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Abstract. Let D be an integral domain. We study those multiplicative sets
of ideals S of D with the property that every nonzero principal ideal dD of

D can be written as dD = (AB)t with A, B ideals of D such that A contains
some ideal in S and (C + B)t = D for each C ∈ S .

Let D be an integral domain with quotient Þeld K and let F (D) be the set of
nonzero fractional ideals of D. Clearly, for A ∈ F (D), A−1 = D :K A is again in
F (D). Recall that a mapping A 7→ A∗ of F (D) into itself is called a star operation
on D if the following conditions hold for all a ∈ K \ {0} and A,B ∈ F (D): (1)
(aD)∗ = aD, (aA)∗ = aA∗, (2) A ⊆ A∗, if A ⊆ B, then A∗ ⊆ B∗, and (3)
(A∗)∗ = A∗. A is a ∗-ideal if A = A∗. For standard material about star operations,
see sections 32 and 34 of [9]. Three well-known examples of star operations are
the maps A 7→ A (the d-operation), A 7→ Av (the v-operation) and A 7→ At (the t-
operation), where Av = (A−1)−1 and At = ∪{Bv| 0 6= B ⊆ A is Þnitely generated}.
Clearly, Av = At if A is Þnitely generated. An ideal A ∈ F (D) is t-invertible if
(AA−1)t = D. In this case A has Þnite type, that is, At = (x1, ..., xn)t for some
x1, ..., xn ∈ A. D is called a Prüfer v-multiplication domain (PVMD), if every
Þnitely generated ideal A ∈ F (D) is t-invertible. The t-class group Clt(D) of D
is the group of t-invertible fractional t-ideals, under the product A ∗ B = (AB)t,
modulo its subgroup of principal fractional ideals.
The following concept was introduced and studied in [3]. A multiplicative subset

S of D is said to be t-splitting, if for each d ∈ D \ {0}, dD = (AB)t for some ideals
A,B of D with At ∩ S 6= ∅ and (B, s)t = D for each s ∈ S. The main result of
[3] asserts that D +XDS [X] is a PVMD if and only if D is a PVMD and S is a
t-splitting set of D, where D+XDS [X] is the subring of DS [X] consisting of those
f ∈ DS [X] with constant term in D. The t-splitting sets are investigated further
in [6].
The main purpose of this note is to extend certain results from [3] and [6] to

the case of multiplicative sets of ideals. We aim to show that by using the notion
of t-splitting sets of ideals, we can explain a number of multiplicative phenomena
that cannot be explained otherwise or are hard to explain. The main concept we
use is that of a t-splitting set of ideals S of a domain D (see DeÞnition 1). We
show that many results from [3] and [6] can be stated for t-splitting sets of ideals.
A characterization of S being t-splitting using the S-transform of D (see deÞnition
below) is given in Proposition 5. In Theorem 12, we show that the presence of a
t-splitting set of ideals induces a natural cardinal product decomposition of the or-
dered monoid of fractional t-ideals of D (with the t-product and ordered by reverse
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inclusion). Restricting to t-prime ideals, this decomposition gives a well-behaved
partition of the set of t-prime (resp. t-maximal) ideals of D (see Remark 14 and
Corollary 15). Some applications for PVMDs and Krull domains are given in Propo-
sitions 16 and 17. The Þnal part of this note contains several Nagata-type theorems.

Throughout this note, all rings are integral domains. All undeÞned terminology
is standard as in [9]. Let D be an integral domain with quotient Þeld K, S a
multiplicative set of ideals of D and DS = {x ∈ K| xA ⊆ D for some A ∈ S} the
S-transform of D (see [4] for basic properties of this construction). If I is an ideal
of D, then IS = {x ∈ K| xA ⊆ I for some A ∈ S} is an ideal of DS containing
I. Denote by S⊥ the set of all ideals B of D with (A + B)t = D for all A ∈ S .
Note that S⊥ is also a multiplicative set of ideals. Call it the t-complement of
S. Consider also, the multiplicative set of ideals sp(S) ⊇ S consisting of all ideals
C of D with Ct ⊇ A for some A ∈ S. It is easy to see that sp(sp(S)) = sp(S),
sp(S)⊥ = S⊥ and DS = Dsp(S).

We begin by providing a formal deÞnition of the notion of t-splitting sets of ideals.

Definition 1. Let S be a multiplicative set of ideals ofD and S⊥ its t-complement.
We call S a t-splitting set of ideals if every nonzero principal ideal dD of D can be
written as dD = (AB)t with A ∈ sp(S) and B ∈ S⊥.
Clearly, S is t-splitting if and only if sp(S) is t-splitting. If S ⊆ D is a saturated

multiplicative set of D and S = {sD| s ∈ S}, then S is t-splitting in the sense of
[3] if and only if S is t-splitting in our sense.
In a Krull domain E, every nonzero proper principal ideal can be (uniquely) written
as a t-product of height-one primes [7, Theorem 3.12], so every set of height-one
prime ideals of E generates a t-splitting set (see also Proposition 17). Some easy
consequences of DeÞnition 1 are given below.

Proposition 2. If S is a t-splitting set of ideals of D, then the following assertions
hold.
(a) S⊥ is t-splitting.
(b) For every C ∈ S, Ct contains some t-invertible ideal of sp(S).
(c) The set Si of all t-invertible ideals in sp(S) is a t-splitting set with t-complement

S⊥ and sp(Si) = sp(S).
Proof. (a) is clear from DeÞnition 1. For (b) and (c), note that when 0 6= d ∈ C ∈ S
and dD = (AB)t with A ∈ sp(S) and B ∈ S⊥, it follows that A is t-invertible and
Ct ⊇ A. Indeed, as C ∈ S and B ∈ S⊥, we get (C + B)t = D, so A ⊆ At =
(A(C + B))t ⊆ Ct. So, (b) follows, and, consequently, sp(Si) ⊇ sp(S). Thus (c)
follows from the remarks accompanying DeÞnition 1. ¤
In [8], a multiplicative set of ideals S of D is said to be v-finite if for each

A ∈ S , At contains some v-Þnite ideal J ∈ sp(S). Since an invertible t-ideal is
v-Þnite, part (b) of the preceding result shows that a t-splitting set is v-Þnite. Our
next result shows that, when S is t-splitting, the t-product decomposition imposed
in DeÞnition 1 for the principal ideals extends to all t-ideals (thus extending [3,
Lemma 4.6]).

Proposition 3. Let S be a t-splitting set of ideals of D. Then for every nonzero
ideal I of D, It can be written as It = (AB)t with A ∈ sp(S) and B ∈ S⊥.
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This decomposition is unique in the following sense. If (AB)t = (A0B0)t with
A,A0 ∈ sp(S) and B,B0 ∈ S⊥, then At = A

0
t and Bt = B

0
t. In particular, if It is

of finite type, then we can choose A and B to be finite type t-ideals.

Proof. Let I be a nonzero ideal ofD and set J = I\{0}. As S is a t-splitting set, for
each j ∈ J , we can write jD = (AjBj)t with Aj ∈ sp(S) and Bj ∈ S⊥. Then It =
(
P

j jD)t = (
P

j(AjBj)t)t = (
P

j AjBj)t. But (
P

j AjBj)t = ((
P

hAh)(
P

iBi))t.

Indeed, the inclusion ⊆ is clear. For ⊇, let h, i ∈ J , h 6= i. Then (Ai +Bh)t = D,
so AhBi ⊆ (AhBi(Ai+Bh))t ⊆ (

P
j AjBj)t. Finally, note that

P
j Aj ∈ sp(S) andP

j Bj ∈ S⊥.
For the uniqueness part, assume that (AB)t = (A

0B0)t with A,A0 ∈ sp(S) and
B,B0 ∈ S⊥. Since (A + B0)t = (A0 + B)t = D, we get At = (A(A0 + B))t =
(AA0 + (AB)t)t = (AA0 + (A0B0)t)t = ((A+B0)A0)t = A0t. Similarly, Bt = B0t.
The �in particular� part was proved on the way. ¤

As a consequence, S⊥⊥ = sp(S). Indeed, let C be in the t-complement of S⊥.
As shown above, Ct = (AB)t for some A ∈ sp(S) and B ∈ S⊥. Since (C+B)t = D
and C ⊆ Bt, we get Bt = D. So Ct = At ∈ sp(S), hence C ∈ sp(S).
In Proposition 5, we generalize [3, Lemma 4.2]. We need the next lemma which
relies on [14, Lemma 3.4] and [8, Proposition 1.2].

Lemma 4. Let S be a multiplicative set of ideals of D and I a nonzero ideal of D.
Then
(a) (IDS)t = (ItDS)t.
(b) If I is a t-invertible ideal of D and (IDS)t = DS , then I ∈ sp(S).

Proof. (a) is a part of [14, Lemma 3.4]. For (b), assume that I is t-invertible. By
[8, Proposition 1.2], (JDS)t = (Jt)S for each Þnitely generated nonzero ideal J of
D with D : J v-Þnite. As I is t-invertible, It = Jt for some Þnitely generated ideal
J ⊆ I. Moreover, D : I = D : J is v-Þnite and, by (a), (IDS)t = (JDS)t. So,
DS = (IDS)t = (JDS)t = (Jt)S = (It)S . Hence 1 ∈ (It)S , that is, H ⊆ It for some
H ∈ S . Consequently, I ∈ sp(S). ¤

Proposition 5. Let S be a multiplicative set of ideals of D. Then S is t-splitting
if and only if S is v-finite and dDS ∩D is a t-invertible ideal for each 0 6= d ∈ D.

Proof. Assume that S is t-splitting. Then S is v-Þnite, as shown in the paragraph
after Proposition 2. Let 0 6= d ∈ D. Then dD = (AB)t for someA ∈ S and B ∈ S⊥.
As B is t-invertible, it suffices to show that dDS ∩D = Bt. In particular, it will
follow that dDS ∩D ∈ S⊥. As A(d−1Bt) ⊆ d−1(AB)t = D, we get d−1Bt ⊆ DS ,
hence Bt ⊆ dDS ∩D. On the other hand, let x ∈ dDS ∩D. Then C(d−1x) ⊆ D
for some C ∈ S. So Cx ⊆ dD ⊆ Bt, hence x ∈ Bt, because (C +B)t = D.
Conversely, assume that S is v-Þnite and dDS ∩D is a t-invertible ideal for each

0 6= d ∈ D. Let 0 6= d ∈ D. As B = dDS ∩ D is a t-invertible ideal containing
dD, dD = (AB)t for some (t-invertible) ideal A of D. Note that BDS ⊆ dDS . By
part (a) of Lemma 4, we get dDS = ((AB)tDS)t = (ABDS)t ⊆ (dADS)t, hence
(ADS)t = DS . By part (b) of Lemma 4, A ∈ sp(S). To verify that B ∈ S⊥ =
sp(S)⊥, it suffices to show that (B +H)t = D for each t-ideal H ∈ sp(S). By the
second part of our assumption, we may assume that H is v-Þnite. If x ∈ H−1∩B−1,
then x ∈ DS , so Bx ⊆ BDS ∩D = dDS ∩D = B. As B is t-invertible, x ∈ D. Thus
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(H+B)−1 = H−1∩B−1 = D, that is, (H+B)v = D. So (H+B)t = (H+B)v = D,
because H and B are v-Þnite ideals. Thus B ∈ S⊥. ¤

To see that in the �if� part of the preceding proposition, the assumption that S is
v-Þnite is essential, we may use the following example from [8]. Let V be a nontrivial
valuation domain whose maximal ideal M is idempotent and S = {D,M}. Then
VS = V , because V : M = V . So dVS ∩ V is t-invertible for each 0 6= d ∈ V .
However, S is not v-Þnite.
Remark 6. Let S be a t-splitting set of ideals of D, I a nonzero ideal of DS and
0 6= d ∈ I ∩D. As shown in the proof of Proposition 5, dDS ∩D ∈ S⊥. Hence
I ∩D ∈ S⊥, because I ∩D ⊇ dDS ∩D. Similarly, I ∩D ∈ sp(S) whenever I is a
nonzero ideal of DS⊥.

The next proposition is only a restatement, in our setup, of [3, Theorem 4.10].
The proof is virtually the same. We begin with a simple lemma.

Lemma 7. If S is a multiplicative set of ideals of D, then D = DS ∩DS⊥.

Proof. Let x ∈ DS∩DS⊥ . Then xA ⊆ D and xB ⊆ D for some A ∈ S and B ∈ S⊥.
So xD = x(A+B)t = (xA+ xB)t ⊆ D, hence x ∈ D. ¤

Proposition 8. Let S be a t-splitting set of ideals of D and I a nonzero ideal of
D. Then
It = (IDS)t ∩ (IDS⊥)t = (((IDS)t ∩D)((IDS⊥)t ∩D))t.

Proof. By Lemma 7, D = DS ∩DS⊥ . Hence by [1, Theorem 2], the map sending a
nozero fractional ideal A ofD into A∗ = (ADS)t∩(ADS⊥)t is a Þnite character star-
operation on D. Consequently, It ⊇ I∗. Part (a) of Lemma 4 supplies the opposite
inclusion. For the second equality, set U = (IDS)t ∩D and V = (IDS⊥)t ∩D. By
Remark 6, U ∈ S⊥ and V ∈ sp(S), so (U + V )t = D. Consequently, It = U ∩ V =
(U ∩ V )t = (UV )t. ¤

Remark 9. Let S be a t-splitting set of ideals of D and I a nonzero ideal of D. By
Proposition 3, It = (AB)t with A ∈ sp(S) and B ∈ S⊥. Combining the previous
result, Remark 6 and Proposition 3, we get At = (IDS⊥)t∩D and Bt = (IDS)t∩D.
Note that (IDS)t ∩ D and (IDS⊥)t ∩ D are t-ideals of D, cf. Lemma 4 and [5,
Proposition 1.1].

Let D be a domain. By deÞnition, a t-prime ideal ofD is a nonzero prime ideal of
D which is also a t-ideal. It is well-known that a prime ideal which is minimal over
a nonzero principal ideal is t-prime. Also, a maximal t-ideal, that is, a maximal
element of the set of all proper t-ideals, is a t-prime ideal (see e.g. [12]).

Proposition 10. Let S be a t-splitting set of ideals of D with t-complement S⊥
and let P be a prime t-ideal of D. Then P is either in sp(S) or in S⊥. Moreover,
if P ∈ S⊥ and Q ⊆ P is a nonzero prime ideal, then Q ∈ S⊥. A similar assertion
holds for sp(S).
Proof. If 0 6= d ∈ P and dD = (AB)t with A ∈ S and B ∈ S⊥, then P ⊇ A or
P ⊇ B. So P ∈ sp(S) or P ∈ S⊥, but not both because Pt 6= D. For the second
part, we may assume that Q is a prime t-ideal, so Q ∈ S⊥, by the Þrst part. ¤
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Lemma 11. Let S be a t-splitting set of ideals of D. Then
(a) (ADS)t = DS for each A ∈ sp(S), and
(b) I = ((I ∩D)DS)t = (I ∩D)S for each t-ideal I of DS .

Proof. S is v-Þnite cf. Proposition 5, so we may apply [8, Proposition 1.8] and part
(iv) of [8, Proposition 1.5] to Þnish the proof. ¤

Denote by T (D) the ordered monoid of fractional t-ideals ofD with the t-product
and ordered by reverse inclusion and denote by T+(D) its positive cone, that is,
T+(D) = {A ∈ T (D)| A ⊆ D}. When S is a multiplicative set of ideals of D,
T (DS) ×c T (DS⊥) stands for the cardinal product of the monoids T (DS) and
T (DS⊥). Our next result is an extension of [3, Theorem 4.12].

Theorem 12. If S is a t-splitting set of ideals of D, the map α : T (D)→ T (DS)×c
T (DS⊥), α(I) = ((IDS)t, (IDS⊥)t) is a monoid order-isomorphism.

Proof. Clearly, α is an order-preserving monoid homomorphism. It suffices to show
that γ = α |T+(D): T+(D) → T+(DS)× T+(DS⊥) is a monoid order-isomorphism.
Consider the map β : T+(DS) ×c T+(DS⊥) → T+(D), β(I, J) = ((I ∩ D)(J ∩
D))t (note that I ∩ D ∈ S⊥ and J ∩ D ∈ sp(S), cf. Remark 6). We prove
that γ and β are inverse to each other. Indeed, if A ∈ T+(D), then β(γ(A)) =
((ADS)t ∩ D)((ADS⊥)t ∩ D)t = A cf. Proposition 8. Conversely, let (I, J) ∈
T+(DS)×cT+(DS⊥) and set A = β(I, J) = ((I∩D)(J ∩D))t. Since J ∩D ∈ sp(S),
((J ∩ D)DS)t = DS , cf. Lemma 11. Again by Lemma 11, ((I ∩ D)DS)t = I .
So (ADS)t = ((I ∩ D)DS)t = I . Similarly, (ADS⊥)t = J . Thus γ(β(I, J)) =
(I, J). ¤

The next result extends [3, Remark 4.13]. Denote by TI(D) the group of frac-
tional t-invertible t-ideals of D with the t-product and by Clt(D) the t-class group
of D, that is, the factor group of TI(D) modulo its subgroup of principal fractional
ideals. For I ∈ TI(D), let [I ] denote the image of I in Clt(D).
Remark 13. Let S be a t-splitting set of ideals of D. By Theorem 12, the map
α given there induces an isomorphism TI(D)→ TI(DS)× TI(DS⊥). Moreover, if
A is a principal fractional ideal of D, then both components of α(A) are principal.
Consequently, α induces a surjective group homomorphism ᾱ : Clt(D)→ Clt(DS)×
Clt(DS⊥), ᾱ([I ]) = ([(IDS)t], [(IDS⊥)t]). As documented in [3, Remark 4.13], ᾱ
need not be a monomorphism.

For a domain D, let t-Spec(D) (resp., t-Max(D)) denote the set of all t-prime
ideals (resp., maximal t-ideals) of D.

Remark 14. Let S be a t-splitting set of ideals of D. From the proof of Theorem
12, we get a one-to-one correspondence between S⊥ ∩ T+(D) and T+(DS) given
by A 7→ (ADS)t and I 7→ I ∩D. Restricting, we get a one-to-one correspondence
between S⊥ ∩ t-Spec(D) and t-Spec(DS). By [4, Theorem 1.1], if Q ∈ t-Spec(DS),
then (DS)Q = DQ∩D. Also, we get a one-to-one correspondence between sp(S) ∩
t-Spec(D) and t-Spec(DS⊥). Note that by Proposition 10, the sets sp(S)∩t-Spec(D)
and S⊥ ∩ t-Spec(D) give a partition of t-Spec(D). Similar correspondences hold
when replacing t-Spec by t-Max.

Therefore, by Remark 14 and [4, Theorem 1.1], t-Max(DS⊥) = {PS⊥ ; P ∈
sp(S)∩ t-Max(D)} and (DS⊥)PS⊥ = DP for each P ∈ sp(S)∩ t-Max(D). Similarly,
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t-Max(DS) = {PS ; P ∈ S⊥ ∩ t-Max(D)} and (DS)PS = DP for each P ∈ S⊥ ∩
t-Max(D).

Corollary 15. Let S be a t-splitting set of ideals of D. Then DS = ∩{DP | P ∈
t-Max(D) ∩ S⊥} and DS⊥ = ∩{DP | P ∈ t-Max(D) ∩ sp(S)}.
Proof. By the preceding paragraph, DS⊥ = ∩{(DS⊥)Q| Q ∈ t-Max(DS⊥)} =
∩{DP | P ∈ t-Max(D) ∩ sp(S)}. The other equality can be proved similarly. ¤
Let us recall from [10] that D is a PVMD if and only if DP is a valuation domain

for each maximal t-ideal P of D.

Proposition 16. Let S be a t-splitting set of ideals of D. Then every finite type
t-ideal in sp(S) is t-invertible if and only if DS⊥ is a PVMD.

Proof. (⇒) Let Q ∈ t-Max(DS⊥) and P = Q∩D. Then P ∈ t-Max(D)∩ sp(S) by
Lemmas 4 and 11.
Let J be a nonzero Þnitely generated ideal of DP . Then J = IDP where I is a

Þnitely generated ideal of D. Then It = (AB)t for some A ∈ sp(S) and B ∈ S⊥.
Since P ∈ sp(S), B * P , and so (IDP )t = (ItDP )t = ((AB)tDP )t = ((AB)DP )t =
(ADP )t. Also, since I is Þnitely generated, It, and hence At is of Þnite type; so At
is t-invertible. Note that P is a prime t-ideal of D; so AA−1 * P . Hence ADP and
IDP are invertible, and thus IDP is principal. So DP is a valuation domain. Thus
as DP ⊆ (DS⊥)Q, (DS⊥)Q is a valuation domain, and thus DS⊥ is a PVMD.
(⇐) Let I ∈ sp(S) be a Þnite type t-ideal of D, and let P ∈ t-Max(D). If

P 6∈ sp(S), then I * P , and hence IDP = DP . Assume that P ∈ sp(S). Then PS⊥
is a t-ideal of DS⊥ and DP = (DS⊥)PS⊥ . Since DS⊥ is a PVMD, DP is a valuation
domain. Also, since I is a Þnite type t-ideal, IDP is principal. Hence I is t-locally
principal, and thus I is t-invertible, cf. [14, Proposition 2.6]. ¤
Our next result is a variant of [6, Theorem 2.2].

Proposition 17. Let Γ be a collection of t-invertible prime t-ideals of D and S the
multiplicative set generated by Γ. Then the following statements are equivalent.
(a) S is a t-splitting set.
(b) ∩nP1 · · ·Pn = 0 for each sequence (Pn) of elements of Γ.
(c) DS⊥ is a Krull domain.

Proof. Clearly, S⊥ is the set of ideals I of D contained in no P ∈ Γ. Note that
Γ ⊆ t-Max(D) cf. [13, Proposition 1.3].
(a)⇒ (c) Let Q ∈ t-Max(D)∩ sp(S) and Q0 ⊆ Q a minimal prime of a principal

ideal. Then Q0 is a t-ideal and Q0 ∈ sp(S) cf. Proposition 10. Then Q0 ⊇ P1 · · ·Pn
for some Pi ∈ Γ. Hence Q0 = Pi = Q because Pi ∈ t-Max(D). Thus t-Max(D) ∩
sp(S) = Γ and each P ∈ Γ has height one. By Lemma 4, PS⊥ is t-invertible in DS⊥
for each P ∈ Γ. By the paragraph after Remark 14, t-Max(DS⊥) = {PS⊥ | P ∈ Γ}
and each PS⊥ has height one, because (DS⊥)PS⊥ = DP . By [15, Theorem 3.6],
DS⊥ is a Krull domain.
(c) ⇒ (b) Let (Pn) be a sequence of elements of Γ and P = Pn for some n.

Clearly P 6∈ S⊥. As P is t-invertible, we have (PDS⊥)t = PS⊥ (see the proof of
Lemma 4), so PS⊥ is a prime t-ideal of DS⊥ . Since DS⊥ is a Krull domain, we get
∩nP1 · · ·Pn ⊆ ∩n(P1)S⊥ · · · (Pn)S⊥ = 0.
(b)⇒ (a) Assume that ∩nP1 · · ·Pn = 0 for each sequence (Pn) of ideals of Γ. Let

0 6= d ∈ D. Since each P ∈ Γ is t-invertible, if I is a nonzero ideal contained in P ,



T-SPLITTING MULTIPLICATIVE SETS OF IDEALS IN INTEGRAL DOMAINS 7

we get It = (PJ)t with J = P
−1I . We use repeatedly this factorization property

starting with I = dD. By our assumption on Γ, we get dD = (P1 · · ·PnJ)t for some
P1, ..., Pn ∈ Γ, n ≥ 0 and some ideal J contained in no P ∈ Γ, thus J ∈ S⊥. ¤
We recall that a Mori domain is a domain satisfying the ascending chain condition

on integral divisorial ideals.

Corollary 18. A collection of t-invertible prime t-ideals of a Mori domain gener-
ates a t-splitting set.

Corollary 19. A collection of t-invertible uppers to zero in D[X] generates a t-
splitting set.

Recall that with the realization of the power of splitting sets came various ex-
tensions of Nagata�s theorem for UFD�s (see e.g. [2]). Now the question is what
can the t-splitting sets of ideals do for us? In fact they can deliver a somewhat
modiÞed version of Nagata type Theorems.
An integral domain D is said to be of finite t-character if every nonzero nonunit

of D belongs to only Þnitely many maximal t-ideals of D.

Proposition 20. Let S be a t-splitting set of ideals of an integral domain D, and
suppose that every proper ideal in S is contained in at most a finite number of
maximal t-ideals of D. Then DS is a ring of finite t-character if and only if D is
a ring of finite t-character.

Proof. By Proposition 10 and the paragraph preceding Corollary 15, if P is a maxi-
mal t-ideal of D, then either P ∈ sp(S) or P ∈ S⊥ and that t-Max(DS) = {PS |P ∈
S⊥ ∩ t-Max(D)}. For 0 6= d ∈ D, let dD = (AB)t, where A ∈ sp(S) and B ∈ S⊥.
Since A ∈ S , there are only a Þnite number of maximal t-ideals in sp(S) containing
A (and hence d). Moreover, since t-Max(DS) = {PS |P ∈ S⊥ ∩ t-Max(D)}, the
number of maximal t-ideals in S⊥ containing d is Þnite. Therefore, D is of t-Þnite
character. The converse is straightforward from the above observation. ¤
This result can be put to direct use in a number of situations. In the following,

we address a few of them.

Corollary 21. Let D be an integral domain and let S be a t-splitting set of ideals
of D generated by height-one prime ideals. Suppose that every proper ideal in S is
contained in at most a finite number of maximal t-ideals of D. Then DS is a ring
of finite t-character if and only if D is a ring of finite t-character.

An integral domain D is called a weakly Krull domain if D = ∩P∈X1(D)DP and
this intersection has Þnite character. According to [11], a ring of Krull type is an
integral domain which is a locally Þnite intersection of essential valuation overrings.
The ring D of Krull type is an independent ring of Krull type if each prime t-ideal
of D lies in a unique maximal t-ideal and a generalized Krull domain if D is weakly
Krull.

Corollary 22. Let F be a family of height-one t-invertible prime t-ideals of an
integral domainD. Let S be a multiplicative set of ideals generated by F and suppose
that every nonzero nonunit of D belongs to at most a finite number members of F.

(1) D is a weakly Krull domain if and only if DS is.
(2) D is a generalized Krull domain if and only if DS is.
(3) D is a ring of Krull type if and only if DS is.
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(4) D is an independent ring of Krull type if and only if DS is.
(5) D is a PVMD if and only if DS is.

Proof. The proof consists in noting that every t-invertible prime t-ideal P is a
maximal t-ideal [13, Proposition 1.3] and that P being of height-one implies that
DP is a discrete valuation domain. The rest depends upon recalling the deÞnitions
of the respective notions. ¤

In this vein it would be interesting to record the following result.

Corollary 23. Let X be an indeterminate over the integral domain D and S =
{f ∈ D[X]|A−1

f = D}. Then D is a ring of Krull type if and only if (D[X])S is a
Bezout domain of finite character.

Proof. Recall that D is a PVMD if and only if D[X]S is a Bezout domain [14,
Theorem 3.7] and that D is of Þnite character if and only if D[X] is [9, Exercise
1, pp.537]. So the result follows from Corollary 22(4) because the set S := {I ⊆
D[X]|I is an ideal of D[X] such that f ∈ I for some f ∈ S} is a t-splitting set of
ideals. ¤

Just to give an idea of how these results can be extended we state the following.
Let ∗ be a star operation on an integral domain D, and let ∗s be the Þnite type
star operation induced by ∗, i.e., I∗s = ∪{F∗|F ⊆ I is Þnitely generated} for
any I ∈ F (D). Then D is called a Prüfer ∗-multiplication domain if every Þnitely
generated ideal ofD is ∗s-invertible. It is clear that Prüfer ∗-multiplication domains
are PVMDs because I∗s ⊆ It.
Proposition 24. Let D be a domain, ∗ a star operation of finite type on D, F
a family of maximal height-one principal primes of D and S the multiplicative set
generated by F. Suppose that each nonzero nonunit of D is contained in at most
a finite number of members of F. Then D is of ∗-finite character (resp., a Prüfer
∗-multiplication domain) if and only if DS is of ∗-finite character (resp., a Prüfer
∗-multiplication domain).

We note that if the Þnite character star operation ∗ is the identity star operation
d that takes A 7→ A for all A ∈ F (D), then a Prüfer ∗-multiplication domain is a
Prüfer domain. Thus for ∗ = d Proposition 24 gives us the following corollary.
Corollary 25. Let D be domain, F a family of height-one principal primes that
are also maximal ideals and S the multiplicative set generated by F. Suppose that
every nonzero nonunit of D belongs to at most a finite number of members of F.
Then D is a Pr¨ufer domain of finite character if and only if DS is a Pr¨ufer
domain of finite character.
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