
QUESTION (HD 2003) What is a "t-class group" of an integral domain
D and how do you compute it?
ANSWER: For t-class groups you would need a dose of star operations, as

the t-, that comes before class group, is a star operation. (The following material,
on star operations etc., is a modi�ed version of some material in hd0901.pdf)
Let F (D) denote the set of nonzero fractional ideals of D and let K be the

quotient �eld of D: A star operation � on D is a function � : F (D)! F (D) such
that for all A;B 2 F (D) and for all 0 6= x 2 K
(a) (x)� = (x) and (xA)� = xA�,
(b) A � A� and A� � B� whenever A � B,
(c) (A�)� = A�.
For A;B 2 F (D) we de�ne �-multiplication by (AB)� = (A�B)� = (A�B�)�.

A fractional ideal A 2 F (D) is called a �-ideal if A = A� and a �-ideal of �nite
type if A = B� where B is a �nitely generated fractional ideal. A star operation
� is said to be of �nite character if A� =

S
fB� j 0 6= B is a �nitely generated

subideal of Ag. For A 2 F (D) de�ne A�1 = fx 2 K j xA � Dg and call
A 2 F (D) �-invertible if (AA�1)� = D. Clearly every invertible ideal is �-
invertible for every star operation �; because D� = D: If � is of �nite character
and A is �-invertible, then A� is of �nite type. The most well known examples
of star operations are: the v-operation de�ned by A 7! Av = (A�1)�1, the
t-operation de�ned by A 7! At =

S
fBv j 0 6= B is a �nitely generated subideal

of Ag; and the d operation de�ned by A 7! A, for all A 2 F (D): Given two
star operations �1; �2 we say that �1 � �2 if A�1 � A�2 for all A 2 F (D):
Note that �1 � �2 if and only if (A�1)�2 = (A�2)�1 = A�2 : By de�nition t is of
�nite character, t � v while � � t for every star operation � of �nite character;
thus a v-ideal is a �-ideal for every star operation � and so is a nonzero principal
fractional ideal. The v-operation is also important in that, for any star operation
�; and for A a �-invertible fractional ideal we have A� = Av (see page 433 of
Zafrullah�s [46]).
If � is a star operation of �nite character then using Zorn�s Lemma we can

show that a proper integral ideal maximal w.r.t. being a star ideal is a prime
ideal and that every proper integral �-ideal is contained in a maximal �-ideal.
Let us denote the set of all maximal �-ideals by �-max(D). It can also be
easily established that for a star operation � of �nite character on D we have
D =

\
M2�-max(D)

DM : A v-ideal A of �nite type is t-invertible if and only if A

is t-locally principal i.e. for every M 2 t-max(D) we have ADM principal. An
integral domain D is called a Prüfer v-multiplication domain (PVMD) if every
nonzero �nitely generated ideal of D is t-invertible. I recommend looking up
sections 32 and 34 of Gilmer�s book [32], and [46] for star operations.
For a given star operation � de�ne Inv�(D) = fA 2 F (D)jA is a �-invertible

�-idealg. Since the �-multiplication of two �-invertible �-ideals is again a �-
invertible �-ideal, the �-multiplication, in Inv�(D); is obviously associative, and
since D is the identity and the inverse is assured by the de�nition of Inv�(D),
we conclude that Inv�(D) is an abelian group under �-multiplication. Next

1



let P (D) = fxD : x 2 Knf0gg be the group of principal fractional ideals of
D: Since each principal fractional ideal is a �-ideal for any star operation �;
P (D) is a subgroup of Inv�(D) for every star operation �: The quotient group
Inv�(D)=P (D) is called the �-class group, Cl�(D). Now you can have a �-class
group for any star operation that you fancy. If you set � = d the identity
operation that takes each A 2 F (D) to A; you have the d-class group which
is clearly the ideal class group or the Picard group of D (Pic(D)): If, on the
other hand, you put � = v or � = t you get the v-class group or the t-class
group, respectively. (What is interesting, all these �-class groups are de�ned for
a general integral domain.) As it usually happens, the notion of a t-class group
appeared in a paper by A. Bouvier [17], much before the more general �-class
group that was introduced by David Anderson in [10].
There is another class group that was known way before the t-class group

which has some very important applications, in number theory and geometry.
This group, for a (completely integrally closed) domain D, is called the divisor
class group and is denoted by Cl(D): To de�ne it we need just the v-operation.
(Gilmer has a more general de�nition in section 34 of [32] but we shall leave it
as further reading.)
De�ne on F (D) the relation ~ as A~B, if and only if Av = Bv (or equivalently

A�1 = B�1) for A;B 2 F (D): Obviously ~ is an equivalence relation, usually
called Artin�s equivalence. In fact Van der Waerden calls ~ �quasi-equality" at
page 185 of [41]. If you read [41] remember that Van der Waerden was dealing
only with integrally closed Noetherian domains. In any case after taking a few
hints of historical nature let�s get back to the task at hand.
For each A 2 F (D) denote by div(A) the, divisorial, equivalence class of A;

i.e. the set of all X 2 F (D) with Xv = Av: Denote by D(D) = fdiv(A) : A 2
F (D)g: De�ne on D(D) the operation + by div(A) + div(B) = div(AB): It is
easy to see that D(D) is a commutative semigroup with identity div(D): Now
by this de�nition, A 2 F (D) has an inverse if there is a B 2 F (D) such that
div(A)+div(B) = div(D): This of course requires that div(AB) = div(D) which
means AB~D which happens if and only if (AB)v = D i.e. A is v-invertible. It
can be shown that in this case Bv = A�1 see e.g. page 433 of Zafrullah [46].
So, D(D) being a group requires that every A 2 F (D) is v-invertible. But it is
well known that every A 2 F (D) is v-invertible if and only if D is completely
integrally closed, as indicated in Theorem 34.3 of [32]. Thus D(D) is a group
under +; as de�ned above, if and only if D is completely integrally closed. Now
for D completely integrally closed de�ne P(D) = fdiv(A); A 2 F (D) : div(A)
contains a nonzero principal fractional ideal}. It is easy to see that P(D) is a
subgroup of D(D) under +: Now de�ne the divisor class group as the quotient
group Cl(D) = D(D)=P(D): It is easy to see that if, for D completely integrally
closed, we de�ne ' : D(D) ! Invv(D) by '(div(A)) = Av then '(div(A) +
div(B)) = '(div(AB)) = (AB)v and ' is a group isomorphism, it being easy to
see that ' is well-de�ned and is onto and one-one. Now D(D) �= Invv(D) and in
a similar fashion '(P(D)) = P (D) the set of nonzero principal fractional ideals
of D under multiplication. Thus, for a completely integrally closed integral
domain D we can represent the divisor class group by Invv(D)=P (D); the v-

2



class group Clv(D). It may however be noted that, as we have seen above, the
v-class group can be de�ned for any integral domain D and that Clv(D) is a
divisor class group only when D is completely integrally closed.
The divisor class group becomes very useful whenD is a Krull domain; which

is known to be completely integrally closed. Recall that D is a Krull domain if
D is a locally �nite intersection of localizations at height one prime ideals and
if localization at each height one prime is a discrete valuation domain. A good
source for divisor class groups is Robert Fossum�s [29]. One among the many
uses of the divisor class group of a Krull domain D is the fact that a Krull
domain is a UFD if and only if Cl(D) = Clv(D) is trivial. Thus a Krull domain
D is a UFD if and only if every divisorial ideal of D is principal. If D is Krull
and Cl(D) is torsion we get a generalization of UFDs called Almost Factorial
Domain (fast factoriell ringe), page 33 of [29]. In [29] it was shown that a Krull
domain D is almost factorial if and only if for each pair f; g 2 Dnf0g there is
a natural number n such that fnD \ gnD is principal. The almost factorial
domains were introduced by Storch [40].
Now it is well known that D is a Krull domain if and only if every nonzero

ideal of D is t-invertible (see e.g. Theorem 2.3 of Houston and Zafrullah�s [33].
Also note that every t-invertible t-ideal of any domain is actually a v-invertible
v-ideal and hence divisorial. Further because every divisorial ideal is actually
a t-ideal and hence in a Krull domain every divisorial ideal is actually a t-
invertible t-ideal. Putting these observations together we conclude that for D
Krull, Invt(D) = Invv(D) and so Clt(D) = Cl(D):
A PVMD is considered a good generalization of both of Prufer domains

(every nonzero �nitely generated ideal is invertible) and Krull domains and the
�rst impression was that the t-class group was a sort of generalization of the
divisor class group. So the early impulse was to study it as such and �nd results
corresponding to results on divisor class groups. Sure enough, for PVMDs the t-
class group went smoothly and it was obvious that a PVMD D is a GCD domain
if and only if Clt(D) is trivial [17, Proposition 2]. But there was evidence
that the t-class group could work for more general domains. Zafrullah [43]
studied almost GCD (AGCD) domains as domains D such that for every pair
x; y 2 Dnf0g there is a natural number n = n(x; y) such that xnD \ ynD
is principal. In [43] it was shown that a PVMD with torsion t-class group is
AGCD and conversely an integrally closed AGCD domain is a PVMD with
torsion t-class group. There was also a script [19] written by Bouvier based on
my answers to his questions while he was working on [17] An improved version
of that script appeared as Bouvier and Zafrullah�s [20]. In [20] we studied the
conditions under which Clt(D) was torsion or trivial etc.. Driss Nour-El-Abidine
and A. Ryckaert wrote theses under the supervision of Bouvier at Univ. Claude
Bernard, Lyon, France studying t-class groups. Later Anderson and Zafrullah,
in [8], decided that every AGCD domain has torsion t-class group.
On the other hand a domain D that satis�es ACC on integral divisorial

ideals, called a Mori domain, is a generalization of both of Noetherian and
Krull domains. Barucci and Gabelli studied the t-class groups of Mori domains.
Their work is mentioned in David Anderson�s second survey, [11]. The local
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class group is the group Invt(D)=Inv(D) and it was Bouvier�s work on the
local class groups of Krull domains i.e. D(D)=Inv(D) [18] that prompted me to
suggest to him to work on the t-class groups. (Soon after writing [20], Professor
Alain Bouvier got involved in research and management aspects of education
and teacher-training in France . He has since served his country in various high
level capacities, including the rectorship of a university. To have a glimpse of
his distinguished career the reader may look up:
http://faculty.kfupm.edu.sa/math/kabbaj/FezConf/BouvierCV.pdf
There has been a great deal of interest in the t-class groups and local class

groups. Some of the contributors such as Marco Fontana, S. Gabelli and M.H.
Park are mentioned in a recent paper by Anderson, Fontana and Zafrullah
[15]. There you can also see the de�nition of the �-class group for the semistar
operations and a decent introduction to semistar operations. In the Anderson-
Fontana-Zafrullah paper you would also see, for the �rst time, a discussion of
the v-class group of some integral domains. The notion of the t-class groups
was also translated into the language of monoids by [34]. There are many more
contributors to the study of the t-class groups, such as Said El Baghdadi, M.
Khalis, S. Kabbaj, G. Chang. If you read the literature you will �nd many more
names. Of course a lot of monoid-theorists, including Geroldinger have studied
the t-class groups of monoids, with the same de�nition because what they call
a "monoid" is a replica of the multiplicative monoid of an integral domain. But
I stop here because I think I have given enough introduction to the notion of
�-class groups and to the literature.
Now let�s look at how one "computes" the �-class group, or speci�cally the

t-class group.
The best answer to your question is the following. As in the case of the

divisor class group of a completely integrally closed integral domain, or as in
the case of an ideal class group of a domain, there is no set formula for computing
the t-class group, or local class group, of an integral domain. You compute or
decide on a t-class group, or local class group, of an integral domain D; by
studying the properties of the t-invertible t-ideals of the integral domain, or
construction, under consideration. The best I can do is to give you examples of
how I have and how others have "computed" the class groups in question.
To take care of the basics, let�s look at what kind of domains will have class

group that is trivial or torsion. This was systematically, though brie�y, done in
[20]. Though of course the treatment was limited to the t-operation. Let�s �rst
check what we need to know in the general case.
For a general star operation � the �-class group of an integral domain D is

Cl�(D) = Inv�(D)=P (D) where Inv�D) is the group of �-invertible �-ideals.
Now as indicated in [46], every �-invertible �-ideal is a v-invertible v-ideal. So,
for any star operation � we have Cl�(D) = Inv�(D)=P (D) � Invv(D)=P (D):
We can go a bit more general and note that if �1 � �2 are two star operations

then Cl�1(D) � Cl�2(D); [10]. But the trouble is that there are no known (or
interesting) �-class groups between the ideal class group and the t-class group
and similarly there seem to be no known �-class groups between Clt(D) and
Clv(D); thanks to the rather peculiar properties of �-invertibility, see Theorem
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1.1 of [46], that, say, among other things that, every �-invertible �-ideal is a
v -invertible v-ideal and if � is of �nite character then every �-invertible �-ideal
is a t -invertible t-ideal. Thus we have: For every star operation � we have
Cl�(D) � Clv(D) and if � is of �nite character, then Cl�(D) � Clt(D) �
Clv(D): However, care must be taken, even though every �-invertible �-ideal is
a v-invertible v-ideal, not every �-class group is a v-class group. For there are
numerous examples of domains D such that Cl�(D) ( Clv; and Cl�(D) ( Clt
for some star operation �; see e.g. Section 2 of [15]. The section in [15] mentioned
above provides a good study of how to compute the �-class group in certain
situations. That section ends, by the way, with the following remark: Given a
rank one valuation domain D; if we assume in Theorem 2.7 that D is not a DVR
and that G 6= R; then Clv(D) (which coincides in this case with the divisor class
group of D) is not zero zero, whereas the t-class group Clt(D) (= Pic(D)) is
zero. Having shown that both the divisor class and t-class group can coexist
without being equal, we conclude that the t-class group is not a generalization
of the divisor class group.
Now what does "Cl�(D) is trivial" mean? Obviously, because Cl�(D) =

Inv�(D)=P (D); "Cl�(D) is trivial" means that everything in Inv�(D) is in
P (D): That is "Cl�(D) is trivial" means every �-invertible �-ideal of D is a
principal fractional ideal. On the other hand "Cl�(D) is torsion" means that
for each ideal I in Inv�(D) there is a positive integer n = n(I) such that (In)�

is a principal fractional ideal. We may use Cl�(D) = (1) to denote "Cl�(D) is
trivial" or if we are used to using the additive notation of the divisor class group
we may use Cl�(D) = (0) to denote "Cl�(D) is trivial". There is no notation
to indicate that "Cl�(D) is torsion". To indicate that Cl�(D) is �nite we may
use the standard notation: jCl�(D)j <1:
Now before we delve into examples here�s another group which may come in

handy, as we proceed. Associated to each integral domain D there is the group
G(D) = fkDjk 2 Knf0gg of nonzero principal fractional ideals. It is just the set
P (D) except that G(D) is partially ordered by kD � hD, kD � hD: Now this
partial order has another property, it is compatible with the group operation,
multiplication of principal fractional ideals. That is if x; y; z 2 Knf0g and
yD � zD then xyD = xDyD � xDzD = xzD: (Obviously this follows from
the fact that yD � zD ) xyD � xzD:) Next mD = sup(hD; kD) exists if
and only if mD � hD; kD and if there is an lD � hD; kD then lD � mD:
Now mD � hD; kD , mD � hD \ kD and "if there is an lD � hD; kD
then lD � mD" translates to "if there is an lD � hD \ kD then lD � mD:
But this forces mD = hD \ kD: In other words: For all hD; kD 2 G(D);
sup(hD; kD) exists if and only if hD \ kD is principal. Now we know that
in a partially ordered group, inf(x; y) = (xy)(sup(x; y))�1: So inf(hD; kD) =
(hDkD)(hD\kD)�1 = ( 1hD\

1
kD)

�1 = ((hD+kD)�1)�1 = (hD+kD)v: Now
we know that D is a GCD domain if and only if the intersection of every pair of
nonzero principal (fractional) ideals is principal. Also a partially ordered group
G is a lattice ordered group if and only if sup (and hence inf) of every pair
of elements exists. Thus D is a GCD domain if and only if G(D) is a lattice
ordered group.
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Let�s take a few examples of how, in some cases, we can decide directly, on
what the v-class, or t-class group is. Let�s call a domain D v-local if D is local
with the maximal ideal M a v-ideal. Take a v-invertible ideal I in D: Claim
that I is invertible. For if not, then D 6= II�1 �M: But as I is v-invertible we
have D = (II�1)v � Mv = M; a contradiction. Thus, every v-invertible ideal
of a v-local domain D is principal.
Working along the same lines, or following Proposition 2.10 of [28], we con-

clude that if D is a t-local domain, then every t-invertible t-ideal of D is prin-
cipal. I record these observations in the following proposition.

Proposition 1 Let (D;M) be a local domain. (a) If M is a v-ideal, Clv(D) =
(0) and (b) if M is a t-ideal, Clt(D) = (0):

Let�s note that if in a local domain (D;M) M is a v-ideal, then M is a
t-ideal and so, in this case, Clt(D) = (0): Generally though, Clv(D) = (0)
implies Clt(D) = (0) because Clt(D) � Clv(D): Yet, on the other hand, if
Clt(D) = (0) we may not have Clv(D) = (0); as mentioned above. To see
this we have to take a sort of "North-Western route". In [44] I studied integral
domains with the property that for all A;B 2 F (D) we have (AB)�1 = A�1B�1

and called them "generalized Dedekind domains" or "g-Dedekind domains". As
it turned out, D is a g-Dedekind domain if and only if for all A 2 F (D) we
have Av invertible. It is easy to see that a g-Dedekind domain is completely
integrally closed Corollary 1.4 of [44]. Now as every invertible ideal of a local
domain is principal we conclude that if a local domain (D;M) is a g-Dedekind
domain, then Clv(D) = (0):Let�s throw in the t-local property and conclude at
the following result.

Proposition 2 A t-local g-Dedekind domain (D;M) is a rank one valuation
domain.

Proof. Indeed, as a g-Dedekind domain is a PVMD [44] and a t-local PVMD
is a valuation domain [28], we conclude that a t-local g-Dedekind domain is a
valuation domain. Now to decide that the rank of D is one we can use the fact
that a g-Dedekind domain is completely integrally closed.
Next let us read the last paragraph on page 292 of [44]. (I am copying it

almost verbatim here.) Let G be a totally ordered group and let G+ = fg 2
Gjg � 0g denote the positive cone of G: A subset H of G+ is called an upper
class of positive elements if for all h 2 H; k > h implies k 2 H: Let K be a �eld,
v be a valuation on K and let V be the valuation ring associated to v: That is
let V = fx 2 Kjv(x) � 0g: Next let G(V ) be the group of divisibility or the
value group = fkV jk 2 Knf0gg of V; ordered by kV � hV , kV � hV: (The
upper classes are just like Dedekind cuts.) It is well known that there is a one
to one correspondence between the set of nonzero integral ideals I(V ) of V and
C(G(V )) the set of upper classes of positive elements of G(V ) (see e.g. page
10 of [39]. This correspondence is given by A 7! V (A) = fV aja 2 Anf0gg: (Of
course A being principal corresponds to V (A) containing its least element.) If v
is of rank one G(V ) can be regarded as a subgroup of the group of real numbers,
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Theorem 1, p. 6 of [39]. A lattice ordered group G is said to be complete if
every subset S of G that is bounded from below has a greatest lower bound, inf
(and dually) belongs to G: Now G(V ) being totally ordered, is lattice ordered
and so its being complete or non-complete can be considered. Obviously if v is
of rank one, for every nonzero integral ideal A of V; V (A) is bounded from below
and hence has an in�mum in R; the set of real numbers, and this in�mum may
or may not belong to G(V ): If, however, G(V ) is complete, inf(V (A)) belongs
to G(V ); for each nonzero ideal A of V: The above considerations lead to the
following proposition.

Proposition 3 A t-local g-Dedekind domain is a rank one valuation domain
V with complete value group G(V ): Conversely if V is a rank one valuation
domain with complete value group, then V is a g-Dedekind domain.

For the �rst part Proposition 2 and the above discussion can be used and
for the converse, Theorem 2.6 of [44].

Corollary 4 For a rank one valuation domain V; Clv(V ) = 0 if and only if V
is a g-Dedekind domain.

Corollary 4 has some very interesting applications. Note that if V is a rank
one valuation such that G(V ) is not complete then by Corollary 4, Clv(V ) 6= (0);
yet as V is t-local Clt(V ) = (0): (Compare with the remark at the end of Section
2 of [15].)

Example 5 Let V be a rank one valuation such that G(V ) = Q the set of
rationals. Then Clv(V ) 6= (0) yet Clt(v) = (0):

Now, noting that, when V is a discrete valuation of rank one, G(V ) = Z;
and so is complete. Also when V is of rank one such that V is non-discrete
with G(V ) not complete, as in Example 5, we have Clv(V ) 6= (0): Now we know
that when V is of rank one V is completely integrally closed and so Clv(D)
is actually the divisor class group Cl(V ) of V: Thus if, say, V is a rank one
valuation domain such that G(V ) = Q; we have both Cl(V ) and Clt(V ) de�ned
for V and distinct in that Clt(V ) = (0) and Cl(V ) 6= (0): Consequently we have
the following result.

Theorem 6 The t-class group of an integral is a concept distinct from that of
the divisor class group.

Corollary 7 The following assertion in [10]: "Probably the best generalization
of divisor class group to an arbitrary integral domain is given by the t-class
group." is false in that the t-class group is not a generalization of the divisor
class group.

Remark 8 The g-Dedekind domains, by the way, were also studied, under the
name of pseudo Dedekind domains, in a later paper [4] by Dan Anderson and
B.G. Kang.
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While it is the case that for a v-local domain D; we have Clv(D) = (0); it is
generally not the case that if D is locally a v-local domain then Clv(D) = (0):
Same holds if we replace Clv(D) with Clt(D): The example in both cases is a
Dedekind domain.
It was indicated in Proposition 3.14 of [15] that if D is a v-domain and

Clv(D) = (0); thenD must be a GCD domain. However, in general, if Clv(D) =
(0); D may not even be pre-Schreier. Indeed D does not even have to be a, so-
called, �-domain.
Recall that D is a pre-Schreier domain if, for all x; y; z 2 Dnf0g; xjyz implies

x = rs where rjy and sjz: It was shown in [45] that D is a pre-Schreier domain
if and only if D satis�es
� : ((\(ai))(\(bj)) = \ij(aibj) for all a1; :::; an; b1; ::::bm 2 D
along with the property that x 2 ((\(ai))(\(bj)) = \ij(aibj) implies that

x = rs where r 2 ((\(ai)) and s 2 (\(bj)): Obviously the property � is much
weaker than the pre-Schreier property. A still weaker property
�� : ((\(ai))(\(bj)) = \ij(aibj) for all a1; a2; b1; b2 2 D
was shown in [AAJ] to make a Noetherian domain locally factorial. Next,

a one dimensional Noetherian local domain that is not a valuation domain is
a v-local domain that does not have even the �� property. Thus we have the
following statement.

Proposition 9 (1) Suppose that D is a v-domain. If Clv(D) = (0); then D is
a GCD domain. The converse does not hold. (2) Generally if Clv(D) = (0);
then D does not have to satisfy the �� property, one of the most general forms
of the GCD property.

One way of "computing" the v-class group group or the t-class group is to
show that it is the ideal class group etc.

Proposition 10 (i) If D is a g-Dedekind domain, then Clv(D) = Cld(D);
(ii) if D is a �-domain, then Clt(D) = Cld(D) and (iii) If D is a g-Dedekind
domain, then Clv(D) = Clt(D) = Cld(D):

Proof. Recall thatD is a g-Dedekind domain if and only if for all nonzero A 2
F (D) we have Av invertible. So, Invv(D) = Inv(D) and this gives Clv(D) =
Invv(D)=P (D) = Inv(D)=P (D) = Cld(D); (ii) we show that a t-invertible t-
ideal is an invertible ideal in a �-domain. The main tool behind this conclusion
is that a t-invertible t-ideal I is expressible as a �nite intersection of principal
ideals. For I is t-invertible if and only if Iv is of �nite type, (II�1)v = D and I�1

is a v-ideal of �nite type [46], Theorem 1.1. Now if I = (a1; :::an) is a t-invertible
ideal in a domain with property �; then Iv = \m1 xiD, I�1 = \n1yjD and the
�-property give us IvI�1 = \ijxiyjD: Since the right hand side in the preceding
equation is a v-ideal, we get IvI�1 = D: For (iii) note that D being g-Dedekind
, 8A;B2F (D)((AB)�1 = A�1B�1) ) 8A;B2f(D)((AB)�1 = A�1B�1) , D
satis�es �:
The real computation of the t-class group that took place was in section

3 of a paper by Stefania Gabelli [30]. In it she proved as Proposition 3.2 the
following result.
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Proposition 11 Let D be an integral domain and let �(D) denote the set of di-
visorial ideals of D: Then: (1) the correspondence ' : �(D)! �(D[X]) de�ned
by '(J) = JD[X] is an injective homomorphism of semigroups. Moreover J is a
t-invertible t-ideal of D if and only if JD[X] is a t-invertible t-ideal of D[X]; (2)
' induces an injective homomorphism of the groups  : Clt(D)! Clt(D[X]:i

Then she nails a remarkable result in Theorem 3.6, that I state as the fol-
lowing result.

Theorem 12 Let  : Clt(D) ! Clt(D[X] be the homomorphism de�ned in
Proposition 11 then  is an isomorphism if and only if D is integrally closed.

The proofs of Lemma 3.5 and Theorem 3.6 of [30] are a good study, if you
want to work with class groups.
Let�s get back to the business at hand. Let�s recall that if D is an integral

domain with quotient �eld K: The group of divisibility G(D) of D is a partially
ordered group that is a lattice ordered group if and only if D is a GCD domain.
As we have seen P (D) is just like G(D) and looking at [46],..., �-Inv(D) too is
like G(D); in some ways. One may want to look into locally �nite intersections
of localizations at prime ideals. Let us call D an LFIP domain if D has a family
F = fP�2Ig of prime ideals such that D = \DP� and each nonzero non unit of
D is a unit in DP� for almost all � 2 I: Let�s call F the LFIP-de�ning family
of D:
Let�s call an element of D primary if xD is a primary ideal. Recall that a

domain D is called a Weakly Factorial Domain (WFD) if every nonzero non
unit of D is expressible as a �nite product of primary elements. This notion
was introduced by Anderson and Mahaney in [5]. The class group of a weakly
factorial domain is zero, because in a weakly factorial domain, every t-invertible
t-ideal is principal. The proof may be a little hard to reconstruct from [7], so
we include it in the result below. For this recall from [7] that a weakly factorial
domain D is weakly Krull, i.e., D is a locally �nite intersection of localizations
at height one prime, each of which is a maximal t-ideal and that D is weakly
factorial if and only if the following holds: If P is a prime ideal of D minimal
over a proper principal ideal (x), then htP = 1 and xDP \D is principal.

Proposition 13 Let D be a weakly factorial domain. Then every t-invertible
t-ideal I of D is principal.

Proof. Let I be a t-invertible t-ideal in a WFD D: Then I = (x1; :::; xr)v:
Because each of the xi belongs to at most a �nite number of height one primes
of D; I belongs to at most a �nite number say P1; P2; :::; Ps of height one primes
of D: Next, because I is a t-invertible t-ideal and each Pi is a maximal t-ideal
we have IDPi = yiDPi and of course as yiDPi \D = (zi) we have IDPi \D =
(zi): Since I is divisorial we have I = \Q2X1(D)IDQ = IDP1 \ ::: \ IDpS \
(\Q=2fP1;:::;PsgDQ) = IDP1 \D::: \ IDpS \D = (z1) \ (z2)::: \ (zs): Since (zi)
are mutually t-comaximal, we have I = It = (

Qs
i=1(zi))t = (

Qs
i=1 zi); principal.
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Using Theorem 3.1 of [6] one can show that D is a weakly Krull domain if
and only if (A) Every proper t-invertible t-ideal of D is a t-product of primary
t-ideals. (Setting (A) as (4�) in Theorem 3.1 of [6], the proof will go as follows:
(4) ) (4�) because (4�) is a special case of (4) and (4�) ) (3) as a special case.
But (3), (4) being equivalent, according to Theorem 3.1 of [6].) Also according
to Theorem 3.1 of [6], one has that D is a weakly Krull domain if and only if
"Whenever P is a prime ideal minimal over a proper principal ideal (x) we have
xDP \D t-invertible." Thus we have the following result.

Proposition 14 Let D be a weakly Krull domain. Then the following are equiv-
alent.

(1) D is weakly factorial,
(2) For every height one prime ideal P of D and for every x 2 P we have

xDP \D principal,
(3) Clt(D) = (0):
((1) ) (2) being a special case of (6) of Theorem of [7], (2) ) (3) can

be reconstructed from the proof of Proposition 13. (3) ) (1) follows from
the facts that in a weakly Krull domain for each nonzero non unit x we have
(x) = (

Qn
i=1(xDPi \ D))t; where Pi ranges over the height one prime ideals

containing x; each of xDPi \D is a t-invertible t-ideal and for each i, xDPi \D
is a primary ideal. Applying (3) gives xDPi \D principal for each i:)
Call D an almost weakly factorial domain (AWFD) if for each nonzero non

unit x of D, there is a positive integer n(x) such that xn(x) is a product of
primary elements. Theorem 3.4 of [6] shows that D is an AWFD if and only
if D is a weakly Krull domain with torsion t-class group. Some of these ideas
were further developed in [14].
The other area where "computing" or �nding out the class group is to do

with various polynomial ring constructions. Of these the A + XB[X] is the
foremost and the hardest to handle. To give you an ideal I have chosen a paper
by David Anderson, Said El Baghdadi and Salah Kabbaj, [12].
It appears that grading is the best approach, in computing the class group

of A+XB[X] and that too in some special cases.
A commutative and cancellative monoid, usually written additively, with

neutral element 0; is called a grading monoid. A grading monoid � is torsionless
if m = m0, for some positive integer m; implies  = 0: An additive monoid
M is partially ordered (or endowed with a partial order) if there is a re�exive
transitive and antisymmetric relation � de�ned on M such that x � a implies
x+ y � a+ y for all x; a; y 2M: (In this case we say that � is compatible with
+:) A partially ordered monoid M is said to be endowed with a total order if
for all x; y 2 M we have x � y or y � x: According to Northcott [37], which
is a good source on grading monoids, A grading monoid � can be endowed
with a total order compatible with its structure as a monoid if and only if it is
torsionless.
A ring R is called graded (or more precisely, �-graded ) if there exists a

family of subgroups fRg2� of R such that
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(1) R =
L

 R (as abelian groups), and (2) R� R� �R�+� for all �; � 2 �.
A non-zero element x 2 R is called a homogeneous element of R of degree

, 0 6= x 2 R is usually represented by x : Note that if R =
L

 R is a graded
ring, then R0 is a subring of R, 1 2 R0 and R is an R0-module for all : We
usually assume that R 6= (0) for each : The reason is that if we denote by
Supp(R) the set f� 2 �jR� 6= (0)g; then Supp(R) is a submonoid of �; with
the same properties.
By a (�-)graded integral domain D =

L
2�D we mean an integral domain

graded by an arbitrary torsionless grading monoid �. Thus, every 0 6= f 2 R
can be written as f = x�1 + x�2 + :::x�n with �1 < �2 < ::: < �n: The x�i are
the (homogeneous) components of f: Let H be the saturated multiplicative set
of nonzero homogeneous elements of D. Then

DH =
L

2�(DH) , called the homogeneous quotient �eld of D.
An ideal I of a graded domain is homogeneous if (and only if) whenever

f 2 I all homogeneous components of f belong to I: Thus an ideal I of a
graded domain is homogeneous if and only if it is generated by homogeneous
elements. Given a graded ring R =

L
 R an R module M is graded if we

can write M =
L

M where M are subgroups such that RM� � M+� for
all ; � 2 �: A submodule N of a graded module M is homogeneous, as in the
case of ideals, if whenever n 2 N all homogeneous components of n belong to
N: While the fractional ideals are de�ned in the usual manner, a homogeneous
fractional ideal I is a homogenous submodule of DH =

L
2�(DH) such that

rI is a homogenous ideal of D =
L

2�D : If I and J are nonzero homogeneous
fractional ideals, then I : J is also a homogeneous fractional ideal and I :K J =
I :DH

J: In particular, if I is homogeneous, then so is Iv:
The following results come from [12], some of them verbatim.

Lemma 15 Let R = A + XB[X] with B integrally closed. Let I be a homo-
geneous divisorial ideal of R; J the ideal of B generated by coe¢ cients of all
the polynomials of I: Let n be the least integer k such that aXn 2 I for some
nonzero a 2 B and let W � J be the A-module consisting of all a 2 B such that
aXn 2 I: Then J is a divisorial ideal of B and I = XnW +Xn+1J [X]:

[Thus if I is an integral divisorial ideal of R = A + XB[X]; B integrally
closed, with I \A = H 6= (0); then I = H +XJ [X] where J is a divisorial ideal
of B containing H:]

Lemma 16 Let R = A +XB[X] with B integrally closed. If I is a divisorial
ideal of R; then there is a homogeneous ideal J of R such that I = u(J) for
some u 2 K[X;X�1]:

The reason why B must be integrally closed is apparent from the following
result.

Theorem 17 Let R = A +XB[X]: Then B is integrally closed if and only if
for every divisorial ideal I we have I = u(W +XJ [X] where J is a v-ideal of
B and W � J a nonzero A-module.
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Lemma 18 Let R = A+XB[X]: Let F1 be a nonzero fractional ideal of A and
F2 a fractional ideal of B such that F1 � F2: Then F1 +XF2[X] is a fractional
ideal of R and we have (F1 +XF2[X])�1 = F�11 \ F�12 +XF�12 [X]:

Lemma 19 Let R = A+XB[X]. Then B[X] and XB[X] are divisorial ideals
of R:

Theorem 20 Let R = A+XB[X] with B integrally closed. If I is a fractional
v-invertible v-ideal of R; then I = u(J1 +XJ2[X]) for some u 2 qf(R); J2 is a
v-invertible v-ideal of B and J1 is a nonzero ideal of A such that J1 � J2:

Corollary 21 Let R = A+XB[X] with B integrally closed. If I is a fractional
t-invertible t-ideal of R; then I = u(J1 +XJ2[X]) for some u 2 qf(R); J2 is a
t-invertible t-ideal of B and J1 is a nonzero ideal of A such that J1 � J2:

A fractional ideal I of R = A + XB[X] is said to be extended from A if
I = u JR for some u 2 qf(R) and some ideal J of A:

Lemma 22 Let R = A +XB[X] with B integrally closed and let I be a frac-
tional divisorial ideal of R: Then IB[X] is a divisorial ideal of B[X] if and only
if I = uWR for some A submodule W of B and and some u 2 qf(R):

Lemma 23 Let R = A +XB[X]. Let I be a divisorial ideal of R of the form
I = J1 +XJ2[X] where J1 is an ideal of A and J2 an ideal of B with J1 � J2:
Then the following statements are equivalent.

(1) I is extended from A; (2) J2 = J1B and (3) IB[X] is divisorial in B[X]:

Theorem 24 Let R = A+XB[X]. Let I be a fractional v-invertible v-ideal of
R: Then TFAE: (1) I is extended from A and (2) IB[X] is a divisorial ideal of
B[X].

Lemma 25 Let R = A +XB[X]: Then R is a �at A-module if and only if B
is a �at A-module.

Lemma 26 Let S � T be an extension of integral domains such that T is a �at
S-module. If I is a nonzero �nitely generated ideal of S; then (a) (IT )�1 = I�1T
and (b) (IT )v = (IvT )v:

(Let me recall, results like this started appearing after the appearance of
Lemma 4 of [42]. The said lemma was Lemma 26 for T a ring of fractions of S:)

Lemma 27 Let S � T be an extension of integral domains such that T is a �at
S-module. If I is a v-ideal of �nite type of S; then (IT )�1 = I�1T:

Proof. Let B be a �nitely generated ideal such that I = Bv: Then (IT )v =
(BvT )v = (BT )v: This gives (IT )�1 = (BT )�1 = B�1T = (Bv)

�1T = I�1T:
(Note that if the ring T is a �at S module and A is a t-ideal of T such

that A \ S 6= (0); then A \ S is a t-ideal of S: For if a1; :::; an 2 A \ S; then

12



(a1; :::; an)T � A: Since A is a t-ideal, we have ((a1; :::; an)T )v � A: But, by
Lemma 26, ((a1; :::; an)vT )v and so (a1; :::; an)vT � ((a1; :::; an)T )v � A: This
forces (a1; :::; an)v � A\S: This is the most general form of Lemma 3.17 of [35]
which, by the way, says that if I is a t-ideal of a ring of fractions R of D; then
I \D is a t-ideal.)
Recall that in an extension A � B of domains, B 2 is said to be t-linked

over A if for each �nitely generated ideal I of A; I�1 = A implies (IB)�1 = B:

Lemma 28 Let R = A+XB[X] and let J be an ideal of A: (1) If (JR)v = R;
then Jv = A and (2) If (JR)t = R; then Jt = A: Also (3) if B is a �at A-
module and Jt = A; then (JR)t = R: ((3) because B being a �at A-module
makes A+XB[X] �at and hence a t-linked extension of A; [3].

Proposition 29 Let R = A + XB[X] such that B is a �at A-module and let
J be an ideal of A: Then J is a t-invertible t-ideal of A if and only if JR is a
t-invertible t-ideal of R.

Theorem 30 Let R = A+XB[X] such that B is a �at A-module and integrally
closed and let I be a fractional t-invertible t-ideal of R: Then IB[X] is a (proper)
divisorial ideal of B[X] if and only if I = u JR for some u 2 qf(R) and some
(proper) t-invertible t-ideal J of A:

Lemma 31 Let R = A +XB[X] such that B is a �at A-module. Then B[X]
is a �at R module if and only if B is an overring of A:

Lemma 32 Let R = A + XB[X] such that B is a �at A-module. Then the
canonical map ' : Clt(A) ! Clt(R) de�ned by [J ] 7! [JR] is a well-de�ned map
and it is an injective homomorphism.

(As B is a �at A-module R is a �at A-module and hence A � A+XB[X] is a
t-linked extension of [3]. Thus by Theorem 2.2 of [3], there is a homomorphism
� : Clt(A)! Clt(R) de�ned by [IA] 7! [(IR)t]: Since I is a t-invertible t-ideal, I
is a �nite intersection of principal fractional ideals. Couple it with the fact that
R is a �at A-module to get (IR)t = IR: That the homomorphism is injective is
now straightforward.)
The next two results seem to be what the authors were planning to get.

Theorem 33 Let R = A + XB[X] such that B is integrally closed and a �at
overring of A. Then Clt(A) �= Clt(A+XB[X]):

Corollary 34 Let S be a multiplicatively closed subset of A: If A is integrally
closed, then Clt(A+XAS [X]) �= Clt(A):

A slightly improved corollary will be the following result.
Let S be a multiplicatively closed subset of A such that AS is integrally

closed, then Clt(A+XAS [X]) �= Clt(A):
The authors of [12] go on to indicate various other, important, applications

of Theorem 33, but I would stop here to make the following points.
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(1) When "computing" a class group concentrate on integral t-invertible t-
ideals, the de�nition ensures that the class of each t-invertible t-ideal should
contain an integral ideal.
(2) I have followed [12], more or less result by result, until Theorem 33, to

press home the fact that while every integral domain has the t-class group, not
all t-class groups may be easy to �nd.
(3) In my opinion Lemma 32 presents the best scenario, in the A+XB[X]

situation. in that it shows that Clt(A) is isomorphic to a subgroup of Clt(A+
XB[X]):
(4) Looking at Corollary 34, I wonder if the D + XDS [X] construction of

[25] had not come about, how would the consideration of the A +XB[X] and
how would a lot of activity on pullbacks come about?
(5) A consequence Theorem 33 is that if L is an extension �eld of qf(A);

then Clt(A+XL[X]) �= Clt(A): Most of the legwork for this result was done in
[16] which was one of the earlier papers written on the class group. In [16] the
authors consider the D+M construction, that is if T = K+M is a domain with
K a �eld and D is a subring of K; they consider R = D +M: Two examples
of the D +M construction are D + XL[X]; and D + XL[[X]]; where L is an
extension �eld of qf(D): Proposition 2.4 of this paper can be a useful result to
know and so is included below.

Proposition 35 Let T = L+M and R = D +M be integral domains with D
a subring of L. Let I be a nonzero fractional ideal of D. Then

(1) (I +M)�1 = I�1 +M .
(2) (I +M)v = Iv +M .
(3) I is �nitely generated (resp., v-�nite) if and only if I + M is �nitely

generated
(resp., v-�nite).
(4) I 2 Invt(D) if and only if I +M 2 Invt(R).
The computation of the t-class group or of the �-class group of a pullback

is essentially similar to the computation of the class group of the D +M and
that of the A + XB[X] domains. The papers that may be of interest in this
area are [22], [26], [27] [23] etc. and If I have strength I might describe some of
their results, though I think Chang�s paper o¤er�s the essence of the pullback
approach.
When it comes to computing Clt(DS) , given that Clt(D) is known, the

question of computing the class group becomes very interesting indeed. While,
as we have seen, a t-class group is is not a generalization of a divisor class group
the various similarities lead one to look into known results on divisor class groups
to get a handle on the t-class group. Nagata proved that if D is a Krull domain,
S is a multiplicative set in D and if Cl(D) represents the divisor class group of
D; then the map fS : Cl(D)! Cl(DS) de�ned by [I] 7! [IDS ] is surjective and
if S is generated by primes then fS is an isomorphism [29], Corollaries 7.2 and
7.3. Just like the class groups, the PVMDs grew up as a sort of generalization
of Krull domains, see [36]. As mentioned in [31], Proposition 2.14 of [38] says
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that if D is a PVMD and S a multiplicative set of D;then fS : Cl(D)! Cl(DS)
de�ned by [I] 7! [IDS ] is surjective. Driss Nour-El-Abidine noted that neither
being a PVMD nor being a Mori domain are essential to Nagata�s class group
theorem. What is really at work is the property that Driss dubbed as P � : For
every nonzero �nitely generated ideal I the inverse I�1 is a v-ideal of �nite type.
In Theorem 1 of [21] the author states:

Theorem 36 Suppose that D is an integral domain satisfying P �: If S is a
multiplicative set generated by prime elements of D; then Cl(D) �= Cl(DS):

This was taken up in [9] in a slightly di¤erent way. We called a nonzero
element r 2 D an extractor if rD\xD is principal for all x 2 Dnf0g (equivalently
if (r; x)v is principal for all x 2 Dnf0g:) Using the fact that r 2 Dnf0g is an
extractor if and only if r belonging to a v-ideal I makes I principal (Theorem
4.1 of [9]), the following result was proved in in [9].

Theorem 37 (Theorem 4.2 [9]). Suppose that D is an integral domain and S
is a multiplicative set of D generated by extractors of D: Then the natural map
Clt(D) ! Clt(DS) is injective. If D also satis�es P � then Clt(D) ! Clt(DS)
is surjective and hence an isomorphism. ***

Noting the fact that in a domain satisfying P � a primal element is actually
an extractor, [9]Corollary 3.2, one can state the following result.

Theorem 38 Suppose that D is an integral domain and S is a multiplicative
set of D generated by completely primal elements of D: If D satis�es P � then
Clt(D)! Clt(DS) is surjective and hence an isomorphism.

Things became interesting with the introduction of t-linked extensions. The-
orem 2.2 of [3] goes as:

Theorem 39 Let A � B be a pair of integral domains with B t-linked over A.
Then the map � : Inv�(A) ! Inv�(B), given by �(I) = (IB)t is a homomor-
phism. Furthermore, if xA is a principal fractional ideal of A then �(xA) = xB;
thus � induces a homomorphism � : Clt(A)! Clt(B), where �[I]) = [(IB)t].

Let D be a domain, and let � be a set of prime t-ideals of D: Then the
ring R = \P2�DP is called a subintersection of D in section 5 of [36], where it
was shown that a subintersection of a PVMD is a PVMD . (This was, as noted
in section 5 of [36], in analogy with " Every subintersection of a Krull domain
is a Krull domain", [29].) I have brought in this terminology to facilitate the
reading of the following theorem.

Theorem 40 Let A be a PVMD, and let B = \P2�AP , be a subintersection
of A, where � is a subset of the set of t-primes of A. Then the map � :
Inv�(A)! Inv�(B), given by �(I) = (IB)t is a surjective homomorphism. The
induced map � : Clt(A)! Clt(B) is also a surjective homomorphism.
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This is the latest form of Nagata�s Theorem for PVMDs, you may want to
compare it with Theorem 7.1 of [29]. I have included this result to indicate that
some times, estimating is a better choice than actual computing.
One way of simplifying the computing of the t-class group of a domainD is to

look for a splitting or an lcm-splitting set. Recall that a saturated multiplicative
set S in D is said to be a splitting set of D if for each d 2 Dnf0g we can write
d = rs where s 2 S and r 2 D is such that rD\ tD = rtD for all t 2 S: Also for
a saturated multiplicative set S; let T = ft 2 DjtD \ sD = tsD for all s 2 Dg
and call it a multiplicative complement (or m-complement) of S: Sometimes T
is denoted by S?: If S is a splitting set such that sD \ xD is principal for all
x 2 D we call S an lcm splitting set of D: Theorem 2.2 of [2] discusses properties
of splitting sets in detail. We record the following for our purposes.

Theorem 41 Let S be a saturated multiplicative set in D: Then the following
are equivalent.

(1) S is a splitting set of D;
(2) If I is an integral principal ideal of DS then I \D is a principal ideal of

D:
From the lcm-splitting angle a splitting set S is an lcm-splitting set if and

only if DS? is a GCD domain. The following is a result that may give you the
clue to how the splitting sets work.

Lemma 42 Let S be a splitting multiplicatively closed subset of D with T the
m-complement for S. Let s1, . . . , sn, 2 S and t1 , . . . , tn, 2 T. Then
(s1t1; ::; sntn)v = ((s1; :::; sn)(t1; :::; tn))v:

Consequently we have the following result.

Theorem 43 Let S be a splitting multiplicatively closed subset of D with T
the m-complement for S. Let A = (fa�g ) ( each a� 6= 0) be an integral ideal
of D. For each �, write a�, = s�t�, where s� 2S and t� 2T. Then At =
(((s�})({t�}))t. In particular, At = ((S1)(T1))t, where S1 = {s2 S j st 2 A
for some t 2T} and T1 = ft 2 T jst 2 A for some s 2 S).

This leads to the following result.

Theorem 44 Let S be a splitting multiplicatively closed subset of D and let T be
the m-complement for S. Let A = (fa�g)(a� 6= 0) be an integral ideal of D. For
each �, let a� = s�t�, where s� 2 S and t� 2 T . Then (ADS)t \D = (ft�))t.
In particular, if A is generated by elements of T , then (ADS)t \ D = At and
hence (ADS)t = AtDS :

Using these and some other observations, we come to the conclusion drawn
in the following result..
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Theorem 45 Let D be an integral domain, S a splitting subset for D, and T the
m-complement for S. Then the map � : Invt(D)! Invt(DS)xcInvt(DT ), given
by �(A) = (ADS ; ADT ), is a monoid order isomorphism. (Heree Invt(DS)xcInvt(DT )
represents a cardinal product, a direct product in which order is de�ned coor-
dinatewise.) Moreover, for A 2 Invt(D), A is integral (respectively; principal,
of �nite type, t-invertible) if and only if both AD, and AD, are integral (respec-
tively;

principal, of �nite type, t-invertible).
This leads directly to the conclusion.

Corollary 46 With the notation of Theorem 45, the map � : Clt(D)! Clt(DS)xClt(DT ),
given by �[A]) = ([ADS ]; [AD]), is a group isomorphism. In particular, the nat-
ural map Clt(D)! Clt(DS) is a group epimorphism and is an isomorphism if
and only if Clt(DT ) = 0.

Thus, in a nutshell if we can �nd a a splitting set S and its m-complement
T in D; then you can split the class group of a domain as a direct sum of
two class groups, which may be easier to handle. Thus for example if L is
an extension of qf(D) = K and X an indeterminate over L; and R = D +
XL[X]; then Clt(R) �= Clt(D) because S = fu + Xl(X)j where u is a unit
and Xl(X) 2 XL[X]g is a saturated multiplicative set generated by height one
primes and hence is an lcm-splitting set, with m-complement T = Dnf0g: This
gives Clt(R) , Clt(RS)� Clt(RT ) = Clt(D)� Clt(K +XL[X]) and there are
several ways of proving that Clt(K +XL[X]) is trivial.
A somewhat interesting modi�cation of the above idea has been employed

by Anderson and Chang in [13].

When it comes to �nding class groups of somewhat involved construc-
tions, it is hard to pass up a recent innovation by Chang. Fossum used the
following construction to prove Claborn�s theorem that every abelian group is
the ideal class group of a Dedekind domain. Let � be a nonzero index set,
fxi; yi; ui; viji 2 �g be an algebraically independent set over D; vi = yiui=xi for
all i 2 �, Z(�) be the direct sum of �-copies of the additive group of integers,
and R = D[fxi; yi; ui; viji 2 �g]:According to Corollary 14.9 of [29], if D is a
Krull domain, then so is R and Cl(R) = Cl(D)

L
Z(�): In [24], Chang adapts

this construction to prove that every Abelian group is the ideal class group of
a Prufer domain of �nite character that is not a Dedekind domain. Of course
as Fossum [29] moves from the ideal class group of a Dedekind domain to the
divisor class group of a Krull domain Chang [24] takes us from the ideal class
group of a non-Dedekind Prufer ring of �nite character to the t-class group of a
non-Krull PVMD of �nite t-character, i.e. a ring of Krull type. The whole a¤air
is somewhat intricate, so I would leave it with a mention of [24] as a source for
another computation of a t-class group.
Finally, I postponed the posting of an earlier version of the answer, hoping

to write a better response and then due to my health, I forgot it completely. If
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you �nd this write up useful, thank Hwankoo Kim who pointed out to me that
there was no response to the question. As most of this material got written
recently and typing has been hard due to pain in my shoulders and neck. So,
some errors are inevitable. I would be grateful if you point them out to me.
Muhammad Zafrullah
June 10-2022.
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