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The various characterizations of Priifer domains in ting theory—by
means of identities (between the ideals) which involve intersection, sum,
product or residual; as invertibility of finitely generated ideals; and as every
localization being a valuation ring—have been largely carried over to the
principal abstractions of commutative ideal theory: ie., to the setting of
multiplicative lattices [W, McC, An] and to that of ideal systems [BL].
The equivalence of these abstractions, recently made explicit wn [F1,
permits comparing and unifying these treatments; in the process we make
some simplifications, removing unnecessary restrictions and generally
tightening and streamlining the description.

To have a sufficiently flexible formulation we adopt as basic setting an
integral commutative m-semilattice (or join-semireticulated commutative
monoid); explicitly, [B, Chap. XIV], this structure is a joim-semilattice-
ordered commutative monoid in which multiplication distributes over
join—hence is isotone—and whose multiplicative identity ¢ is a greatest
clement—hence makes products less than or equal to their factors. Thus
hereditary (ie., closed under smaller element) subsemilattices are closed
under pairwise join as well as under multiplication by any element of the
m-semilattice: they are appropriately calied “ideals.” As in ring theory, the
system of ideals can be equipped with a multiplication: the product of a
pair of ideals is the ideal (order) generated by the (updirected set of)
pairwise products of their elements; moreover, the smallest hereditary
subset containing the subsemilattice of pairwise joins of their elements is
also the smallest ideal containing them. These operations make the ideals
into an m-semilattice which contains an isomorphic copy of the given
m-semilattice as the subsystem of principal ideals. The larger m-semillatice
of ideals admits some additional operations: it is closed under arbiirary
intersection and admits “ideal quotients” or residuals: with any ideals I, J,
the set I:J={p:pJcl} is an ideal. Henceforth we consider these
operations to be defined also on the original elerents, with the
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understanding that they take as values ideals—which wili be in the original
system insofar as they are principal.

A morphism between m-semilattices should preserve product, join, and e.
It extends to a map of ideals: it sends an ideal onto a subsemilattice, the
smaliest hereditary subset containing which will be designated as its image.
This is a morphism on the ideal ievel (but need not preserve the additional
operations). In the sequel there is need for a special type of morphism,
related to the formation of fractions, which is determined by the set of
elements sent on ¢ as the “universal” one having this set for “kernel.” Such
a set is a co-hereditary (i.e., closed under larger elements) submonoid; con-
versely, the weakest multiplicatively compatible order strengthemng which
makes the elements of such z filter M dominate e is the relation p = mg for
some me M. The equivalence modulo which this becomes anti-sym-
metric—the quotient module M, which identifies it with e—preserves not
only product and join but any existent residuals and finite meets.” More
important for our purpose, it preserves an element’s canceflability (from
inequalities follows by distributivity over join); the weaker properiy of
being “cancellable modulo its annihiloior™-ie., of ¢'p<gqgp entailing
g’ <qvr with rp=0 (more commonly called “weak join principality”);
and its multiplicativity—i.e., the property of dominating only its multiples
(this is the “principality” of [WD], nowadays designated “weak meet prin-
cipality”). Extended to the ideals, these quotient morphisms—which may
be described within the system of ideals by the map from an ideal [ to its
saturation, the updirected union of the [:m as sz runs through the kernel
M-—preserve not only product and (even infinite) join (as do extensions of
arbitrary semilattice morphisms) but also finite meet—i.c., the mul-
tiplicative lattice structure—as well as residuation by principal® ideals.

In an m-semilattice, the assignment to filters of the quotient congruences
modulo them is finite meet preserving (since p=mg and =>m'q entails
p=(mv m)g; it is join preserving in any pomonoid). Thus subdirect
irreducibility entails that proper filters meet properly; this is implied by e
join-irreducible (ie., not a proper pairwise join); and implies it (in any
pomonoid in which pairwise joins are distributive at e): Indeed,
e=pvx=pvy then entails e=p Vv (pVvX)y=pV pyVvXy=pV Xy,

' These facts are developed in [McC].

2 That residuation by a non-principal ideal need not be preserved may be seen by taking the
quotient of the negative cone of the lexicographic piane modulo its unique proper filter, the
half axis. The saturated ideals are just the non-principal ones and residuation by one of these
of a principal ideal vields a saturated ideal strictly iess than the residuation of its saturation.
This also shows that the extended morphism on the ideals is not a quotient modulo its kernel,
the filter generated by (the principal ideals representing} the unextended morphism’s kernel.
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whence the elements “co-disioint” from any p constitute a filter; while those
in turn co-disjoint from each of its elements constitute another, which con-
tains p, and has only ¢ in common with the former. Subdirectly irreducible
m-semilattices are thus “local,” which 15 the name attached to structures
with join-irreducible unit. Although this vields a subdirect representation in
terms of locals for every m-semilattice on universal algebraic grounds, a
tighter representation, using only the projections which are the quotient
morphisms modulo the filters sent on join-irreducible ¢ will be needed.

The filter which a morphism sends on a join-irreducible unit can contain
a pairwise join only if it contains one of the terms: its complement is closed
under pairwise join; and since it is hereditary, it is an ideal—indeed 2
“prime ideal” since its complement is multiplicatively closed. Conversely, of
course, the complement of every prime ideal is just such a “join-prime”
filter, modulo which the quotient {as image of a join-preserving map) has
join-irreducible upit. That the quotient morphisms separate may now be
established by npoting that maximal ideals are prime (since
(pvx)pv y)<pvxy)and that p: ¢ is a proper ideal whenever p % ¢,
hence is contained in some maximal ideal whose complement is then a filter
modulo which the failure of this inequality is preserved. Finally, as a tool
for what follows, one has the “globalization” property, enabling one to
recover every ideal from its “localizations” as the intersection of its
saturations: If g belonged to one of the 7:m for every prime filter M. then
this set of m, being contained in nmo maximal ideal, would geperate am
improper ideal and so would have a finite join Vm=e—then g=eqg=
Vmge I (cf. [LMcC, 3.13, p. 70]).

QOur proposed definition of “Priifer” is that the “localized” quotients be
totally ordered—a local m-semilattice is Priifer just when it is totally
ordered. Total order comes to the same for an m-semilattice as for its ideal
lattice. A join-irrducible unit remains such in the ideal iattice—indeed
its complement constitutes a unique maximal ideal. Fence when the
unit is join-irreducible, Priifer may be characterized bv the identity
Xx:yv y:x=e in the ideal lattice—an identity which passes back to the
represented semilattice from the totally ordered guotients of any subdirect
representation (ie., by not necessarily all irreducible quotients) and con-
versely forward to anmy quotient. Another characterizing identity is
(x v y):z=x1zv y:z—it is clearly necessary (following by globalization
from total order of quotients even for x, y ideals) and conversely entails
e=(xv y):i(xvy)=[x(xvy vy (xvyl<x:yvy:x a dua
identity in lattices is z 1 x v z: y =2z : (x A y)}—which is also characterizing
when formulated for the ideal lattice, since with z the intersection x A y
of the principal ideals, it entails x:y v y:1xz= (xApP)ixv ixAay y=
(x A V)i(xAy)=e

It was noted that muitiplicativity (ie., dominating only multiples)
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and canceliability (from equalities would entail, by distributivity, from
inequalities) resp. module anmhilators are preserved by localization. The
conjunction of these will be referred to as “invertibility”™ (an appellation
which will be justified further on) resp. “module annihilators.” Like the
cancellables, the invertibles are closed under product and taking of factors:
p=pqz=x=pr entails g =r=gqs whence x=pgs; and from g = x follows
pq = px= pqr whence x=gr. Invertibles remain such in the ideal lattice.
Cancellability modulo annihilators is preserved under removing of non-
zero-multiple factors.

A subdirect product of totally ordered lattices with isotone multi-
plication (such as a Priifer ideal lattice) satisfies the identities® (x A v)z =
xz A yz and (x v y)z=xz v yz, which entail (x A y){x v y)=2xy; in the
ideal lattice of an m-semilattice, this would make the invertibies join-closed.
Conversely, being join-closed makes the invertibles a multiplicative
subsemilattice which is then necessarily Priifer. Indeed, if invertibles p and
g in some localized quotient were incomparable then the multiples of the
multiplicative p v ¢ which yield each of p and ¢ are non-units; and by its
cancellability the join of these non-unit multiples would be ¢, contradicting
the latter’s join-irreducibility. (This argument only requires pg=p for p a
non-zero join of generators to-entail ¢ = ¢ in each localized quotient, rather
than full cancellability—thus for such joins in the original semilattice to
satisfy: pg > pm and 0¢ pM onlv for ge M, the complement of any prime
ideal; equivalently for every prime overideal of 0 : p to contain with each ¢
also pg : p, e.g., for such joins to be cancellable modulo their annihilators.
Also it shows that the invertibility of the pairwise joins from any join-
generating set of invertibles suffices for Pridfer—or, for that matter, the
multiplicativity of pairwise joins from a join-generating set of imvertibles
modulo annihilators, since these will be localized as elements which absorb
only e.)

A commutative monoid will be enlarged to a moneid of fractions on
taking as denominators any submonoid of cancellables;® if these were
cancellable from inequalities for a given pomonoid structure, then the
requirement, that they continue to act isotonely and be cancellable from
inequalitics, fixes a unique pomonoid structure on the fractions which
extends the original one. The integral elements in this pomonoid of frac-
tions—i.e., those <e—will not be enlarged beyond the original pomonoid
just when the denominators are invertible. (Any element which obtains a

3 These are definitely not sufficient for Priffer—adjoining a new unit to a proper direct
product wiil produce an m-lattice satisfying these identities and having a join-irreducible unit
but not totally ordered.

4 Their divisors will alsc become (all the) denominators.
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multiplicative inverse in® such a pomonoid of fractions must have been
invertible: as a factor of the identity it is cancellable and its inverse times
any integral element it dominated is integral, showing it multiplicative.
Conversely, when the invertible denominators 2arc co-ipitial, every
multiplicative element becomes multiplicatively invertible.) In particular,
the pomonoids consisting only of jnvertibles will have, as full depominator
fractions, 2 pogrouMirected, since ¢ and any fraction have the
pumerator as common lower bound—of which it is the negative cone; con-
versely, the negative cone of any pogroup is a pomonoid of invertibles
(whose fractions ‘would fill a proper subgroup in the absence of directed-
ness). Thus Priifer m-semilattices join-generated by invertibles are just the
pegative cones of [-groups.

To summarize what has been established: That an m-semilattice be
Priifer—i.e., have all its quotients totally ordered——is equivalent to each of
the identities (in its ideal lattice) x 1y v ¥ - x=e (xV y)z=X1ZV VL
zixvziy=z: (xAY) when its invertibles modulo annihilators (finitely)
join-generate, it is also equivalent to each of (x A y)z=Xxz A Y5
(x A YYx v y}=XP, join-closure of invertibles modulo annihilators-—even
multiplicativity of the pairwise joins ffom a join-generating subset—and
under invertible join-generation 10 being the negative cone of an l-group.’

When comparing these characterizations with the classical ones fot
integral domains, it must be taken intoc account that the latter are couched
in terms of a specific set of imvertible joiwgenerators»—ihc NON-ZEro
elements or principal (in the usual sense) ideals; and that the identitics may
be formulated for all ideals rather than for the finitely generated ones. But,
as noted parenthetically during the course of the above development, it
would suffice, that an integral domain have its finitely generated ideals
invertible, for ideals with two generators 10 be invertible;” and that
although the identities for finitely generated ideals suffice for Priifer, they
are actually necessary for all ideals {except for residuation, which should
only be done by finitely gencrated ideals). This epables cne to see that a
formulation such as [LMcC, VI, 6.6, p. 127] may be specialized from what
has been done here. Of the 10 equivalent conditions given there, only (3)
and (10) are not included; these would have corresponded (for an
invertibly join—generated m-semiiattice) to cancellability of every element of

5 A multiplicative inverse is usually formulated by aliowing the inverse to be an {updirected)
ideal of fractions; but this comes to the same since a proper updirected ideal could not have
an inverse; ie., an invertible (indeed 2 muliplicative absorbing only €) is finitely generated.

6 The Pritferness of these cones shows that commutative [-groups are subdirect products of
totally ordered groups.

7 More generally, the invertibility of pairwise joins from a subset implies that of all its fimite
joins, as follows from the identity {x v »V 2Wxy v Xz V yz)=(xV W) v 2y v z) and
induction [G.
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the m-semilattice and distributivity of its ideal lattice. However {unhike
what occurs in rings), distributivity does not epsure the total order of
semilattices with join-irreducible unit: see LBL, Proposijon 78, p. 57 1; while
the insufficiency of cancellability is already in [L].

To exhibit the connection with ideal systems, we show that the invertibly
Jjoin-generated m-semilattices are just the fipitary ideals of Lorenzen
r-systems. The latter may be described as finitary closure operators on the
semigroup ideals of cancellative monoids which commute with translation
by elements. The singly generated ideals in such a svstem are invertible
join-generators: these ideals consist of (monoid) multiples of the generator,
hence are multiplicative in the sense being used here; and a cancellable
monoid element generates a cancellable ideal (see [F, (A), p.396]). In the
other direction, since the invertibles in an m-semilattice are closed for
product, they copstitute a submonoid which may be equipped with the
closure assigning each finite set the invertibles dominated by its join—that
this satisfies the Lorenzen requirement of translation invariance follows
from multiplicativity of these generators, distributivity of their mul-
tiplication over join, and cancellability from inequalities. The lattice ideals
correspond to system ideals and the invertible ones to those with a mul-
tiplicative inverse in the fractional ideals {as noted parenthetically above).
We can conclude that those of our Priifer characterizations based on jnver-
tible join-gemeration are in essence the same as those of [BL,
Kapitel 3]—we have only reformulated and derived them in a different
way.

Although [An] and [McC] are already formulated for lattices, their
setting is not directly comparable with ours, since they operate in (what for
us was) the complete multiplicative lattice of all ideals. However, both
postulate join-generation by a submonoid of compact elements; the (still
compact) finite joins of these would be a sub-m-semilattice whose ideal
lattice coincides with the originally given complete lattice. This enables the
comparison to be made.

That our equivalences include those set out in [An, Theorem 3.47 seems
fairly certain. A detailed comparison is rendered difficult since the
definition of the “r-lattice domain” for which they are asserted to hold has
not been furnished in [ An]. Presumably it entails cancellability of the join-
generating submonoid of “principais”—this notion being more restrictive
than “multiplicativity” which we have borrowed from [WD], cancellability
would assure join-generation by our invertibles and so the validity of ali
our equivalences. In amy cvent, the last equivalence in Theorem 3.4 —
representability as the ideal lattice of a Priifer domain—is conclusive, if
circumstantial, evidence for inclusion in our setting, via the equivalence
with the ideal system formulation of the preceding paragraph.

{McC] also postulates join-generation by the more restrictive principais;
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and these are to be compact; as a2 minor deviation from [An] and the
above, he does not require compactness of the unit, hence must explicitly
postulate that every non-unit be dominated by a proper prime in order to
be able to globalize; his specifically Priifer postulate is that the finite joins
of these compact (join-generating) principals be multiplicative. (These
postulates are decidedly less stringent than those of [Anj, whose Priifer
characterizations are thus no more than a weaker form of those already
available in the earlier publication.) Principals are however invertible
modulo annihilators, so that our argument also furnishes the Prifer
equivalents (not all of which were developed by [McC]) for this setting.
In conclusion, we point out the conpection between the more general
formation of fractions, using not necessarily cancellable denominators from
an arbitrary submonoid—as expounded, e.g., for ideal systems m [A]
(there miscalled “localization”)—and the passage to the quetient modulo
M used above for localizing at prime ideals. The universal monoid
morphism making the elements of M cancellable is the surjective map with
kernel the pairs equalized by multiplication with some clement of M—this
is indeed a monoid congruence (by virtue of commutativity). More
generally, the weakest order strengthening of a commutative pomonoid
which will make the clements of a submonoid M cancellable from
inequalities is the antisymmetrization of the pre-ordering relation mp = mq
for some me M. This strengthening preserves any existent multiplicatively
distributive joins: the universal pomonoid morphism induced on an m-
semilattice would preserve its structure. The pomonoid, or m-semilattice, of
fractions built with these now cancellable clements as denominators is
universal for making the elements of M bijective multipliers—i.e., divisors
of e; since the quotient modulo M is universal for identifying M with e, it
could be obtained from these fractions as the image of the (non-integral
commutative pomonoid) universal morphism constant on the units.
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Errata

Volume 111, Number 2 (1987), in the article “Subdirect Products of
Totally Ordered BCK-Algebras,” by Isidore Fleischer, pages 384-387:
In the Abstract, the name of the algebras was abbreviated because of an
editing error. The Abstract should read:

Subdirect products of totally ordered BCK-algebras are characterized by the
condition y 'x v x ly=1.

Volume 115, Number 2 (1988), in the article “Abstract Priifer ideal
Theory,” by Isidore Fleischer, pages 332-339: In {ootnote 5, page 336, the
words “A multiplicative inverse is” were inserted erroncously. The footnote
should read:

3 Usually formulated by allowing the inverse to be an (updirected) ideal of fractions;

but this comes io the same since a proper updirected ideal could not have an inverse, 1.e., an
invertible (indeed a multiplicative absorbing oniy ¢} is finitely generated.
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