QUESTION (HD 1701): Do star operations have any applications?

ANSWER: Recently, I wrote up the following. This might answer your
question and hopefully more.

The questions: “When is an integral domain D a t-local domain?” and,
“What good is a t-local domain?” may sound like the oddest questions. The
simple answers to these questions are, “When D is a quasi-local domain and the
maximal ideal of D is a t-ideal” and, “There are situations where the knowledge
that a certain (quasi local) domain is ¢-local can simplify matters a great deal”.
The purpose of this note is to point out some telltale signs that would point
to the fact that the domain is t-local and in some cases more. Usually, ¢-local
domains being cousins of valuation domains, albeit distant ones, it helps to
know the circumstances under which the knowledge that a quasi-local domain
is a t -local domain can greatly simplify the proof that the domain in question
is a valuation domain. But first let us explain the “t-ideal” terminology, that
might be alien to some.

Let D be an integral domain with quotient field K, let F(D) be the set of
non-zero fractional ideals of D and for A € F(D),let A= = {z € K : A C D}.
The functions on F(D) defined by A — A, = (A=)~ and A — A4; = U{a, :
0 # a is a finitely generated subideal of A}, called the v- and t-operations, come
under the umbrella of star operations discussed in sections 32 and 34 of [G],
where the reader can find proofs of the statements made here about the v- and
t-operations. An ideal A is a (v-) t-ideal if A = (A4,) A; and a (v-) t-ideal of
finite type if A = B, for some finitely generated B € F (D). Next the t-operation
is a star operation of finite type in the sense that A € F'(D) is a t-ideal if and
only if for each finitely generated nonzero subideal I of A we have I, C A. An
integral ideal maximal w.r.t being an integral ¢-ideal is called a maximal ¢-ideal
and is a prime ideal. Finally every t-ideal is contained in a maximal t-ideal.
Any unexplained terminology is straightforward and well accepted and usually
comes from [K] or [G].

Proposition A. If D is a quasi local domain and the maximal ideal of D is
minimal over (i.e. is a radical of ) an integral t-ideal then D is t-local.

Proof. The proof can be found, couched in star operations of finite character,
in [HH, (5) of Prop. 1.1] or in [Z-HD].

Corollary AA. If D is a quasi local domain and the maximal ideal of D is
minimal over (i.e. is the radical of ) a principal ideal of D, then D is t-local.

Obvious because a principal ideal is a t-ideal.

Corollary AB. If D is a quasi local domain and the maximal ideal of D is
principal then D is t-local.

Follows from Corollary AA.

Corollary AC. A one dimensional quasi local domain is t-local.

Follows from the fact that in this case the maximal ideal is a minimal prime
over every ideal contained in it.

Proposition AD. If (D, M) is quasi local and for every pair of prime ideals
P,Q of D, we have P C Q or Q C P, i.e. spec(D) is treed, or linearly ordered
under inclusion, then D is t-local.



Let I = (21, 29,...xy,) C M be a nonzero ideal of D and let P be a minimal
prime of I. Then spec(D) being treed forces P to be unique. Now let, for each
i=1,2,...,n, P(z;) be the minimal prime of x;. Again by the linearity of order
of spec(D), for some 1 < k <n, P(zx) 2 P(z;) for j # k. So P(xx) 2 I and so
P(x) O P. But as x € P, P(x) C P. Whence every proper nonzero finitely
generated ideal of D is contained in a prime ideal of D that is minimal over a
principal ideal and hence is a t-ideal, by Proposition A, which is P in this case.
Thus I, € P C M. Since [ is arbitrary as a finitely generated ideal, M is a
t-ideal.

A nonzero element ¢ € D is called comparable in D if for all x € D we have
(¢) € (z) or (z) C (c).

These elements were introduced and studied in [AZ] to prove a Kaplansky
type theorem: An integral domain D is a valuation domain if and only if every
nonzero prime ideal of D contains a comparable element. An important part of
the result was the proof of the fact that the set of all comparable elements of D
is a saturated multiplicative set.

Of course D is a valuation domain if and only if every nonzero element of D
is comparable and this was used in [GMZ] to show that a GCD domain D is a
valuation domain if and only if D contains a non unit comparable element. But
there was more in store for us. In [GMZ] a part of the following observation
was proved.

Proposition B (cf [GMZ, Theorem 2.5]). An integral domain D that contains
a non unit comparable element is a t-local domain while a ¢-local domain may
not contain a comparable element.

Proof. Let D be an integral domain and let d be a non unit comparable
element in D. We first show that D is quasi local. Suppose by way of con-
tradiction that there exist two co-maximal non unit elements x,y in D, i.e.
re+ sy = 1 for some r, s € D. Now as d is comparable d|rz or rz|d. So rz has a
non unit comparable factor d or, being a factor of d, rz is non unit comparable
element. Thus rx has a non unit comparable factor h. Similarly sy has a non
unit factor k. Since h, k are comparable, h|k or k|h, say h|k. Thus assuming that
rz + sy = 1 we get the contradictory conclusion that a non unit divides a unit.
So, D is quasi local, with say maximal ideal M. Next let z1,xs,...,2, € M and
note that as above, each of the x; has a non unit comparable factor h;. Thus
(x1,29,...2,) C (h1,ho,...h,). Next since hi, ho have each a non unit common
factor k1 ( = hy or he). So, (z1,22,...xy) C (h1, hs,...h,) C (k1, hs...hy). Con-
tinuing this process we eventually get a non unit comparable element %k such
that (21, x9,...x,) C (h1,ha,...hy,) C (k). Thus (z1, 22, ...2,) € (k) C M. But
as (r1,x2,...2,) C (k) implies (21, z2,...25)y € (k) we conclude that for each
finitely generated ideal (x1,x9,...x,) C M, (21, 22,...4 )y, € M. Thus D is a t-
local domain. For the converse note that a one dimensional quasi local domain
has only one nonzero prime ideal and so is a valuation ring if and only if it con-
tains a non unit comparable element, by the Kaplansky type theorem mentioned
above. The proof is complete once we note that there do exist one-dimensional,
Noetherian quasi local domains that are not valuation domains.

A fractional ideal I € F(D) is said to be (v-) t-invertible if there is J € F/(D)



such that ((IJ), = D) (IJ): = D. A domain D is a Prufer v-multiplication
domain, PVMD, if every finitely generated I € F(D) is t-invertible. It is well
known (see Griffin [Gr]) that D is a PVMD if and only if Dy, is a valuation
domain. Obviously every invertible ideal is t-invertible. Note that a GCD
domain D is a PVMD, because for each finitely generated nonzero ideal I of D
we have I, principal.

Corollary BA. A PVMD D is a valuation domain if and only if D contains
a non unit comparable element.

Follows from the fact that a t-local PVMD is a valuation domain anyway and
a valuation domain that is not a field must contain many non unit comparable
elements.

This corollary is more interesting in that a GCD domain is a PVMD. Now
here comes something a tad surprising. Call an integral domain D atomic if
every nonzero nonunit of D is expressible as a finite product irreducible elements.

Corollary BB. An atomic domain that contains a non unit comparable ele-
ment is a DVR.

Proof. Let D be an atomic domain and let d be a nonunit comparable
element in D. Then by Proposition B, D is t-local with maximal ideal M. Let h
be an irreducible factor of d. Then h is a comparable element, being a factor of
a comparable element. So, for every x in D, h|x or x|h. Now as h is irreducible
x|h means that x is a unit or = h. Thus for all non units € D, h|z. That
is M = hD. But then h is a prime. Next, as for each non unit x € D\{0}
h|lz we have = x1h and if x7 is a nonunit then z1 = z2h and so z = hws.
Continuing this way we can get * = h"x,.. Because D is atomic, for each non
unit € D\{0} there is n = n(x) such that x = h"x,, where z,, is a unit. But
then D is a DVR.

Remark BC. I had proved Corollary BB for Noetherian domains. Seeing that
Tiberiu Dumitrescu suggested the atomic domain assumption. With hindsight
we can prove the following result.

Corollary BD. Let D be a domain that contains a non-unit comparable
element. Then D contains an atom « if and only if @ is the generator of the
maximal ideal of D and hence a comparable element.

Proof. Indeed D is t-local with maximal ideal D, by Proposition B. Let h
be a nonunit comparable element of D. Then h|a or alh. If h|a then as a is
an atom and h a non-unit, h and a must be associates, so a is a comparable
element. If, on the other hand, a|h then a is comparable, being a factor of a
comparable element. Thus as above aD = M. The converse is obvious, indeed
if the maximal ideal M of a local domain D is principal and M = Da then, up
to associates, a is the only atom in D.

But the presence of a non unit comparable element in a domain D does more
to the domain than just show that D is a t-local domain, as shown in [GMZ,
Theorem 2.3]. We restate it and suggest that for the proof the readers look up
[GMZ] here:

Proposition C. ([GMZ, Theorem 2.3]). Suppose the integral domain D con-



tains a nonzero non-unit comparable element; let Y be the set of nonzero com-
parable elements of D. Then:

(1) P=n{(c) : c € Y} is a prime ideal of D and D\P =Y.

(2) D/P is a valuation domain.

(3) P=PDp.

(4) D is quasi local, P is a comparable ideal of D, and dim D = dim (D/P)
+ dim (DP)

Moreover, if J is any integral domain such that there is a non maximal prime
ideal @ of J such that (a) J/@Q is a valuation domain, and (b) @ = QJg, then
each element of J\@ is comparable. If, in addition, ) is minimal with respect
to properties (a) and (b), then J\Q is the set of nonzero comparable elements
of J. (Here an ideal I being comparable means that I compares with every other
ideal under inclusion.)

Corollary CA. Suppose D contains a non-unit comparable element; let Y be
the set of all comparable elements of D. D is a valuation domain if and only if
N{(c):ceY}=0.

Follows from (1) and (2) of Proposition C.

Corollary CA. If a domain D contains a non unit comparable element then
the maximal ideal of D is generated by some non unit comparable elements.

Obvious.

Note that if p is a prime element of a domain D then for each z in D,
(p) N (2) = () or (p) N (z) = (px). So, (p,x)~! = L0 — (1) or (1). But
then (p,z), = p or (1). So, if a prime element p belongs to a maximal ¢-ideal
M then M = (p). So, if a prime element p belongs to a t-local ring (D, M) then
M = pD consequently p is a comparable element of D. It is well known that if
p is a prime element in an integral domain then N(p™) is a prime ideal (See e.g.
Kaplansky [Kap, Exercise (5), page 7].

Proposition D. If a domain D contains a non-unit comparable element ¢
then for every non-unit comparable element x, we have that N(z") = @ is a
prime ideal such that D/Q@ is a valuation domain and @) = QDg.Conversely, if
there is an element z in a domain D such that N(z™) = @ is a prime ideal such
that D/Q is a valuation domain and @ = QDg, then D is t-local and z is a
comparable element of D.

Proof. Indeed @ is an ideal, being an intersection of ideals. Now consider
S = D\Q and let a,b € S. Then a ¢ (™) for some positive integer m and
b ¢ (z™) for some positive integer n. Since = and hence ™, z™ are comparable
we conclude that (a) 2 (™) and (b) 2 (2™) . Now (ab) 2 (bz™) and (baz™) 2
(z™T™) which gives (ab) 2 (z"™™) meaning ab € S and @ is a prime.

From the above proof it follows that S consists of factors of powers of the
comparable element z and so every element of S is comparable; this means D/Q
is a valuation domain. Next let a/t € QDg where a € @ and ¢t € D\Q. But
then ¢ divides some power of z and so (a) & (¢) which means that for some non
unit y we have a = ty. Ast ¢ Q, y € Q. So a/t =y € Q. Thus QD¢ C Q. The
converse follows from Theorem 2.3 of [GMZ].

Indeed there are integral domains that may or may not be quasi local but



have elements x such that N(z™) = @ is a prime ideal such that @ = QDg,
but D/Q@ is not a valuation domain. Here are some examples using the D + M
construction of Gilmer that goes as: Let V be a valuation domain expressible
as V = k + M where k is a subfield of V and M is the maximal ideal of
V and let D be a subring of k. The ring R = D + M is called the D + M
construction (see [BG] and has some interesting properties due to the mode of
this construction, as indicated in [BG]. Our model for these examples would be
V = k[[X]] = k + XE[[X]] and D a subring of k, giving R = D + Xk[[X]].

Example DA. Let D be a one dimensional quasi local domain with quotient
field I contained in k and suppose that D is not a valuation domain. Then
R = D+ Xk[[X]] is such that for each nonzero non unit z in D we have N(z") =
XE[[X]] (obvious) and Xk[[X]] = Xk[[X]]Rxx) = Xk[X]](I + XE[X]]). But
R/XK[[X]] = D.

What makes the above example work is the fact that for a non unit z in a
one dimensional quasi local domain D we have N(z™) = (0). Call an integral
domain D an Archimedean domain if for all non unit elements = in D we have
N(z™) = (0).

Example DB. Let D be an archimeden domain with quotient field [ contained
in k and suppose that D is not a valuation domain. Then R = D + Xk[[X]] is
such that for each nonzero non unit = in D we have N(z™) = Xk[[X]] (obvious)
and Xk[[X]] = Xk[[X]|Rxrx) = XE[X]](l + XE[X]]). But R/XE[[X]] = D.

Example DC. Following the construction R = D + X Dg[X] of [CMZ], if s
is a non unit element in S such that N(s"D) = (0) then N(s"R) = XDg[X] a
prime ideal, but R/X Dg[X] = D may not be a valuation domain.

From t¢-local domains to valuation domains

Because in a valuation domain (V, M) every finitely generated ideal is prin-
cipal, the maximal ideal M is obviously a t-ideal. So t-local domains are
cousins of valuation domains, but, sort of far removed. For example, R =
Zipy+ (XY, 2)Q[[X,Y, Z]], with M = pZ,) + (X, Y, Z)Q[[X,Y, Z]] is obviously
t-local, but R[1/p] = Q[[X,Y, Z]] which is quasi local, but as far away from
being t-local as it gets. On the other hand quotient rings of a valuation domain
are valuation domains. So it is legitimate to ask: Under what conditions is a
t-local domain a valuation domain?

Here we address this question. The following is a simple result that hinges
on the fact that if A is a finitely generated ideal in a ¢-ideal I then A, C I.

Proposition E. For a set of elements x1, xa, ..., T, in a t-local domain (D, M),
the following are equivalent.

(1) (x1,22, ..., Tn)p = D.

(2) At least one z; is a unit.

(3) (171, T2y ueny $n) =D.

Proposition F. The following are equivalent for a t-local domain (D, M).
(1) D is a valuation domain
(2) D is a GCD domain.
(3) D is a PVMD.



Proof. That (1) = (2) = (3) is straight forward. For (3) = (1) note that
in a PVMD every nonzero finitely generated ideal (x4, za, ..., x,) is t-invertible.
But by Proposition 1.12 of [ACZ], (1,2, ..., Z,) is principal.

It is well known that a commutative integral domain D is coherent if and only
if the intersection of every pair of finitely generated ideals is finitely generated.
Call a domain D a finite conductor domain if the intersection of every pair
of principal ideals of D is finitely generated. Indeed a finite conductor (FC)
domain is a generalization of coherent domains. This name (FC domain) was
used in [Z-FC] first.

Corollary FA. For an integrally closed t-local domain the following are equiv-
alent.

(1) D is a valuation domain.

(2) D is a coherent domain.

(3) D is a finite conductor domain.

Here (1) = (2) = (3) are all straightforward. For (3) = (1) note that
an integrally closed FC domain is a PVMD [Z-FC] and a t-local PVMD is a
valuation domain.

Corollary FB. (Theorem 1 [Mc]). Let D be an integrally closed quasi-local
domain whose primes

are linearly ordered by inclusion. Suppose that the intersection of any two

principal ideals is finitely generated. Then D is a valuation domain.

Proof. By Proposition AD, D is t-local and by [Z-FC, Theorem 2], D is a
PVMD. (Once it is established that D is t-local the argument used in Lemma
5 of [Z-FC] may be used.)

Call a nonzero element r, of a domain D, primal if for all z,y € D\{0} r|zy
implies that r = st where s|z and t|y. A domain whose nonzero elements are
all primal is called pre-Schreier. An integrally closed pre-Schreier domain was
called Schreier by P.M. Cohn in his paper [C]. There he showed that a GCD
domains is a Schreier domain.

A module M is said to be locally cyclic if every finitely generated submodule
of M is contained in a cyclic submodule of M. Thus an ideal I of D is locally
cyclic if for any finite set of elements x1, o, ...x,, € I there is an element d € 1
such that d|z;. Based on considerations initiated by McAdam and Rush [McR],
the following result was proved: An integral domain D is pre-Schreier if and
only if for all a,b € D\(0) and x1,xa,..,2, € (a) N (b) there is d € (a) N (b) such
that d|z;. Based on this we can make the following note.

Note FC. We show, following [Z-PS], that if D is a pre-Schreier domain and
a,b € D\(0), then the following are equivalent:

(1) (a) N (b) is principal, (2) (a) N (b) is finitely generated, (3) (a) N (b) is a
v-ideal of finite type.

Proof. Indeed (1) = (2) = (3) are all straightforward. All we need is show
(3) = (1). For this note that if (a) N (b) = (21, x2,...z,), , then,

x1,T2,...Ty € (a) N (b). Since D is pre-Schreier, there is a d € (a) N (b) such
that d|x;. That is (z1, 2, ...2,) C (d). But then (21, z2,...z,), C (d). This gives

(d) C (a) N (b) = (z1, 22, ...70), C (d).



Call a domain D a v-finite conductor (v-FC) domain if for each pair 0 # a, b €
D, (a)N(b) is a v-ideal of finite type. Then from Note FC we can conclude that:
A domain D is a GCD domain if and only if D is a pre-Schreier and a v-FC
domain. With this preparation we have the following result.

Corollary FD. For a pre-Schreier t-local domain D, the following are equiv-
alent:

(1) D is a valuation domain,

(2) D is a coherent domain,

(3) D is an FC domain,

(4) D is a v-FC domain,

(5) D is a GCD domain.

Indeed the above are not the only situations in which a domain becomes a
valuation domain.

Proposition G. Suppose that D contains a non unit comparable element x
and let P = N(z™). Then D is a valuation domain if and only if Dp is a valuation
domain.

Proof. Indeed if D is a valuation domain, then, P is a prime and, so Dp
is a valuation domain and so we have only to take care of its converse. The
presence of a non unit comparable element makes D a t-local domain. Let’s
split the proper finitely generated ideals into two types: (a) ones that contain
a non unit factor of a power of z and (b) ones that do not contain a non unit
factor of a power of z. Ones in part (a) are principal by Theorem 2.4 of [GMZ]
and ones in part (b) are principal proper ideals of Dp and hence are in PDp. By
Proposition D above, PDp = P, so for each x in P, xDp is an ideal of D. Now
let z1, 2, ...z, € P and consider (z1, za, ..., ). Since Dp is a valuation domain
(1,22,..xp)Dp = dDp and we can assume that xz;,d are in D. So for some
r; € D and s; € D\P we have x; = ’jd (As d € P, s;|d, the right hand side
is in D). So (z1,22,..7,) = ($d, d, ..., 7*d). Removing the denominators
we get s(x1,xo,...x,) = (t1d,tad, ..., tod) or s(x1,x9,...2,) = (t1,t0, ..., t,)d.
As s(x1, 22, ...xy)Dp = (z1,22,..xn)Dp = dDp = (t1,t2,...,t,)dDp we con-
clude that (t1,t9,...,t,)Dp = Dp. But that means that at least one of the ¢;
is in D\ P and hence is a comparable element. But then, by Theorem 2.4 of
[GMZ], (t1,t2,...,t,) is principal generated by a comparable element ¢. Thus
s(z1, za,...x,) = t(d). Since s and t are comparable we have two possibilities:
(o) u(x1,x2,...20) = (d) or (B) (1,2, ...xs) = v(d). In both cases (1, z2, ...T,)
turns out to be a principal ideal of D. (In case («) because u|d in D.)

Applications.

We have already pointed out that Theorem 1, of [Mc] falls to the observation
that a quasi local domain with treed spectrum is actually ¢-local (Corollary FB)
and necessarily quasi local. A domain D a treed domain if Spec(D) is treed i.e.
Spec(D) is a tree as a poset. Indeed Spec(D) is treed if and only if any two
incomparable primes of D are co-maximal. Indeed if D is such that Spec(D)
is treed then Spec(Dp) is treed for every nonzero prime ideal P of D. So, by
Proposition AD, every nonzero prime ideal of D is a t-ideal. In particular, every



maximal ideal of D is a t-ideal. Indeed as a general t-local domain D may not
have Spec(D) treed, as the example at the start of the previous section indicates.
So the class of domains with treed spectra is strictly contained in the class of
domains whose maximal ideals are t-ideals. But in the presence of some extra
conditions this distinction may disappear.

Proposition H. For a Prufer v-multiplication domain D, the following are
equivalent.

(1) Every maximal ideal of D is a t-ideal

(2) Spec(D) is treed

(3) D is a Prufer domain.

Proof. (1) = (3) For every prime t-ideal P of a PVMD D, we have Dp a
valuation domain [MZ, Corollary 4.3] and if Dp is a valuation domain for every
maximal ideal of D then D is well known to be a Prufer domain. (3) = (2) is
clear because in a Prufer domain D, Dp is a valuation domain for every nonzero
prime ideal P and Spec (Dp) is treed. Finally (2) = (1) has been explained
above.

Indeed as an integrally closed finite conductor domain is a PVMD [MZ,
Corollary 4.3] and a Prufer domain is finite conductor, and this leads to the
following result.

Corollary HA. An integrally closed treed domain D is Prufer if and only if
D is finite conductor.

Indeed, it is worth noting that a nonzero ideal I in an integral domain D
is said to be of grade one if I # D and I does not contain a set of elements
forming a regular sequence of length > 2. So, every t-ideal is a grade one ideal
and every nonzero prime ideal in a treed domain is a grade one ideal.

For the next application we need to prepare a little. Let R be a regular local
ring, with quotient field F and, with dim R = n, and let m = (z1,...,2,)R
be the maximal ideal of R. Choose i € {1,...,n}, and consider the overring
R[z1/z4,...;wp/x;]of R. Choose any prime ideal P of R[z1/x;,..., T, /x;] such
that P O m. The ring Ry = R[z1/x;, ..., xn /2] p is a local quadratic transform
(LQT) of R, and, again, a regular local ring with dim R; < n. If we iterate the
process we obtain a sequence R = Ry C Ry C Ry C ... of regular local overrings
of R such that for each j, R; + 1 is a LQT of R;. After a finite number of
iterations dim R; is bound to stabilize, and the process of iterating LQTs of
the same Krull dimension and ascending unions of the resulting sequences are
of interest to algebraic geometers. For a description the reader may consult
[Heinzer et al, HLOST] which got the author interested in the topic.

Let R = Ry € Ry € Ry C ... be a sequence of LQTs from a regular
local ring. Of interest in recent papers such as {[Heinzer et al]} has been the
ring S = U;>0R2;, dubbed in recent work as "Sannon’s Quadratic Extension"
to honor David Shannon [Sh] for his interesting contribution. Briefly, before
Shannon, Abhyankar [Ab, Lemma 12] had shown that if the regular local ring R
has dimension 2 then S is a valuation overring of R such that the maximal ideal
mg of S contains m. David Shannon, a student of Abhyankar’s, [Sh, Examples
4.7 and 4.17] showed that if dim R > 2, S need not be a valuation ring.

Our purpose here is to look at S from a simple star-operation theoretic



perspective, provide some direct straight-forward and brief proofs of some known
results and point to known results that could simplify some of the considerations
in recent work.

We start by gathering some information about S.

(1) S = Uj>oR; as described above is a quasi local ring. Let mg denote the
maximal ideal of S. Then mg = U;>om; where m; is the maximal ideal of the
LQT R;.

(2) S is integrally closed, as being integrally closed is a first order property
which is preserved by directed unions and hence ascending unions.

S has another elementary property but that needs some introduction. Cohn
[C], called an element r of an integral domain D primal if for all z,y € D r|zy
in D implies that r = st where s|z and t|y. He called an integrally closed D a
Schreier domain if each nonzero element of D is primal and showed that a GCD
domain (every pair of (nonzero) elements has a GCD) is Schreier. He also noted
[C, page 255] that the property of being Schreier is a first order property. Now
S = U;j>oR; is an ascending and hence directed union of regular local rings and
hence GCD domains. This gives us the next property of S.

(3) S is (at least) a Schreier domain.

Next, according to [HLOST, Proposition 3.8] there is an element x € mg
such that mg = v/.S. This gives us, in light of Proposition A, the property that
is of interest to us, in this article.

(4) S is a t-local ring.

This is enough information to provide more satisfying statements and proof(s)
of Theorem 6.2 of [Heinzer et al]

Theorem K. (cf [Heinzer et al, Theorem 6.2]) Let S be a quadratic Shannon
extension of a regular local ring. Then the following are equivalent:

(1) S is a valuation domain
(2) S is coherent.

(3) S is a finite conductor domain.
(4) S is a GCD domain.

(5) Sis a PVMD.

(6) S is a v-finite conductor domain.

Proof. The equivalence of (1) < (2) < (3) comes from Corollary FA. Now
(1) & (4) & (5) follow from Proposition F, and as S is Schreier (1) < (6) by
Corollary FD.

Corollary KA. If S is not a valuation domain then S contains a pair of
elements a, b such that aS N bS is not a v-ideal of finite type.

This corollary is significant with reference to the proof of Theorem 6.2 of
[Heinzer et al] in that there are PVMDs D,such as Krull domains, that contain
elements a,b such that aD N bD is not finitely generated, but is of finite type.
Besides such an example is good to have.
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From [HLOST, Proposition 4.1] we conclude that S has another property of
interest.

(5) For each element z € mg such that mg = &S, T = S[1/z] is a regular
local ring with dim(7") = dim(S) — 1.



So, if dim(S) = 2 and mg contains a nonzero comparable element then S is
a valuation domain. Also if dim(S) > 3 then S cannot be a valuation domain,
whether S comains a comparable element or not. For a regular local ring T
of dim(T") > 1, T is not a valuation domain. Indeed if mg = pS is principal
then, S is a non-valuation t¢-local domain that contains a comparable element,
by Proposition G. Indeed Proposition G provides a definitive criterion that
can be used to provide examples of non-valuation t-local domains containing a
comparable element, even in dim 2. The examples are: (1) D = Z,) + P, where
P is the maximal ideal in R[[X]], Z is the ring of integers, R the field of real
numbers and p a nonzero prime element in Z. Indeed Dp = Q + X R[[X]] which
is not a valuation domain. In the same vein, and this is suggested by Tiberiu
Dumitrescu, we have (2) D = Z(;,) +P where P is the maximal ideal of (X2, X?)
of Q[[X?, X?]]. Here Dp = Q[[X?, X?]] which is a well known one dimensional
Noetherian domain that is not a valuation domain. While we are at it, let P
be the maximal ideal of the n-dimensional regular local ring Q[[ X1, Xo, ... X,]].
Then D = Z,) + P contains a proper comparable element and and, of course,
Dp is far from being a valuation domain. Finally, and it is related, a one
dimensional domain that contains a nonzero non-unit comparable element is
a valuation domain. This follows from the facts that: (1) The presence of a
comparable element forces the domain to be one dimensional ¢-local and (2) A
domain is a valuation domain if and only if every nonzero prime ideal contains
a nonzero comparable element [AZ].

Call the saturation of the set {2 : n € N}, span of z and denote it by
Span(z).

(6) If 2 € mg such that mg = v/zS then (a) for every non unit h in span(z)
we have mg = v/hS and (b) mg is generated by non units in span(z).
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