QUESTION: (HD0802) I am interested in leafning about the generaliza-
tions of Prifer domains called v-domains and Priifer v-multiplication domains,
but they are studied using the star operations, which I am not very familiar
with. Is there a way of defining these concepts without any mention of star
operations?

ANSWER: You have raised an interesting and important question. Often
other Mathematicians are not attracted to the notions of v-domain and its
specializations because the jargon of star operations appears forbidding, though
it is not. In the following I provide characterizations, of some of these domains.
In my answer I prove statements, that, when used as definitions, do not mention
any star operations. Note that “officially” an integral domain is a v-domain
(resp., a Pritfer v-multiplication domain (PVMD)) if for every nonzero finitely
generated (fractional) ideal A of D we have (AA™1), = D (resp., (AA™"); = D).
So to understand the justification of the new definitions you will need some basic
knowledge of the star operations. For this the best source available is sections
32 and 34 of Gilmer [2]. For now, if you are in a hurry look up HD0311 for star
operations and note the following. The letter D denotes an integral domain with
quotient field X. By F(D) we denote the set of all nonzero fractional ideals of
D and by f(D) the members of F(D) that are finitely generated. We use, for
D-submodules A, B of K (such as the members of F(D)), the notation A : B
to denote the set {z € K : zB C A} and denote D : A by A~" which belongs
to F(D) whenever A does. If A C B then A~* D B~ , for A B € F(D).
Moreover from the definition it follows that (AA~1) C D and D™! = D. Note
that for A € F(D), A, = (A™Y)™1 = D : (D : A) and that A; = W{F, :
FC AAF € f(D)}. It can be shown easily that (4,)' = A™'. If A € F(D)
is such that A = A, (resp., A = A;) we say that A is a v-ideal (resp., a t-
ideal). A wv-ideal is also called a divisorial ideal. Al is a v-ideal, and every
invertible ideal is a v-ideal and a t-ideal. Also if there is a finitely generated
fractional ideal B such that A = B, we say that A is a v-ideal of finite type.
For a star operation = call A € F(D) »-invertible if there is B € F' (D) such that
(AB)* = D. It can be shown that in this case B = A=Y, (You can take %, here,
as a general name for the v- and t-operations and note that an invertible ideal is
both v- and t-invertibie.) So, D is a v-domain (zesp., PVMD) if every A € f(D)
is v-invertible (resp., t-invertible), as indicated earlier. It can be shown that
A € f(D) is t-invertible if and only if A is v-invertible and A~ is a v-ideal of
finite type.

Lemma 1. An ideal A € F(D) is v-invertible if and only if A1 A1 =D.

Proof. Suppose that A™' : A7} = D. Let x € (AA~1)~t 2 D. Then
s(AAYCDorzA ' CAlorze A7 A~1 = D.So (AA™1H)* C D and
we have (AA~1)~! = D. This gives (AA™1), = D.

Conversely if A is v-invertible then (AA™1)"' = D. Letz € A"t A1 D D.
Then zA~1 C A1, Multiplying both sides by A and applying the v-operation
we get z € D. So, D C A~ : A™1 C D and the equality follows.

Proposition 2. For an integral domain D the following are equivalent.

(0) D is a v-domain.

(1) A=%: A~ = D for each A € f(D).




(2) Ay : Ay = D for each A € f(D). '

(3) A=1: A~! = D for each two generated A € f(D).

(4) ((a) N (B)) : ((@) N (b)) = D for all a,b € D\{0}.

Proof. (0) < (1) follows from Lemma 1 once we note that D is a v-domain
if and only if each A € f(D) is v-invertible.

(0) = (2). Let z € A, : A, 2 D. Then zA, C A,. Multiplying both sides
by A~ and applying the v-operation we get z(A,A™1)o C (AyA™1)y. But by
(0) (A4,A™1), = D and so z € D. This forces D C A, : A, C D.

(2) = (0). Let z € (4,471 2 D. Then z(A,A~') € D. But then
zA, C A, which gives z € A, : A, = D. But then D C (4,A™1)~"' C D, which
means that every A € f(D) is v-invertible.

(1) = (3) is obvious.

(3) =(4). Let a,b € D and by (3) (a,5)" : (a,b)~! = D or 2150 . (200 —
D which is the same as ((a) N (8)) : ({(a) N (b)) = D.

(4) = (0). Recall that D is a v-domain if and oniy if every two generated
nonzero ideal of D is v-invertible [6]. Now let z € ((a,5)(a,0)"")™" 2 D,
where a,b € D\{0}. Then z(a,b)(a,b)"t € D. Or z(a,b)~* C (a,b)7%. Or
£@00 ¢ @50, Or o((a)N () € (@)N () or z € (@)NE) : (@)NE) = D.
This forces D C ((a,b)(a,b)1)~t C D.

An immediate consequence of the above Proposition is the following char-
acterization of PVMD’s, which stems from the fact that D is a PVMD if and
only if every two generated nonzero ideal of D is t-invertible [3] if and only
if every two generated ideal (a,b) of D is v-invertible such that (a,b)7! =
(%1, %2, ..., Tr)y Where r € N. Note that (a,b)™! = (21,22, ..., Zr ) iraplies that
%ﬂ = (21, T2, ..., Tr }». Multiplying both sides by ab and using the definition
of the v-operation we have (a) N (b) = (abxy, abxs, ..., abz,)y. Recall from the
introduction that a fractional v-ideal A is said to be a v-ideal of finite type if
there exist a1, ag...an € A such that A = (a1,a2...0n)y. Call an integral domain
D a v-Anite conductor (v-FC-) domain if (a) N (b) is a v-ideal of finite type, for
every pair a,b € D\{0}. :

You may say that in the above definition of v-FC-domains there is still a
mention of the v-operation. We have a somewhat contrived solution for this, in
the form of the following characterization of v-FC-domains.

Proposition 3. An integral domain D is a v-FC-domain if and only if for each
pair a,b in D\{0} there exist y1, %2, ...,yn € K\{0} such that (a,b), = (D
Consequently D is a v-FC-domain if and only if for each pair a, bin D\{0} there
exist 21, 22, .., zm € K\{0} such that {((a) N )t = ﬂzz-D.

Proof. Let D be a v-FC-domain and let a,b € D\{0}. Then there are
a1,0s...an such that (a) N (b) = (a1,82..-0n)y. Dividing both sides by ab we
get %@ = (a1/ab, az/ab...ar /ab),. But L‘—‘)%Q- = (a,b)"". This gives (@,b), =
((a1/ab, ag/ab...an ab)y) ! = ﬂ %’D. Conversely if (¢,b)y = ﬂyiD then g‘—‘)%él
((a,8)0)~ = ((|y:D)~*. This gives @) — ($~ 1 D), by [4, Lemma 1.1]. Or

(a)n(b) = (Z %?D)L For the “consequently” part note that ((@) N )t =




L (a,b).
ab
Corollary 4. For an integral domain D the following are equivalent.

(1) D is a PVMD

(2) for all a,b € D\(0) we have ((a) N (b))~ a finite intersection of principal
fractional ideals and ((a) N (b)) : ((e) N (b)) =D

(3) D is a v-FC-domain and for all a,b € D\(0) we have ((a) N (8)) : ((2) N
(b)) = D.

Recall that D is called a finite conductor (FC-) domain if ((a) N(b)) is finitely
generated for each pair a,b € D. Just to show how far we have traveled since
19] we state and prove the following corollary.

Corollary 5. An integrally closed FC-domain is a PVMD.

Proof. We first note that since D is integrally closed A : A = D for every
finitely generated ideal A of D. So for each pair a,b € D\{0}, since D is FC,
((@) N () : ((a) N (b)) = D. But this makes D a v-domain, by Proposition 2
and a PVMD by Corollary 4.

While the result in Corollary 4 was the main result of [9] that paper con-
tained many useful techniques. For example [9] was the first in the literature
to introduce the formula (ADs), = (AyDg), where A is a finitely generated
(nonzero) ideal of D and S is a multiplicative set of D, among other useful
techniques.

Lemma 1 can also be instrumental in characterizing completely integrally
closed (CIC-) domains. There is enough information for CIC-domains in section
34 of [2]. Also the approach in this answer leads to a characterization of Krull
domains in a manner similar to the characterization of v-domains leading to the
characterization of PVMD’s.

Proposition 6. For an integral domain D the following are equivalent:

(1) D is a CIC-domain

(2) A=1: A=t =D for all 4 € F(D)

For the proof note that D is CIC if and only if every A € F (D) is v-invertible
{2, Proposition 34.2, Theorem 34.3] and (2) provides precisely that by Lemma
1.

Proposition 7. The following are equivalent for an integral domain:

(1) D is a Krull domain;

(2) for each A € F(D) there exist y1,y2,--Yn € 4 such that A~ = D%D
and for all a,b € D\{0}, ((a) N (1)) : (&) N (B)) = D;

(3) for each A € F(D) there exist 2,y € A such that A l=1iDn %D and
for all a,b € D\{0}, ((a) N (B)) : ((@) N (b)) = D.

Before we prove Proposition 7 it seems pertinent to give some introduction.
An integral domain D is called a Mori domain if D satisfies ACC on integral
divisorial ideals. Different aspects of Mori domains were studied by Toshio
Nishimura in & series of papers. For instance in [8] he showed that a domain D
is a Krull domain if and only if D is a Mori domain and completely integrally
closed. An integral domain D is a Mori domain if and only if for each A € F(D)
there exist ¥1,Y2, ..., ¥n € A\{0} such that A, = (W1, Y2, -y Yn)v |7, Lemma 1],
and it is easy to see that this characterization is equivalent to “for each A€ F(D)




there exist ¥1,¥2, .., Un € A\{0} such that A~1 = D%D”. For a quick review
of Krull domains the reader may consult the first few pages of [1]. A number
of characterizations of Krull domains can be found in {4, Theorem 2.3]. The
one that we can use here is: D is a Krull domain if and only if each A € F(D)
is ¢t-invertible. Which means that D is a Krull domain if and only if for each
A € F(D), A is v-invertible and A™! is of finite type. For another proof of a
Mori domain being a Krull domain see {11, Corollary 2.2].

Proof. From the above discussion (1) < (2). Next (3) = (1) follows from
(2)< (1). For (1) = (3) note that for all a,b € D\{0}, ((a)N(b)) : ((a)n(b)) = D,
because of (1) <>(2). For the remaining part recall from [5, Proposition 1.3] that
if D is a Krull domain then for every A € F(D) there exist z,y € A such that
Ay = (Z,Y)o.

" Remark 8. In (2) of Proposition 7 we cannot say that for every 4 € F(D) the
inverse A~ is expressible as a finite intersection of principal fractional ideals,
because this would be equivalent to A, being of finite type for each A € F(D).
But there do exist non-Mori domains D such that A, is of finite type for all
A € F(D). For a discussion of those examples you may consult [10, section. 2].

Remark 9. I hope that you realize that while the above results provide
definitions of those concepts in terms of mainstream algebra they also indicate
the importance of star operations as a means of getting deeper than where the
mainstream techniques could not help.

Remark 10. I am grateful to Said El Baghdadi for reading an earlier version
of the answer and catching a really bad error. David Dobbs, Marco Fontana
and Evan Houston also helped.
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