Statistics Notes

Given below are some questions. I give hints when I think that you may need help.

- 1. I need a sample of 20 students from a list of 805. Label those students from 1 to 805 and give me one sample of 20 using random sampling (using a table or a calculator and indicating how you did it). Also, give me a sample of 20, using systematic random sampling, indicating the procedure. (page 18).
- 2. Suppose that 100 of the 805 students of problem 1 are graduating seniors and that I want them well represented. What kind of sampling would you use? Approximately how many graduating seniors will be in a sample of 20? (page 22).
- 3. What is the difference between an observational study and a designed experiment? Look up at least one example of each.

4. Label the following variables qualitative or quantitative as appropriate: Height,

Weight

Place of birth

Color of hair

High school class rank

Amount of water in a beaker

Telephone number of a person

Number of courses

5. Given the data respond to the requests that follow: 83, 58, 77, 57, 87, 93, 70, 85, 92, 92, 79, 68, 82, 72, 68, 76, 88, 90, 81, 76, 77, 55, 74, 73, 82, 86, 92, 84, 89, 64, 35, 73.

(i). Prepare a stem and leaf diagram of the data and comment on the shape of the distribution.

Class	Tally	Frequency	Relative Frequency
30-39			
40-49			
50-59			
60-69			
70-79			
80-89			
90-99			

(ii). Complete the following frequency and relative frequency table.

(iii). Use the above table to construct a frequency histogram of the data.

(iv). Give the "five number summary" and construct the box plot of the data. Decide if the data contains any outliers

- 6. Given the data: 5,14, 7, 10, 6, 8, 12, 9, 10, 9, 7, 11.
- (i) Find the mean_____, median _____, and mode _____, of the data.
- (ii) Test the data for normality using the normal probability plot. (You are supposed to use Table III for the z-scores.)
- (iii) Find the variance of the data using the fact that $\sum (x \overline{x})^2 = 74$ and assuming that the above data is a sample.

(iv) Find the standard deviation of the above data assuming that it is the data of a population.

Observation	1	2	3	4	5	6	7	8
Х	2.4	3.4	4.6	3.7	2.2	3.3	4	2.1
у	1.33	2.12	1.80	1.65	2.00	1.76	2.11	1.63

- 7. The following table provides 8 observations of y against x.
- $\sum x = 25.7$, $\sum y = 14.40$, $\sum x^2 = 88.31$, $\sum y^2 = 26.4324$ and $\sum xy = 46.856$,
- (I) Using your calculator, or the information above, find the (linear) coefficient of determination of the data and comment on the strength of relationship between the x's and the y's.
- (II) Using your calculator, or the information above, find the slope b_1 and the intercept b_0 of the line of regression taking x as predictor and y as response.

8	5. The fol	lowing	table prov	vides ob	servations	of y again	st x.	
v		6	6	2	5	1	5	1

Х	6	6	2	5	4	5	1	4
У	205	195	299	230	270	243	340	240

$$\sum x = 33$$
, $\sum y = 2022$, $\sum x^2 = 159$, $\sum y^2 = 527500$ and $\sum xy = 7743$,

- (III) Using your calculator, or the information above, find the liner correlation coefficient of the data and comment on the strength of relationship between the x's and the y's.
- (IV) In general what can you tell about the slope from the linear correlation coefficient?
- (V) Using your calculator, or the information above, find the slope b_1 and the intercept b_0 of the line of regression taking x as predictor and y as response.
- (VI) Write the regression equation $\hat{y} = b_0 + b_1 x$ and use it to predict the value of y for x=3.
 - 9. The following table provides the frequency distribution for the number of rooms in US housing units. The frequencies are in thousands.

		-						
Rooms	1	2	3	4	5	6	7	8+
Freq.	471	1,470	11,715	23,468	24,476	21,327	13,782	15,647
				-				

Total number of housing units: 112,356

For a US housing unit selected at random, let

A = event the unit has at most 4 rooms.

B = event the unit has at least 2 rooms.

- C = event the unit has between 5 and 7 rooms inclusive.
- D = event the unit has more than 7 rooms

- (i) Describe each of the above events (e.g. $A = \{1,2,3,4\}$ = the unit has 1 rm or 2 rms or 3 rms, or 4 rms.).
- (ii) Find P(A), P(B) and P(C). (e.g. $P(A) = \frac{f}{N} = \frac{471 + 1470 + 11715 + 23468}{112356}$)
- (iii) Describe each of the events and find their probabilities: (not A), (A &B), (C or D).
 - 10. In Problem 9 above, X= "number of rooms" is a random variable. Using this notion the event A can be written as $A = \{X \le 4\}$. Rewrite the events B, C and D using the random variable notation.
 - 11. The following table displays a frequency distribution for the number of crewmembers on each shuttle mission from April 1981 to July 2000.

Crew Size	2	3	4	5	6	7	8
Frequency	2	1	2	36	18	33	2

Let X denote the crew size of the randomly selected shuttle mission between April 1981 and July 2000.

- (i) What are the possible values of the random variable X? (Ans. X=2,3,4,5,6,7,8)
- (ii) Use random variable notation to represent the event that the space shuttle mission obtained has a crew of size 6. (Ans. $\{X=6\}$)

(iii) Find P(X=6). (Ans.
$$P(X = x) = \frac{Freq.(\{X = x\})}{sum \ of \ all \ frequencies} = \frac{18}{94}$$
).

- (iv) Find P(X=4) and interpret it in terms of percentages.
- (v) Obtain the probability distribution of X, by writing the value of P(X) under each possible value of X in the following table

Х	2	3	4	5	6	7	8
P(X)					.1915		

12.	Given	in	the	table	below	are two	investment	options.
-----	-------	----	-----	-------	-------	---------	------------	----------

Option A			Option B				
Profit =x	P(X = x)	xP(X = x)	Profit = x	P(X = x)			
-2000	.2	-400	-3000	.2			
100	.1	10	-1000	.1			
1000	.3	300	2000	.2			
2000	.3	600	3000	.3			
4000	.1	400	4000	.2			
		910					
For option A	$E(X) = \sum x P(x)$	X = x) = 910					

For the given probability distribution of the random variable of option A, the expected value (or the mean \mathbf{m}) = $\sum xP(X = x) = 910$. Find the expected value of profit in option B and decide which gives higher expected value. (Note. The negative profit is loss, as you already know.)

12. A fair die is rolled. Count "six showing up" as success denoted as s.

(i) Find P(s) = (probability of success). (Ans. P(s) = 1/6 why?)

- (ii) Denote failure by *f*, indicate what you mean by it in this context, and find P(*f*).
- (iii) Give all the necessary reasons to establish that: Rolling a (fair) die *looking for six* is a Bernoulli trial.
- (iv) Suppose that a fair die is rolled 4 times and let X denote the number of times six shows up. What are the possible values of X? (Ans. X = 0,1,2,3,4)
- (v) Use the binomial probability formula to find P(X = 2). (Note: Here n = the number of trials =4, the probability p of success is 1/6 and the formula is:

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{(n-x)}$$

(vi) Use the formula in part (v) to verify the following table and use the following table to compute the expected value of X.

Х	0	1	2	3	4
P(X)	.48225	.3858	.11574	.01543	.00077

(a) Find the expected value of X.

- (b) Assess the normality of the distribution of P(X).
- (c) Find P(X < 2) from the above table.

More to come in the next instalment.