QUESTION (HD 1703): I was reading the paper of P. Cohn "Bezout rings
and their subrings" and I'm stuck in the proof of proposition 2.7: if R is a
Schreier ring, then R[z] is again a Schreier ring.

There are two things that I don’t understand well. The first one: which
theorem of Kronecker does Cohn refer to when he writes "Kronecker’s lemma"?.
I don’t have access to Jaffard’s book, but I have a guess: let R be an integral
domain and let f, g be polynomials in R[z]. If f = > a;z" and g = >0 bjal,
then a;b; is integral over the ideal Ay, for all 0 <7 <n and 0 < j < m. (Here
Ay means the content-ideal of a polynomial, i.e., Ay = (ag,a1,...,a,)) Is my
guess right?

My second question is about the last part of the proof. Is the Riesz interpo-
lation property the same as the characterization of Pre-Schreier domains given
in theorem 1.1 of the paper "On a property of Pre-Schreier domains"? If so, I
don’t follow why Cohn uses it on K instead of over R, or is that Riesz interpo-
lation property is another thing and then we can’t use it on R, but rather on K.
In that case, I don’t see where is it used the hypothesis that R is a Pre-Schreier
domain.

Thanks in advance for your answer. (This question was asked by Xam Diaz.)

ANSWER: A copy of Cohn’s paper is available at:

http://www.lohar.com/researchpdf/bezout rings and their subrings.pdf

and a copy of Jaffard’s theorem that Cohn refers to can be found at the link:

http://www.lohar.com/Jaffard %20page%2099.pdf .

While Jaffard credits the theorem to Kronecker, he does not provide a ref-
erence to Kronecker in the bibliography of his book. In any case the line of
proof indicates that he is using the fact that if A is an integrally closed do-
main with quotient field K, then for f = ZaiXi, g = ijXj € K|[z]\(0),
AsV = (A A,)V for each valuation overring V' of A, where A; denotes the
content, that is the ideal generated by the coefficients of f. Now A is inte-
grally closed if and only if A is the intersection of its set of valuation overrings
F ={Va}aer i-e. A=NnerVa. Now let w be the star operation defined on A,
by I — I, =NyIV,, then (Afg)w = OaAnga = ﬂaAngVa = (Ang)w

For a basic introduction to star operations, look up sections 32 and 34 of
Gilmer’s book: Multiplicative ideal theory, Marcel Dekker, 1972 or my paper:
Putting t-invertibility to use, Non-Noetherian commutative ring theory, 429-
457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000 (available on my
web-page at http://www.lohar.com/mit.html

Now let ¢ € A\O and ¢ | fg then Ay, C cA and so (Ayg), C (cA)y, = cA.
But then (AfAy)., C cA. That means c divides every element of (AfA,), and
hence in particular the elements a;b;.

The question, about Cohn’s proof, that you have raised can be answered in
the following two ways.

(1) (4) of Theorem 2.2 of Fuchs [Ann. Scoula Norm. Sup. P is a 19 (19651,
1-34] provides a characterization of Riesz groups and Cohn based the definition
of Schreier domains on that characterization. Once established that the group
of divisibility of a Schreier domain is a Riesz group, it is perfectly legitimate to



use the defining property, the Riesz interpolation property, of Riesz groups. He
is not reasoning in K, he is reasoning in K*/U the group of divisibility of R.
(By the way, in [Manuscripta Math. 80(1993), 225-238] I use (4) of Theorem 2.2
of Fuchs, mentioned above, to conduct a primal element based study of Riesz
groups.)

(2) The question that you have raised, has been considered and completely
answered in section 4 of my paper with Dan Anderson: The Schreier property
and Gauss Lemma, Bollettino U. M. I. (8) 10-B (2007), 43-62. In that paper we
(Dan and I) show that if A is Schreier then so is A[X] in the spirit of Theorem
1.1 of my paper “On a property of pre-Schreier domains”.

I hope these comments answer your query. But if you still have doubts or
concerns, feel free to get back to me.

Xam Diaz came back with

“This is the first time that I see the so-called star operations. Right now, I'm
writing some notes about Gauss’ theorem: R is a UFD if only if R[z] is a UFD.
I want to use only elementary ring-theoretic methods that not go beyond basic
commutative algebra, so I hope you can understand my concern about the use
of star operations. On the other hand, I have in mind the following approach:
it can be proved that if f = 77 a2’ and g = 77" bja/, then a;b; is integral
over the ideal A¢, for all 0 < ¢ < n and 0 < j < m. Now, since ¢ | fg, then
clearly As, C (c), therefore a;b; is integral over (c). From this it’s easy to show
that a—cbl is integral over R, but R is integrally closed, hence c | a;b;.

What do you think of my approach?, is it right?

Regarding my other question. I read your paper "The Schreier Property and
Gauss’ Lemma" and certainly I understand your approach using your character-
ization of Pre-Schreier domains given your paper "On a property of Pre-Schreier
domains"."

Certainly I hadn’t seen the result that Xam told me about and I could not
see it directly, so I asked for a proof. ( I do not usually delve in integral closures
of ideals.) In the meantime I offered the following alternative to Cohn’s proof,
avoiding star operations, as follows.

Note the following two well known facts.

I. An integral domain A is integrally closed if and only if A is an intersection
of valuation rings V,, between A and the quotient field K of A. (See e.g. (11.12)
of Nagata’s book “Local Rings”, Interscience Publishers.)

II. Let f,g € K[X] (where K = qf(A)) be two nonzero polynomials with
deg(g) = m. Then A}”HAg = AT AsqLet f,g € K[X] (where K = qf(A))
be two nonzero polynomials with deg(g) = m. Then A”f”HAg = AT Agg. (See
e.g. Theorem 28.1 of Gilmer’s book [Multiplicative ideal theory, Marcel Dekker,
New York 1972.)

Using II we can prove that

III. If V is a valuation ring between A and K and if f,g € K[X]\{0} are
two nonzero polynomials, then Af )V = A;VAV.

Let m be the degree of g. Then by I, AT+ A, = AT Ag,. So (ATH AV =
(AP Ap)V, or ATHV AV = APV A, V.



Now as Ay, A; and Ay, are all finitely generated and as over a valuation
domain finitely generated ideals are principal A;V, A,V and A,V are all prin-
cipal. Cancelling A" from both sides of A"f”HVAgV = APV ApV we get
AfVAV = AggV.

Let A be integrally closed. Then by I, there is a set F' = {V, }oer of valuation
domains between A and K such that A = NV,,.

Now let ¢ € A\0 and ¢ | fg then A, C cA and for each valuation domain
Va € F we have Ay V,, C ¢V, and, by III Ap,V,, = AV, AgV, = ApA V.

Thus c|fg implies that Ay AV, C cV, . But then Ny (AfAy)Ve C NacVy =
¢Na Vo = cA. Indeed as AfA; C (ApA,)V, for each a we have ArA, C
Na(AfAg)Va C cA and as above we can conclude that c| (Z aiXi)(Z b X7)
implies c|a;bj, over integrally closed A.

Xam’s insistence on using the statement he had offered indicated that he
knew its proof. So I asked for it. In came a longish proof with, a somewhat
insufficient statement, one nice step and the rest a standard argument used in
several proofs. Before I give Xam’s proof some introduction is in order.

Definition A. Let I be an ideal in a ring R. An element r € R is said to be
integral over I if there exist an integer n and elements a; € I',i = 1,...,n,

such that ™ + a1~ 1 + aor™ 24-+a,_17 + a, = 0.

The set T of all elements integral over I is again an ideal and is called the
integral closure of I. The best source known to me on this topic is the Swanson-
Huneke book: [SH Integral closure of ideals, rings and modules, LMS Lecture
Notes Series 336, Cambridge University Press.]

The event of an element r being integral over an ideal I is characterized in
[SH, Proposition 1.1.7] as:

Proposition B. Let R be a ring, not necessarily Noetherian. For any element
r € R and ideal I C R,r € I if and only if there exists an integer n

such that (I + (r))" = I(I + (r))"" L.

Next comes the following corollary ([SH, Corollary 1.1.8].

Corollary C. (Determinantal trick, cf. Lemma 2.1.8) Let I be an ideal in R
and r € R. Then the following are equivalent:

(1) r is integral over I.

(2) There exists a finitely generated R-module M such that rM C IM and
such that whenever aM = 0 for some a € R, then r € \/0: a.

Moreover, if I is finitely generated and contains a non-zerodivisor, r is inte-
gral over [ if and only if there exists a finitely generated faithful R-module M
such that ITM = (I + (r))M.

This much information is enough to prove a somewhat improved version
of Xam’s result. Let me record here first the statement of Dedekind-Mertens
Lemma that appears in Gilmer’s book, with the assumption that S is a ring
and R a subring of S and Ay the R module generated by coefficients of f:

IT'. Let f,g € S[X] be two nonzero polynomials with deg(g) = m. Then
A’J?HAg = A} Agg.

I will, however stick to integral domains as when these concepts were being
developed integral domain were the only medium.



Theorem D. Let S be an integral domain with R a subring of S and let
f=Y1pair',g =3 " bja’ € S[z] be two nonzero polynomials, such that
fg € R[z]. Then a;b; is integral over R, for i = 0,1,...,n;5 = 0,1,...,m.
Moreover if for some nonzero ¢ € R we have ¢|fg in R[z] then, for each pair 4, j,
a—cbl is integral over R.

Proof. By the Dedekind-Mertens Lemma (as given in II” above), A?LHAQ =
A}”Afg where Ay, Ay, Ay denote the contents of the respective polynomials.
Writing this equation as AT ArA, = AT Ay, and setting M = AT, I = Ay, we
get ApA;M = IM. Now, for each 4, j, a;b; € AyA,. So, for each i, j; a;b;M C
IM C M. Then by Theorem 12 of Kaplansky [K, Commutative rings, Allyn
and Bacon, 1970], a;b; is integral over R, for i =0,1,...,n;j =0,1,...,m.

Next note that ¢|fg in Afz] implies that Af; C cR. So I/c is an ideal of
R and thus (I/c)M C M. Now consider a;b;M C IM. Dividing both sides of
the inequality by ¢ we get (a;b;/c)M C (I/c)M and by the above observation
(a;bj/c)M C M and again by Theorem 12 of [K] we conclude that a;b;/c is
integral over R.

Theorem E (Statement offered by Xam) Let A be an integral domain and let
f=Y oz’ g= 37" bja’ € Alz] be two nonzero polynomials. Then a;b;
is integral over the ideal A¢g, for i = 0,1,...,n;j = 0,1, ...,m. Consequently if
c|fg in A[z] for some ¢ € A\(0) then a;b;/c is integral over A for each pair i, j.

Proof. By the Dedekind-Mertens Lemma, A’;LHAg = A’}lAfg where Ay, Ay, Atqg
denote the contents of the respective polynomials. Writing this equation as
A}”Ang = A}”Afg and setting M = A", I = Ay, we get AfAgM = IM. Now,
for each ¢, 7, a;b; € AyAy. So, for each i, j; a;b; M C IM. Thus by Theorem C
((2) = (1)) a;b; is integral over I = Ay,. This means there are a positive integer
s and elements h; € Alf , such that

(aibj)s + hl(aibj)sil + hg(aibj)siz + ...+ hs_l(a,-bj) + hs = 0. (1)

Now ¢|fg leads to Ary C (c) and to by € (Agg)' C (') meaning c!|hy; for

each | = 1,2, .., s. Dividing the above equation by ¢® we get

(aibj/c)s—l—(hl/c)(aibj/c)s_l -‘rh2/02 (aibj/68_2)5_2+...+hs_1/08_1 (aibj/c)—&-
hs/c® = 0, a polynomial equation in a;b;/c with coefficients in A. Thus a;b;/c
is integral over A for each pair i, j.

Corollary E. Let A be an integrally closed integral domain with quotient field
Kandlet f =" jaa’,g = 7" bjz! € Alz] be two nonzero polynomials. If
for some nonzero ¢ € A we have ¢|fg in A[z] then, for each pair i, j, a—cbl € A.

Proof. By Theorem D1 u—cbl is integral over A which is integrally closed and

SO L%bl € A for each pair 4, j. (The same conclusion follows if we use Theorem
D)

Corollary F. Let A be an integrally closed integral domain with quotient field
K andlet f=3"" aa’,g =3 bja’ € K[z] be two nonzero polynomials,
such that fg € Alz]. If for some nonzero ¢ € A we have c|fg in A[x] then, for
each pair 1, 7, u—lcbl € A.

Proof A being integrally closed puts a;b; in A. Now you can use either of
the theorems to get the conclusion.



I was reluctant to heed Xam’s suggestion that his statement had anything
to do with Kronecker or Dedekind, as the notion of integral closure of an ideal is
recent. But there does exist a theorem credited to Kronecker and the statement
of the theorem is very close to what Xam said, but not quite it.

Theorem G. Let S be a commutative ring and let inside S[X], f(X) =

i J k
ZfiX'i =g(X)h(X) = (Z ngj)(Z hiX*). Then each g;hy, is integral over
the subring R of S generated by the f;’s.

I have taken this statement, for the most part from Henri Lombardi’s pa-
per, “Hidden constructions in algebra (1): integral dependence” [J. Pure Appl.
Algebra 167 (2002) 259-267]. In today’s terms the theorem is an easy con-
sequence of Kaplansky’s Theorem 12 (in [K]) and as rings with zero divisors
were not in vogue in Kronecker’s day Theorem G is precisely Theorem D. But
while a rudimentary form of what is known as Dedekind-Mertens was proba-
bly known to Kronecker and other algebraists of his time, it was given a sure
footing in Dedekind’s paper [D, Uber einen arithmetischen Satz von Gaufl ™ |
Mittheilungen der Deutschen Mathematischen Gesellschaft in Prag, Tempsky,
1892, pp. 1-11], a year after Kronecker died. ? (If you are curious about the
other name on Dedekind-Mertens lemma; Mertens, a student of Kronecker’s, got
his name attached to the lemma because he had offered a proof of the lemma
with m = (deg g)?.) The point is that Kronecker didn’t use the lemma and
understandably his proof was involved.

Now let’s see what Kronecker’s statement actually looked like. Edwards
records it on page 3 of his book: [Divisor Theory, Birkhauser, Boston-Basel-
Berlin 1990]:

Theorem H. Let ag, a1, ..., am;bo, b1, ...b, be indeterminates and let R be
the ring of polynomials in these indeterminates with integer coefficients. Let
€0y C1y -y Cmtny, D€ defined by ¢; = Z a;by. Then each of the (m+1)(n+

Jjtk=i
0<5<m;0<k<n

1) elements a,;by, are integral over the subring of R generated by 1, co, ¢1, ..., Cmyn-

Note that R here is a ring generated by ag, a1, .., am; bo, b1, ...b, over the
ring of integers and over this ring R Kronecker is considering the product of two
polynomials with coefficients given as indeterminates, for distinction perhaps.
You can see that it had to undergo a lot of "improvements" to get to the form
of Theorem G.

Xam had also mentioned Dedekind’s Prague theorem as a possible source of
what he had in mind. As I do not have access to the actual statement of the
theorem, I copy Edwards’ statement below.

Theorem K (Dedekind’s Prague Theorem). Let f and g be polynomials in
one indeterminate whose coefficients are algebraic numbers. If all coefficients
of fg are algebraic integers, then the product of any coefficient of f and any
coefficient of ¢ is an algebraic integer.

This result has no direct bearing on Xam’s problem as such but it does get
thrown around in connection with polynomials over the total quotient ring of a
ring. On the other hand some authors (e.g. Edwards in the above cited book



and Lombardi in the above cited paper) say that Dedekind’s Prague theorem is
a consequence of Kronecker’s Theorem. If we look at the modern day statement
of Kronecker’s Theorem yes, because the ring of algebraic numbers is integrally
closed. But if we go by the statement attributed by Edwards to Kronecker then
he is talking about polynomials over a ring of polynomials over integers which
not only does not cover algebraic numbers but also is an integrally closed ring
and so is a direct consequence of its modern version, i.e. Theorem D. Incidentally
the fact that Kronecker’s theorem was about polynomials on a polynomial ring
over integers is also supported by the statement of Kronecker’s theorem given
on page 103 of Lombardi and Quitte’s book [Algebre commutative Meéthodes
constructives].

Professor Irena Swanson was exposed to a copy of this answer and so was
Professor Henri Lombardi. I thank Irena for suggesting that a link to Cohn’s
paper be provided and I thank Henri for indicating that a version of Krnecker’s
Theorem can be found in his book Algebre commutative ... mentioned above.

Dated August 29, 2017.



