection of t-invertible uppers to zero in D[X] generates a t-
splitting set.

Recall that with the realization of the power of splitting sets came various ex-
tensions of Nagata’s theorem for UFD’s (see e.g. [2]). Now the question is what
can the t-splitting sets of ideals do for us? In fact they can deliver a somewhat
modified version of Nagata type Theorems.

An integral domain D is said to be of finite ¢-character if every nonzero nonunit
of D belongs to only finitely many maximal t-ideals of D.

Proposition 20. Let S be a ¢-splitting set of ideals of an integral domain D, and
suppose that every proper ideal in S is contained in at most a finite number of
maximal ¢-ideals of D. Then Dg is a ring of finite ¢-character if and only if D is
a ring of finite ¢-character.

Proof. By Proposition 10 and the paragraph preceding Corollary 15, if P is a maxi-
mal t-ideal of D, then either P € sp(S) or P € St and that t-Max(Dg) = {Ps|P €
St Nt-Max(D)}. For 0 # d € D, let dD = (AB);, where A € sp(S) and B € S*.
Since A € S, there are only a finite number of maximal t-ideals in sp(S) containing
A (and hence d). Moreover, since t-Max(Dgs) = {Ps|P € S* Nt-Max(D)}, the
number of maximal ¢-ideals in S* containing d is finite. Therefore, D is of t-finite
character. The converse is straightforward from the above observation. o

This result can be put to direct use in a number of situations. In the following,
we address a few of them.

Corollary 21. Let D be an integral domain and let S be a ¢-splitting set of ideals
of D generated by height-one prime ideals. Suppose that every proper ideal in S is
contained in at most a finite number of maximal ¢-ideals of D. Then Dgs is a ring
of finite ¢-character if and only if D is a ring of finite ¢-character.

An integral domain D is called a weakly Krull domain if D = Npcx1(pyDp and
this intersection has finite character. According to [11], a ring of Krull type is an
integral domain which is a locally finite intersection of essential valuation overrings.
The ring D of Krull type is an independent ring of Krull type if each prime ¢-ideal
of D lies in a unique maximal t-ideal and a generalized Krull domain if D is weakly
Krull.

Corollary 22. Let F be a family of height-one ¢-invertible prime ¢-ideals of an
integral domain D. Let S be a multiplicative set of ideals generated by F and suppose
that every nonzero nonunit of D belongs to at most a finite number members of F.

(1) D is a weakly Krull domain if and only if Dg is.

(2) D is a generalized Krull domain if and only if Dg is.

(3) D is a ring of Krull type if and only if Dg is.
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(4) D is an independent ring of Krull type if and only if Dg is.
(5) D is a PVMD if and only if Dgs is.

Proof. The proof consists in noting that every t-invertible prime t-ideal P is a
maximal ¢-ideal [13, Proposition 1.3] and that P being of height-one implies that
Dp is a discrete valuation domain. The rest depends upon recalling the definitions
of the respective notions. o

In this vein it would be interesting to record the following result.

Corollary 23. Let X be an indeterminate over the integral domain D and S =
{f € D[X]|A;* = D}. Then D is a ring of Krull type if and only if (D[X])s is a
Bezout domain of finite character.

Proof. Recall that D is a PVMD if and only if D[X]g is a Bezout domain [14,
Theorem 3.7] and that D is of finite character if and only if D[X] is [9, Exercise
1, pp.537]. So the result follows from Corollary 22(4) because the set S := {I C
D[X]|I is an ideal of D[X] such that f € I for some f € S} is a t-splitting set of
ideals. o

Just to give an idea of how these results can be extended we state the following.
Let % be a star operation on an integral domain D, and let %, be the finite type
star operation induced by x, i.e., I** = U{F*|F C I is finitely generated} for
any [ € F(D). Then D is called a Prufer x-multiplication domain if every finitely
generated ideal of D is *,-invertible. It is clear that Priifer x-multiplication domains
are PVMDs because [*s C I;.

Proposition 24. Let D be a domain, x a star operation of finite type on D, F
a family of maximal height-one principal primes of D and S the multiplicative set
generated by F. Suppose that each nonzero nonunit of D is contained in at most
a finite number of members of F. Then D is of «-finite character (resp., a Prifer
«-multiplication domain) if and only if Dg is of «-finite character (resp., a Prifer
x-multiplication domain).

We note that if the finite character star operation x is the identity star operation
d that takes A +— A for all A € F(D), then a Priifer -multiplication domain is a
Priifer domain. Thus for * = d Proposition 24 gives us the following corollary.

Corollary 25. Let D be domain, F a family of height-one principal primes that
are also maximal ideals and .S the multiplicative set generated by . Suppose that
every nonzero nonunit of D belongs to at most a finite number of members of F.
Then D is a Pr-ufer domain of finite character if and only if Dg is a Pr- ufer
domain of finite character.
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