
QUESTIONS (HD 1805):Q1. If D is a domain di¤erent from its quotient

�eld K; must the ring D+X K[X] be a TV domain? Q2. When is D+XK[X]
a TV domain? Q3. If D +XK[X] is of �nite t-character, how is D semilocal
with every maximal ideal a t-ideal? Q4. If the v-class group of D is trivial must
the v-class group of D+XK[X] be trivial. Q5. When is D+XK[X] divisorial?
w-divisorial?
Professor Jesse Elliott, a dear friend of mine often puts to me interesting

questions. Recently he put these quetions to me. I tried to answer them more
or less as they came and the result was a jumbled mess. I could have made
several questions and answers from this, but I am old and not so energetic as
I used to be. In any case I have tried to keep it readable, though the order of
answers may be a little bit o¤.
Before I begin to answer the questions I must make sure that we are all on the

same page, that is we all know what I am talking about. If you haven�t gotten
the drift, yet, we are talking about the star operations called the v-operation
and the t-operation. If you don�t know much about the star operations or knew
about them and need to brush up on them look up sections 32 and 34 of [G].
For now, let us look at it this way. Let D be an integral domain with quotient
�eld K and let F (D) be the set of all nonzero fractional ideals of D: (These are
the D-submodules H of K such that dH � D for some nonzero d 2 D:) For
A 2 F (D) the set A�1 = fx 2 Kj xA � Dg; called the �inverse�of A; is again
a fractional ideal and we can show that A�1 = B

h where B is an ideal of D
and h a nonzero element of D: Thus the set Av = (A�1)�1 is again a fractional
ideal called the v-envelope or the v-image of A: A v-image indeed, because we
can show that A 7! Av is a function on F (D); with certain properties. The
v-operation is an example of a star operation. Here a map � : F (D) ! F (D)
is a star operation if the following conditions hold for all A;B 2 F (D) and all
c 2 K n (0):

1. (cA)� = cA� and D� = D;

2. A � A�, and, if A � B, then A� � B�; and

3. A�� = A�.

The most frequently used star operations (as well as the most important
for our purposes) are the v-operation, de�ned above and the t-operation, given
by At =

S
Bv, where the union is taken over all nonzero �nitely generated

fractional subideals B of A. For any star operation � on D, we have d � � � v,
in the sense that A = Ad � A� � Av for all nonzero fractional ideals A of
D. (Here A 7! A de�nes on F (D) another star operation, the identity star
operation denoted by d:) Next A 2 F (D) is called a �-ideal if A = A� and
by de�nition every nonzero principal fractioal ideal is a �-ideal for every star
operation �:
Let�s also note that for A;B 2 F (D) we can show that (AB)� = (A�B)� =

(A�B�)� for any star operation � and that every integral t-ideal ofD is contained
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in an integral ideal that is maximal with respect to being a t-ideal. (Same as
every nonzero ideal is contained in a maximal (integral) ideal. We can call
maximal ideals the maximal d-ideals.)

Call, for � = d or t; an integral domain D �-independent if no two maximal
� ideals of D share a nonzero prime ideal.
Lemma A. Let K be the quotient �eld of D, let X be an indeterminate over

K and let R = D +XK[X]:
(1) If R is d-independent then D is local. Conversely if D is local then R is

d-independent.
(2) If R is t-independent then R is d-independent andD is t-local. Conversely

if D is t-local then R is t-independent.
Proof. By Theorem 4.21 of [CMZ] a maximal ideal M of R with M \D = 0

is principal given by f(X)R such that f(X) is irreducible with f(0) = 1 and
that such a maximal ideal M is of height one. Next if N is a prime (maximal)
ideal of R with N \D 6= 0 then N = N \D +XK[X] where N \D is a prime
(maximal) ideal of D: So X belongs to every prime (resp., maximal) ideal P of
R such that P \D 6= 0: It follows from Lemma 4.41 of [CMZ] that P is a t-ideal
if and only if 0 6= P \D is. Now R being t-(d-) independent requires that there
is only one maximal t-(d-) ideal of D: If R is t-independent then D has only
one maximal t-ideal and so only one maximal ideal too, making local. Thus R
being t-independent implies that R is d-independent.
On the other hand if D is local (t-local), then there is only one maximal (t-)

ideal of R intersecting D and the rest are all principal, maximal of height one.
Thus D being t-local (local) makes R t-(d-)-independent.
A domain whose nonzero ideals are all divisorial may be called a divisorial

domain. A divisorial domain is known to be independent [H].
Proposition B. Let D be a valuation domain with principal maximal ideal

and let R be de�ned as before then R is a t-independent Bezout domain and
hence a divisorial domain.
Proof. That R is a Bezout domain follows from [CMZ] and because D is

t-independent R is t-independent. Thus R is an independent Bezout domain
with every maximal ideal principal and that makes R divisorial.
Lemma 4.11 of [CMZ] says that if I is an ideal of R = D + XK[X] such

that I \ D 6= 0; then I = I \ D + XK[X]: Moreover, Lemma 4.12 says that
each ideal of R is of the form f(X)(F +XK[X]) where f(X) 2 K[X] and F is
a D-submodule of K such that f(0)F � D: (Thus if f(0) = 0 then F can be
any D-submodule of K):
Proposition C. If R = D+XK[X] is divisorial then D is local divisorial and

for every nonzero D-submodule F of K we have Fv = F and Fv = K implies
F = K:
Proof. Because XK[X] must be contained in P +XK[X] for every maximal

t-ideal of D and since R is divisorial, XK[X] can be contained in only one
maximal t-ideal we conclude that D has at most one maximal t-ideal.
Lemma C1. Let F be a D-submodule of K = qf(D) 6= D and let X be an

indeterminate over D: Then F +XK[X] is a fractional ideal of R = D+XK[X]
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and (F +XK[X])�1 = (F�1 +XK[X]):
Proof. If D 6= K then F + XK[X] is an R-submodule of qf(R): Now

X(F +XK[X]) is an ideal of R and so F +XK[X] is a fractional ideal of R.
Now as F +XK[X] � XK[X] we have (F +XK[X])�1 � (XK[X])�1 = K[X]:
Thus (F+XK[X])�1 = ff = a+Xg(X)jf(F+XK[X]) � Rg = F�1+XK[X]:
Using Lemma C1 (F + XK[X])v = Fv + XK[X] and so if R is divisorial

then every nonzero D-submodule of K is divisorial. Also as A +XK[X] is an
ideal of R and (A+XK[X])v = (Av +XK[X]); if R is divisorial then A = Av
for each nonzero ideal A of D: But R being divisorial requires us to be certain
about those D-submodules of K for which we cannot say much, that is those
F for which F�1 = 0: We must identify them with K to make sure that R is
indeed divisorial.
Remark D. Even for D a local divisorial domain the conclusion that every

nonzero D-submodule of K should be divisorial may seem highly unlikely, but
if you reqire that F�1 = 0 can happen only if F = K then it is another story.
Note here that �every D-submodule of qf(D) being divisorial� boils down to
�every D-submodule of qf(D) properly contained in qf(D) is a fractional ideal
of D�: For if F is a D-submodule of K = qf(D) 6= F such that F is not a
fractional ideal then F�1 = (0): But then Fv = K and F would be divisorial
only if F = K: Next, there do exist domains satisfying the condition that F
is a fractional ideal for every proper D-submodule F of K: These domains are
called conducive domains and were �rst studied in [DF].
Let�s call D super divisorial if every proper D-submodule of qf(D) is divi-

sorial. Then we can state the following result.
Proposition D1. If D is super divisorial local then D+XK[X] is divisorial.
Proof. A typical ideal A of D + XK[X] is given by f(X)(F + XK[X])

where F is a D-submodule of K such that f(0)F � D: As D is super divisorial,
F is either K which can be assumed to be divisorial because (K�1) = 0 and
0�1 = K, or a fractional ideal which must be divisorial because D is divisorial.
This indeed establishes that the ideal A is divisorial and as A is a typical nonzero
ideal of R we have the conclusion.
Let me now answer the other questions/concerns that our friend Jesse has.
Proposition E. If R = D +XK[X] has �nite t-character then D must be a

semi local domain whose maximal ideals are t-ideals.
Proof. Because XK[X] must be contained in P +XK[X] for every maximal

t-ideal of D and since R has �nite t-character, XK[X] can be contained in only
�nitely maximal t-ideals and we conclude that D has at most a �nite number
of maximal t-ideals.
Let M1;M2; :::;Mr be all the maximal t-ideals of D: Because every nonzero

non unit belongs to at least one maximal t-ideal the set of nonzero non units
of D is contained in M1 [ M2 [ ::: [ Mr: Let M be a maximal ideal. Then
M � M1 [M2 [ ::: [Mr: By prime avoidance M must be contained in Mi for
some i: But then M =Mi: Thus we are forced to conclude that M1;M2; :::;Mr

are the only maximal ideals.
Let F (D) denote the set of nonzero fractional ideals of D: A fractional ideal

A 2 F (D) is said to be v-invertible if (AA�1)v = D: Next let Intv(D) denote
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the set of v-invertible v-ideals of the integral domain D. Then Intv(D) is a
group and obviously the group P (D) of nonzero principal fractional ideals of D
is a subgroup of Intv(D): The quotient group Clv(D) =

Intv(D)
P (D) is called the

v-class group of D: This group can be used to measure how far the v-invertible
v-ideals are from being principal. Indeed if all the v-invertible v-ideals of D are
principal, the v-class group of D is 0 or trivial.

Proposition F. Let D be an integral domain, K the quotient �eld of D and
R = D +XK[X]: If the v-class group of D is zero then so is the v-class group
of R:
Proof. By the v-class group of D being zero we mean that every integral

v-invertible v-ideal of D is principal.
Now by 4.12 of [CMZ], as mentioned above, a typical nonzero ideal of R is

given by f(X)(F+XK[X]) where f 2 K[X] and F is a D-submodule of K such
that f(0)F � D: We have seen above (in Lemma C1) that (F +XK[X])�1 =
(F�1 +XK[X]): If F�1 = 0 then ((F +XK[X])(F +XK[X])�1)�1 = ((F +
XK[X])(XK[X]))�1 = (XK[X])�1 = K[X] 6= R: So if F�1 = 0, then F +
XK[X] is not v-invertible. If on the other hand F�1 6= 0 then F is a frac-
tional ideal and the ideal f(X)(F + XK[X]) can be put in: ((f(X)(F +
XK[X])(f(X)(F + XK[X]))�1)v to check if it is v-invertible. If f(X)(F +
XK[X]) is v-invertible then we have R = ((f(X)(F + XK[X])(f(X)(F +
XK[X]))�1)v = (((F +XK[X])(F

�1 +XK[X])))v = ((FF�1 +XK[X]))v =
(FF�1)v +XK[X] = D +XK[X]: Now (FF�1)v = D implies that Fv is prin-
cipal because the v-class group of D is trivial. But then if (f(X)(F +XK[X]))
is v-invertible, we conclude that F + XK[X] is v-invertible which also means
that F is v-invertible and that Fv is principal. To recap: If Clv(D) = 0 then
for every v-invertible ideal f(X)(F +XK[X]) we have (f(X)(F +XK[X]))v =
f(X)(F +XK[X])v = f(X)(Fv+XK[X]) = f(X)(lD+XK[X]) = lf(X)(D+
XK[X]) = lf(X)R principal. Thus Clv(D) = 0 implies Clv(R) = 0:
Now let�s get down to the question: When is D + XK[X] a TV domain?

Let�s call D a super TV domain if for every D-submodule F of K we have
Fv = K ) F = K and Ft = F ) Fv = F:
Theorem G. Let D be an integral domain with quotient �eld K; X an inde-

terminate over K and R = D +XK[X]: Then R is a TV domain if and only if
D is a super TV domain.
Proof. Let R = D + XK[X] be a TV domain. Then a typical nonzero

ideal of R is given by A = f(X)(F + XK[X]) where f(X) 2 K[X] and F is
a D-submodule of K such that f(0)F � D: Since f(0) can be 0; F can be
any D-submodule of K: Also, as A� = f(X)(F� + XK[X]) for � = v or t;
At = f(X)(Ft + XK[X]) = A forces Ft = F and as At = A implies Av = A
we have Ft = F implies Fv = F for every D-submodule F of K: Yet if F is
a D-submodule of K such that Fv = K then Ft = F ) Fv = F would be
false without F being K: Thus R being a TV domain forces every proper D-
submodule F of K that is a t-submodule to be a v-submodule and hence K or
a fractional v-ideal along with the restriction that if Fv = K then F = K and
that makes D a super TV domain.
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Conversely let D be a super TV domain. Then a typical nonzero ideal of
D + XK[X] is given by A = f(X)(F + XK[X]) where f 2 K[X] and F is a
D-submodule of K such that f(0)F � D and A� = f(X)(F� + XK[X]); for
� = v or t. Clearly At = A makes Ft = F: Since D is a super TV domain,
Ft = F implies that Fv = F; because F is a fractional ideal of the super TV
domain D; or K: But then At = A implies Av = A: Thus D +XK[X] is a TV
domain.
Remark G1. Implications of Theorem G: (1) By Proposition E, a super TV

domain must be semilocal with every maximal ideal a t-ideal.
(2) Let D be a super TV domain with maximal ideals say M1;M2; :::;Mr,

let Si be the set of all nonzero non unit elements of D that are not in Mi and
let di be any element of D such that diDMi � D: Then none of the di can be
multipliatively split, i.e, we cannot write di = xy where x; y are v-coprime non
units. For, being v-cooprime x; y cannot both share Mi:If y is not in Mi; then
y ends up dividing x because all powers of y divide di: But that is impossible.
So super TV domains are conducivwe domains, with a special restriction.
(3) From (2) it appers that a super TV domain may either be local or an

intersection of an intertwined bunch of localizations. Intertwined in that the
maximal ideals involved have some nonzero prime ideal(s) in common. But
then we can at least use local super TV domains to construct examples saying
that for D a local domain, D + XK[X] is a TV domain if and only if D is a
super TV domain. Indeed a super TV domain is onducive nd this makes the
task a lot easier.
But there are other ways we can get a D +XK[X] TV domain. A domain

whose nonzero �nitely generated ideals are v-invertible is called a v-domain. A
PVMD is a v-domain.
Proposition H. Let D be a v-domain. Then the following are equivalent.
(1) D is a valuation domain with principal maximal ideal
(2) D +XK[X] is a divsorial domain
(3) D +XK[X] is a TV domain.
Proof. (1)) (2) by Propsition D1 and (2)) (3) because a divisorial domain

is a TV domain.
(3) ) (1) D + XK[X] being a TV domain, D is a semilocal TV domain

with each maximal ideal a t-ideal, by Theorem G. Also, being a v-domain, D
is a PVMD by Theorem 3.1of [HZ TV]. Being a semilocal TV PVMD D is a
t-independent Bezout domain. This makes D + XK[X] a Bezout TV domain
which must again be t-independent, by Theorem 3.1 of [HZ TV]. But then
Lemma A applies to force D to be a valuation TV domain.
Corollary J. (Example). Let D be a semilocal PID with more than one

maximal ideals, let K be the quotient �eld of D and let X be an indeterminate
over K: Then R = D +XK[X] is not a TV domain, while D is.
Proof (illustration). Left to the reader.
Proposition K. Let D be an integral domain with quotient �eld K and let X

be an indeterminate over K: Then the domain R = D +XK[X] is a divisorial
domain if and only if D is a local super TV divisorial domain.
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Proof. Suppose R = D +XK[X] is divisorial. Then D is divisorial can be
shown in the same manner as we showed that D is a TV domain, in Theorem
G. As, being divisorial, D+XK[X] is a TV domain D is divisorial. Next being
divisorial D + XK[X] is t-independent, i.e., no two maximal t-ideals share a
nonzero prime ideal, [H], D must be local. (You may use (2) of Remark G1
to conclude that D is local.) Conversely, let D be a local super TV divisorial
domain and consider, as in the corresponding part of the proof of Theorem G,
a typical nonzero ideal A of D+XK[X]; that is A = f(X)(F +XK[X]) where
f(X) 2 K[X] and F is a D-submodule of K such that f(0)F � D: If F is such
that F�1 6= 0 then F is a fractional ideal of D and so is divisorial because D is
divisorial. If on the other hand F�1 = 0 then Fv = K requiring that F = K,
by the condition.
Finally let�s delve into the w-operation. For A 2 F (D); de�ne Aw = fx 2

KjxH � A for some �nitely generated ideal H of D such that H�1 = D: Indeed
Aw 2 F (D) for each A 2 F (D): It was shown by Wang and McCasland [WM],
that the map A 7! Aw is a star operation. Now a domain D is called a w-
divisorial domain if every nonzero w-ideal of D is a v-ideal. The w-divisorial
domains were studied by Said El Baghdadi and Stefania Gabelli in [BG] where
it was shown that D is a w-divisorial domain if and only if (1) DM is a divisorial
domain for each maximal t-ideal M of D (2) D is of �nite t-characrer and (3)
D is t-independent.
Corollary L. The following are equivalent for a w-divisorial domain D with

quotient �eld K:
(1) D +XK[X] is divisorial,
(2) D +XK[X] is w-divisorial
(3) D is a local conducive divisorial domain.
Proof. (1) ) (2) because divisorial is w-divisorial. (2) ) (3) w-divisorial

being t-independent requires that D be t-local. But that makes every maximal
ideal of D+XK[X] a maximal t-ideal and D+XK[X] a DW domain, a domain
in which every nonzero ideal is a w-ideal [M]. Also, asD+XK[X] is w-divisorial,
every nonzero ideal of D +XK[X] is divisorial. That also makes D divisorial.
But looking at a typical nonzero ideal A = f(X)(F +XK[X]); which we now
know to be divisorial we conclude that every D-submodule F of K is either
K or a fractional ideal, whence D is conducive. (3) ) (1) D is divisorial and
conducive and that makes D a super TV domain. As D is local in addition,
Propsition K applies.
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