
QUESTION (HD 1804): I have this question about your paper, On �-semi
homogeneous domains, that you posted at: https://arxiv.org/pdf/1802.08353.pdf
How can you justify introducing such huge machinery, to explain just unique

factorization?
Answer. The paper you refer to has a very small amount of basic theory

which involves a device that can be used to create a large number of parallel
theories, with some imagination. It consists in assuming that there is a �nite
character star operation � and in the de�nition of certain entities called �-
homogeneous (�-homog) ideals. It seems unfair to the readers who do not know
anything about the star operations on integral domains, so let me digress a little
to give a working introduction to star operations. Readers who are familiar with
star operations may skip this part of introduction.
LetD be an integral domain with quotient �eldK: Let F (D) (resp., f(D)) be

the set of nonzero fractional ideals (resp., nonzero �nitely generated fractional
ideals) of D. A star operation � on D is a function on F (D) that satis�es the
following properties for every I; J 2 F (D) and 0 6= x 2 K:
(i) (x)� = (x) and (xI)� = xI�,
(ii) I � I�, and I� � J� whenever I � J , and
(iii) (I�)� = I�.

Now, an ideal I 2 F (D) is a �-ideal if I� = I; so a principal ideal is a �-ideal
for every star operation �: Moreover I 2 F (D) is called a �-ideal of �nite type
if I = J� for some J 2 f(D). To each star operation � we can associate a star
operation �s de�ned by I�s =

S
f J� j J � I and J 2 f(D) g: A star operation

� is said to be of �nite type, if I� = I�s for all I 2 F (D): Indeed for each star
operation �; �s is of �nite character. Thus if � is of �nite character I 2 F (D)
is a �-ideal if and only if for each �nitely generated subideal J of I we have
J� � I: For I 2 F (D), let Id = I, I�1 = (D :K I) = fx 2 K j xI � D g,
Iv = (I

�1)�1, It =
S
f Jv j J � I and J 2 f(D) g, and Iw = fx 2 K j xJ � I

for some J 2 f(D) with Jv = D g. The functions de�ned by I 7! Id , I 7! Iv ,
I 7! It, and I 7! Iw are all examples of star operations A v-ideal is sometimes
also called a divisorial ideal. Given two star operations �1; �2 on D, we say that
�1 � �2 if I�1 � I�2 for every I 2 F (D). Note that �1 � �2 if and only if
(I�1)�2 = (I�2)�1 = I�2 for every I 2 F (D). The d-operation, t-operation, and
w-operation all have �nite character, d � � � v for every star operation �, and
� � t for every star operation � of �nite character. We will often use the facts
that (a) for every star operation � and I; J 2 F (D); (IJ)� = (IJ�)� = (I�J�)�;
(the �-product), (b) (I+J)� = (I+J�)� = (I�+J�)� (the �-sum) and (c) Iv = It
for every I 2 f(D). An I 2 F (D) is said to be �-invertible, if (II�1)� = D. If
I is �-invertible for � of �nite character, then both I� and I�1 are �-ideals of
�nite type. An integral domain D is called a Prufer �-Multiplication Domain
(P�MD), for a general star operation �, if A is �s-invertible for every A 2 f(D):
Now let D be a P�MD. Because in a P�MD D; F � = Fv for each F 2 f(D);
we have A�s = At for each A 2 F (D): (When � is of �nite character, � = �s
and so in such a P�MD D; we have A� = At for each A 2 F (D) and so � = t.
Moreover, in a PdMD d = t, making a PdMD a Prufer domain.) A PvMD is
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often written as PVMD. A reader in need of more introduction may consult [?]
or [?, Sections 32 and 34].
For a star operation �, a maximal �-ideal is an integral �-ideal that is maxi-

mal among proper integral �-ideals. Let �-Max(D) be the set of maximal �-ideals
of D. For a star operation � of �nite character, it is well known that a maximal
�-ideal is a prime ideal; every proper integral �-ideal is contained in a maximal
�-ideal; and �-Max(D) 6= ; if D is not a �eld. For a star operation � two ideals
A;B may be called �-comaximal if (A;B)� = D: Indeed if � is of �nite character
then two ideals A;B are �-comaximal if, and only if, A;B do not share (being
in) any maximal �-ideal M: Thus integral ideals A1; A2; :::; An are �-comaximal
to an ideal B if and only if (A1A2:::An; B)� = D: Next, Iw =

T
M2t-Max(D) IDM

for every I 2 F (D) and IwDM = IDM for every I 2 F (D) and M 2 t-Max(D).
A �-operation that gets de�ned in terms of maximal �-ideals is denoted by �w
and it is de�ned as follows: For I 2 F (D); and I�w =

\
M2�s-Max(D)

IDM : This

operation was introduced in [?] where it was established that for any star oper-
ation �; �w is a star operation of �nite character and �w-Max(D) = �s-Max(D)
and �w � �; according to, again, [?]. An integral domain D is a P�MD if and
only if DM is a valuation domain for every maximal �-ideal M of D, [?]. Next,
as the �-product (IJ)� of two �-invertible �-ideals is again �-invertible it is easy
to see that Inv�(D) = fI : I is a �-invertible �-ideal of Dg is a group under �-
multiplication with P (D) the group of nonzero principal fractional ideals of D as
its sub group. The quotient group Inv�(D)=P (D) is called the �-class group of
D; denoted by Cl�(D): The �-class groups were introduced and studied by D.F.
Anderson in [?] as a generalization of the t-class groups introduced in [?], [?] and
further studied in [?]. It was shown in [?], in addition to many other insightful
results, that if �1 � �2 are two star operations then Cl�1(D) � Cl�2(D):
Now a �-homog ideal is a �-ideal I of �nite type that is contained in a unique

maximal �-ideal M(I): What is interesting aand it was shown in [AZ, SR] that
M(I) the unique maximal �-ideal containing the �-homog ideal I is completely
determined asM(I) = fx : (x; I)� 6= Dg: It turns out, and it is easy to see, that
if I and J are two �-homog ideals that are similar, i.e. that belong to the same
unique maximal �-ideal (i.e. M(I) = M(J) in the terminology of [AZ, SR])
then (IJ)� is �-homog belonging to the same maximal �-ideal. With the help
of some auxiliary results it is then shown that if an ideal K is a �-product of
�nitely many �-homog ideals then K can be uniquely expressed as a �-product
of mutually �-comaximal �-homog ideals. Based on this a domain D is called
a �-semi homogeneous (�-SH) domain if every proper principal ideal of D is
expressible as a �-product of �nitely many �-homog ideals. Now if you rede�ne
a �-homog ideal so that the �-product of two similar, newly de�ned, �-homog
ideals is a �-homog ideal meeting the requirements of the new de�nition, you
have a new theory.
In any case each of the de�nitions of homogeneous elements can actually be

studied in the same manner as the �-super potent domains of [HZ]. In [HZ],
for a star operation � of �nite character a �-homog ideal is called �-rigid. The
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�-maximal ideal containing a �-homogeneous ideal I may be called a �-potent
maximal ideal. A domain D; with a �nite character �-operation de�ned on it
may be called �-potent if every maximal �-ideal of D contains a �-homogenous
ideal. Next we may call the �-homogeneous ideal I �-super-homog if for each
�-homog ideal J � I; J is �-invertible and we may call a �- potent domain D
�-super potent if every maximal �- ideal I of D contains a �-super homog ideal.
But then one can study �-A-potent domains where A refers to a �-homog ideal
that corresponds to a particular de�nition. For example a �-homog ideal J is
said to be of type 1 in [AZ, SR] if

p
J = M(J): So we can talk about �-type

1 potent domains as domains whose maximal �-ideals contain a �-homog ideal
of type 1: The point is, to each suitable de�nition say A of a �-homog ideal we
can study the �-A-potent domains as we studied the �-super potent domains
in [HZ]. Of course the theory corresponding to de�nition A would be di¤erent
from that of other �-super potent domains. For example each of the maximal
�-ideal of the �-type 1 potent domain would be the radical of a �-homog ideal
etc. Now as it is usual we start with some of the concepts that have some direct
and obvious applications. For this we select the �-f-potent domains for a �rst
study.
�-f-potent domains
Let � be a �nite type star operation de�ned on an integral domain D. Call

a nonzero non unit element r of D �-factorial rigid ( �-f-rigid) if r belongs to
a unique maximal �-ideal and every �nite type �-homog ideal containing r is
principal. Indeed if r is a �-f-rigid element then rD is a �-f- homog ideal and
hence a �-super homog ideal. So the terminology and the theory developed in
[AZ, SR] applies. Note here that every non unit factor s of a �-f-rigid element
r is �-f-rigid because of the de�nition. Note also that if r; s are similar �-f-rigid
elements (i.e. rD; sD are similar �-f-homog ideals) then rs is a �-f-rigid element
similar to r and s and so if r is �-f-rigid then rn is �-f-rigid for any positive
integer n:
Example A. Every prime element is a t-f-rigid element.
Call a maximal �-ideal M �-f-potent if M contains a �-f-rigid element and a
domain D �-f-potent if every maximal �-ideal of D is �-f-potent.
Examples B. UFDs PIDs, Semirigid GCD domains, prime potent domains
(domains in which every maximal t-ideal contains a prime element.)
The de�nition suggests right away that if r is �-f-rigid and x any
element of D then (r; x)� = sD and applying the v-opertion to both sides we

conclude that GCD(r; x) = (r; x)v of r exists with every nonzero element x of
D and that for each pair of nonzero factors u; v of r we have ujv or vju; that is
r is a rigid element of D, in Cohn�s terminology [Cohn]. Indeed it is easy to see,
if necessary with help from [AZ, SR], that a �nite product of �-f-rigid elements
is uniquely expressible as a product of mutually �-comaximal �-f-rigid elements,
up to order and associates and that if every nonzero non unit of D is expressible
as a product of �-f-rigid elements then D is a semirigid GCD domain. Also, as
we shall show below, a t-f-potent domain of t-dimension one is a GCD domain
of �nite t-character. But generally a t-f-potent domain is far from being a GCD
domain. Before we delve into examples, let�s prove a necessary lemma.
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Lemma B1. Let D be an integral domain and let L be an extension of
the �eld of fractions K of D: Then every �nitely generated integral ideal F of
D+XL[X] is of the form f(X)J(D+XL[X]) where f(X) 2 L[X] and J is an
ideal of D:
Proof. First let�s note that if F = (f1; f2; :::; fn)(D + XL[X]) is an ideal

of (D + XL[X]) with I = F \D 6= (0) then F = (f10; f20; :::; fn0)(D +
XL[X]); where fi0 are the constant terms of fi: This is because, if F \ D 6=
(0) then XL[X] � F: Thus the constant terms are all contained in F: This
gives F � (f10; f20; :::; fn0)(D + XL[X]): But for f(X) 2 F we have f(X) =P
ai(X)fi(X) =

P
ai0fi0 +Xh(X) 2 (f10; f20; :::; fn0)(D +XL[X]): Thus we

have F = (f10; f20; :::; fn0)(D+XL[X]) = f(X)J(D+XL[X]) where f(X) = 1:
If on the other hand I = F \D = (0) FL[X] = f(X)L[X] where f(X) 2

L[X] and fi(X) = f(X)hi(X) with hi(X) 2 L[X]: Now suppose that f(0) 6= 0.
Then we can assume that f(0) = 1 and so hi(X) = (hi0 + Xki(X)) where
hi0 2 D and so F = (f1; f2; :::; fn)(D+XL[X] = f(X)(h10+Xk1(X); :::; hn0+
Xkn(X))(D +XL[X]) = f(X)(h10; :::; hn0)(D +XL[X]):
Finally if f(0) = 0 then f(X)L[X] � XL[X] and so F = f(X)J(D+XL[X])

where J = D:
Lemma B2. Let D be an integral domain and let L be an extension of the

�eld of fractions K of D: Then every t-f-homog element of D is also a t-f-homog
element of D +XL[X]:
Proof. Let�s �rst note that D +XL[X] has the D +M form. Thus if I is a

nonzero ideal of D then (I +XDL[X])v = Iv +XL[X] = Iv(D +XL[X]); by
[AR, Proposition 2.4] and using this we can also conclude that (I+XDL[X])t =
It +XL[X] = It(D +XL[X]):
Example C. Let D be a UFD (GUFD, Semirigid GCD domain) and L an
extension of the quotient �eld K of D; the ring D +XL[X] is a t-f-potent

domain.
Question D: Apart from the detail and some results about factorization what
is so interesting about �-f-potent domains?
Answer: O¤-hand all I can say is that they have the following interesting

properties, in terms of the t-operation.
Observation E: A t-f-potent domain has the PSP property.
Veri�cation: Let f =

P
aiX

i be primitive i.e. (a0; a1; :::; an) � aD implies
a is a unit; here the ideal (a0; a1; :::; an) is called the content of f and is often
denoted by Af . On the other hand a polynomial g =

P
bjX

j is called super
primitive if (Ag)v = D: It is known that while a super primitive polynomial is
primitive a primitive polynomial may not be super primitive, see e.g. Example
3.1 of [AZ, GL]. A domain D is said to have the PSP property if every primitive
polynomial over D is super primitive.
Now consider a �nitely generated ideal (a0; a1; :::; an) in a t-f-potent domain

D: Then (a0; a1; :::; an) is contained in a maximal t-ideal M associated with a
t-f-rigid element r (i.e. M = M(rD)) if and only if each of the ai is divisible
by r or some non unit factor of r. Thus (a0; a1; :::; an) � M(rD) if and only if
(a0; a1; :::; an) � sD for a t-f-rigid element of D similar to r:Thus, in a t-f-potent
domain D; f =

P
aiX

i primitive implies that Af is contained in no maximal
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t-ideal of D; giving (Af )v = D which means that each primitive polynomial f
in a t-f-potent domain D is actually super primitive.
Now PSP implies AP i.e. every atom is prime. So, in a t-f-potent domain

every atom is a prime. If it so happens that a t-f-potent domain has no prime
elements then the t-f-potent domain in question is atomless. Recently Atom-
less domains have been in demand. The atomless domains are also known as
antimatter domains. One example (Example 2.11 [AZ, GL]) was laboriously
constructed in [AZ, GL] and this example was atomless and not pre-Schreier,
and it killed the whole paper [BR] by Brook�eld and Rush, as the gentlement
acknowledged in a subsequent papaer. As we indicate below, it is easy to estab-
lish a method of telling whether a t-f-potent domain is pre-Schreier or not and
I am sure that Professor Rush would be very pleased to see a a lot of of non
pre-Schreier atomless domains.
Cohn in [Cohn] called an element c in an integral domain D primal if (in D)

cja1a2 implies c = c1c2 where cijai: Cohn [Cohn] assumes that 0 and units are
primal. We deviate slightly from this de�nition and call a nonzero element c of
an integral domain D primal if cja1a2; for all a1; a2 2 Dnf0g; implies c = c1c2
such that cijai: He called an integral domain D a Schreier domain if (a) every
(nonzero) element ofD is primal and (b)D is integrally closed. We have included
nonzero in brackets because while he meant to include zero as a primal element,
he mentioned that the group of divisibility of a Schreier domain is a Riesz group.
Now the de�nition of the group of divisibility G(D)(= fabD : a; b 2 Dnf0g
ordered by reverse containment) of an integral domain D involves fractions
of only nonzero elements of D, so it�s permissible to restrict primal elements
to be nonzero and to study domains whose nonzero elements are all primal.
This is what McAdam and Rush did in [MR]. In [Z] integral domains whose
nonzero elements are primal were called pre-Schreier. It turned out that pre-
Schreier domains possess all the multiplicative properties of Schreier domains.
So let�s concentrate on the terminology introduced by Cohn as if it was actually
introduced for pre-Schreier domains.
Cohn called an element c of a domain D completely primal if every factor

of c is primal and proved, in Lemma 2.5 of [Cohn] that the product of two
completely primal elements is completely primal and showed in Theorem 2.6 a
Nagata type result that can be rephrased as: Let D be integrally closed and
let S be a multiplicative set generated by completely primal elements of D. If
DS is a Schreier domain then so is D: This result was analyzed in [AZ, GL]
and it was decided that the following version ([AZ,GL, Theorem 4.4]) of Cohn�s
Nagata type theorem works for pre-Schreier domains.
Theorem F (Cohn�s Theorem for pre-Schreier domains). Let D be an
integral domain and S a multiplicative set of D.
(i) If D is pre-Schreier, then so is DS .
(ii) (Nagata type theorem) If DS is a pre-Schreier domain and S is the
saturation of the set generated by a set of completely primal elements of D,
then D is a pre-Schreier domain.
Now we have already established above that if r is a t-f-rigid element then

(r; x)v is principal for each x 2 Dnf0g: But then (r; x)v is principal for each
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x 2 Dnf0g if and only if (r)\ (x) is principal for each x 2 Dnf0g: But then r is
what was called in [AZ, CP] an extractor. Indeed it was shown [AZ, CP] that
an extractor is completely primal. Thus we have the following statement.
Corollary G. Let D be a t-f-potent domain. Then D is pre-Schreier if and

only if DS is pre-Schreier for some multiplicative set S that is the saturation of
a set generated by some t-f rigid elements.
(Pf. IfD is pre-Schreier thenDS is pre-Schreier anyway. If on the other hand

DS is pre-Schreier and S is the saturation of a set multiplicatively generated by
some t-factorial rigid elements. Then by Theorem F, D is pre-Schreier.)
One may note here that if DS is not pre-Schreier for any multiplicative set

S; then D is not pre-Schreier. So the decision making result of Cohn comes in
demand only if DS is pre-Schreier. Of course in the Corollary G situation, the
saturation S of the multiplicative set generated by all the t-f-rigid elements of
D; leading to: if DS is not pre-Schreier then D is not pre-schreier for sure and
if DS is pre-Schreier then D cannot escape being a pre- Schreier domain.
The other property that can be mentioned �o¤hand�is given in the following

statement.
Theorem H A t-f-potent domain of t-dimension one is a GCD domain of

�nite t-character.
A domain of t-dimension one that is of �nite t-character is called a weakly

Krull domain. (D is weakly Krull if D = \DP where P ranges over a family F
of height one prime ideals of D and each nonzero non unit of D belongs to at
most a �nite number of members of F .) A weakly Krull domain D is dubbed in
[AZ,SR] as t-weakly Krull domain or as a type 1 t-SH domain. Here a �-homog
ideal I is said to be of type 1 if M(I) =

p
I� and D is a type 1 t-SH domain if

every nonzero nonunit of D is a t-product of �nitely many t-homogeneous ideals
of type 1.
Lemma K. A t-f-potent weakly Krull domain is a type 1 t-f-SH domain.
Proof. A weakly Krull domain is a type 1 t-SH domain. But then for every

pair I; J of similar homogeneous ideals In � J� and Jm � I� for some positive
integers m;n: So J is a t-f-homogeneous ideal if I is and vice versa. Thus in a
t-f-potent weakly Krull domain the t-image of every t-homog ideal is principal
whence every nozero nonunit of D is expressible as a product of t-f-homog
elements which makes D a t-f-SH domain and hence a GCD domain.
Proof of Theorem H. Use Theorem 5.3 of [HZ] for � = t to decide that D

is of �nite t-character and of t-dimension one. Indeed, that makes D a weakly
Krull domain that is t-f-potent. The proof would be complete once we apply
Lemma K and note that a t-f-SH domain is a GCD domain and of course of
�nite t-character.
Generally a domain that is t-f-potent and with w-dimension> 1; is not nec-

essarily GCD nor of �nite t-character.
Example L. D = Z + XL[[X]] where Z is the ring of integers and L is a

proper extension of Q the ring of rational numbers. Indeed D is prime potent
and two dimensional but neither of �nite t-character nor a GCD domain.
There are some special cases, in which a t-f-potent domain is GCD of �nite

t-character.
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i) If every nonzero prime ideal contains a t-f- homog ideal. (Use (4) of
Theorem 5 of [AZ, SR] along with the fact that D is a t-f-SH domains if and
only ifD is a t-SH domain with every t-homog ideal t-f-homog. Thus a t-f-potent
domain of t-dim 1 is of �nite character.
ii) If D is a t-f-potent PVMD of �nite t-chracer that contains a set S multi-

plicatively generated by t-f-homog elements of D and if DS is a GCD domain
then so is D:
One may also include among the "o¤hand" remarks that a t-prime potent

domain, i.e. a domain each of whose maximal t-ideal contains a prime element
p such that p belongs to no other maximal t-ideal.
I�d be doing a grave injustice if I don�t mention the fact that before there was

any modern day multiplicative ideal theory there were prime potent domains as
Z the ring of integers and the rings of polynomials over them. It is also worth
mentioning that there are three dimensional prime potent Prufer domains that
are not Bezout. The examples that I have in mind are due to Loper [L].
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