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An integral domain R is said to be an almost Bézout domain (respectively,
almost GCD-domain) if for x, ye R— {0}, there exists an n with (x", p") (respec-
tively, (x”, y"),) principal. In this paper we continue the investigation of AGCD-
domains begun by the second author and introduce the notion of an almost Bézout
domain. We show that R is an almost Bézout domain if and only if R, the integral
closure of R, is a Priifer domain with torsion class group and for every x e K, there
exists an 7 with x"e R, © 1991 Academic Press, Inc.

1. INTRODUCTION

In [15], Storch introduced the notion of an almost factorial Krull
domain. One characterization of an almost factorial Kruil domain R is that
R is a Krull domain with the property that given a, be R— {0}, there exists
an n (throughout n will represent a natural number) with a"Rnb6"R
principal. In [16], the second author began a general theory of almost
factoriality. One important class of integral domains introduced in [16]
was that of almost GCD-domains or AGCD-domains. Here R is an
AGCD-domain if for each a,beR— {0}, there is an n=n(a, b) with
a" R b" R principal (or equivalently (a”, "), is principal). The purpose of
this paper is to continue the study of AGCD-domains begun in [16] and
to introduce several new closely related classes of integral domains.

We introduce the notions of almost Bézout domains and -almost
principal ideal domains. Here R is an almost Bézout domain (AB-domain)
if for a,be R— {0}, there is an »n with (a", b") principal. Hence an
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AB-domain is an AGCD-domain. R is an almost principal ideal domain
(API-domain) if for any nonempty subset {a,} < R-— {0}, there exists an
n with ({a?}) principal. It is shown (Corollary 4.8) that R is an AB-domain
if and only if the integral closure R of R is a Priifer domain with torsion
class group and for each x € R there exists an n with x” e R. A particularly
interesting example of an API-domain from number theory is given. For m
square-free, Z [\/n; ] is a non-integrally closed API-domain if m =5 mod 8,
while for m=1mod 8, Z [\/_n; ] is not an API-domain (see Theorem 4.17).

This paper consists of five sections besides the Introduction. Section 2
consists of preliminaries. Several definitions are given and root extensions
are investigated. (R< § is a root extension if for each se S, there exists an
n with s”eR.) Section3 begins by reviewing some of the material on
AGCD-domains from [16]. Theorem 3.4 states that the t-class group of
an AGCD-domain is torsion. Theorem 3.5 states that a flat overring of an
AGCD domain is a localization. This answers a question raised in [16].

The longest and most important section is Section 4. Here the definitions
of AB-domains and API-domains are introduced and the basic properties
of these rings are given. For example, Lemma 4.5 shows that an overring
of an AB-domain is an AB-domain. As previously mentioned, Corollary 4.8
gives a satisfactory characterization of AB-domains. An integrally closed
domain is shown to be an API-domain if and only if it is Dedekind and has
torsion class group. Many examples of AB-domains and API-domains are
given. Besides the previously mentioned examples from number theory, we
have the interesting result (Example 4.14) that R= K+ XL[X] is an AB-
domain for any purely inseparable field extension K< L, but that R is an
API-domain if and only if there is a bound on the degree of inseparability.
However, perhaps the simplest example of a non-integrally closed
API-domain is Z[2i] where i=./ — 1.

Section 5 contains some more results on AGCD-domains and AB-
domains. Theorem 5.3 shows that a prime ideal P of an AGCD-domain R
is a t-ideal if and only if R, is an AB-domain. An interesting corollary is
that an AGCD-domain R is an AB-domain if and only if Spec(R) is treed.
We show (Theorem 5.8) that R is an AP-domain (for a, be R— {0}, there
exists an 7 with (a”, b") invertible) if and only if for each maximal ideal M
of R, R,, is an AB-domain. We also consider the question of when R an
AGCD-domain implies that R is an AGCD-domain.

The last section’ concerns ideals generated by powers of elements. Given
an ideal 4 of a ring R, we define A, = ({a"| acA}). Then 4, A" is an
ideal of R and it is natural to ask when A4,=A". Perhaps the most
interesting result of this paper is Theorem 6.12 which states that if a ring
R contains a field of characteristic 0, then 4, = 4" for every ideal 4 of R.
Also of interest is the fact. (Corollary 6.4) that for R n-root closed and
A=({a,}), ({a"}),=(4,),=(4"),. In fact, this property characterizes R
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being n-root-closed (Theorem 6.8). An ideal 4 is said to be nearly principal
if 4, is principal for some n. This notion is used to define several other
classes of integral domains related to AB-domains and API-domains.

Our general reference for results from multiplicative ideal theory will be
[9]. The end of a proof will be designated by }.

The first author acknowledges the support services provided by Univer-
sity House, The University of Iowa. We also thank Evan Houston and Joe
Mott for several helpful conversations during the preparation of this paper.

2. PRELIMINARIES

Let R be an integral domain with quotient field K. Let F(R) be the set
of nonzero fractional ideals of R and f(R) the subset of F (R) consisting of
finitely generated fractional ideals. For Je F(R), I-!= {xeK|xI<R} is
again a member of F(R). We will denote (=)~ by 7,. It is well known
that 7,= () {Rze F(R) | Rz=21I}. The operation on F(R) that sends I to I,
is an example of a star operation, namely, the v-operation. Recall that a star
operation is a function *:F(R)-» F(R) that satisfies (1) (a)* = (a),
(ad)* =ad*; (2) A= A*, if A< B, then 4* < B*; and (3) (A*)*=A4* We
call I a s-ideal if I=1* and I is a finite type *-ideal if I=J* for some
Jef(R). The reader may consult [9, Sects. 32 and 347 for the basic
properties of star operations and the v-operation.

Another star operation that will play an important role in this paper is
the r-operation. Here I,=|) {J,| J<I with Jef(R)}. In particular, if / is
finitely generated, I,=1,. A fractional ideal I is said to be t-invertible if
there exists a fractional ideal J with (IJ),= R. In this case, we may take
J=1I"' Tt can be shown that a r-invertible z-ideal has finite type. Let f,(R)
be the set of finite type r-ideals of R. Then f,{R) forms a semigroup under
the “s-product” I+ J=(1J),. Evidently f,(R) forms a group if and only if
every finite type t-ideal is #-invertible. An integral domain is called a Prifer
v-multiplication domain (PVMD) if f,(R) forms a group. Many other
characterizations of PVMDs are known. For example, see [11, 12, 14].

While in general f,(R) need not form a group, the set I,(R) of t-inver-
tible r-ideals forms a subgroup of f,(R), in fact, it is just the group of units
of f;(R). Let P(R) be the subgroup of ,(R) consisting of principal ideals.
The quotient group /,(R)/P(R) is called the t-class group of R and will be
denoted by CI,(R). Thus CI,(R) measures how far away -invertible z-ideals
are from being principal. For R a Krull domain, CI,(R) is just the usual
divisor class group CI(R), while for a Priifer domain R, C/,(R) is just the
ideal class group .C(R) of invertible ideals modulo principal ideals. For
results on the r-class group, the reader is referred to [2-47].

Let R< S be an extension of commutative rings. We will use R to denote
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the integral closure of Rin S. If no S is specified, R denotes the integral
closure of R in its total quotient ring. Of particular interest will be exten-
sions R< S with the property that for each s€§ there exists a natural
number 7 (depending on s) with s"e R. An extension R< S having this
property will be called a root extension. (Note that we do not assume there
is some fixed n with 5" e R for all seS.) Of course a root extension 1is an
integral extension. One usually thinks of root extensions in characteristic
p>0 where s”"€ R for some m. Such an extension will be called purely
inseparable. But they also occur in characteristic zero. For example, the
extension Z + 2iZ = Z[2i] < Z[i] (i = </ —1) has the property that
x? e Z[2i] for each x e Z[i]. We isolate the following result concerning the
prime spectra of the rings of a root extension which is usually only stated
in the case where S is purely inseparable over R (e.g, [9, pp. 108-1091]).

THEOREM 2.1. Suppose that RS S is a root extension of commutative
rings. The map 2: Spec(S) — Spec(R) given by 20Q)=QnR is an order
isomorphism and a homeomorphism. Its inverse is given by 27 (P)= ﬁ =
{seS|s"eP for some nz1}.

Proof. Since RES is integral, the map 2 is surjective. Suppose
0,"nR=Q,nRfor Q,, Q, e Spec(S). Then xe Q, < S has x" € R for some
n, so x"e@;"R=0,NnRs Q,, and hence xe€ Q. Thus @, = Q,. Inter-
changing Q, and @, gives that @, < Q, and hence @, = Q,; 50 2 is injec-
tive. Thus 2 is a bijection. It easily follows that 2 is an order isomorphism.

Let PeSpec(R) and let Q be the unique_prime ideal of S lying over P.
If s€ Q, then some s"e N R=P, 50 S€ /P. On the other hand, if s€ JP:
then s" € P < Q implies s€ Q. Hence 0 = ﬁ

It remains to show that 2 is a homeomorphism. To do this it suffices to
show that for an ideal I of S, 2(V())=V(INR). (As usual, V{I)=
{QeSpec(S) | Q=21}.) Now Qe V(1) implies @21, so QnR2IN R and
hence 2(Q)e V(INR). Suppose that PeV{In R), so P2InR. Let Q
be the unique prime ideal of S lying over P, so Q=+/P. We need that
Q=1 Let iel Then some i"€ R, so i"eIn R< P. Hence i€ ﬁ =(, s0

10 '}

- We say that Spec(R) is treed if Spec(R), as a partially ordergd set, is @
tree or equivalently, if Spec(R o) is totally ordered for each maximal (or
prime) ideal M of R. The following result is an immediate corollary of

Theorem 2.1.

COROLLAR;{ 22. Let RS S be a root extension of commutative rings.
Then Spec(R) is treed if and only if Spec(S) is treed.
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3. AGCD-DoMAINS

The second author [16] introduced a general theory of almost fac-
toriality which subsumed the almost factorial Krull domains of Storch
([15] or [8]). A fundamental definition introduced in [16] is that of an
almost GCD-domain (AGCD-domain). An integral domain R is called an
AGCD-domain if for x,ye R— {0}, there exists an n=n(x,y) with
x"RNy"R principal. Observe that x*Rny"R is principal if and only if
(x", y"), is principal. It is easily seen (for example, see the paragraph
after Lemma 3.3) that R is an AGCD-domain if and only if for
X15 e X, € R— {0}, there exists an n=n(x,, .., x,) with xRN --- nx{R
principal (or equivalently, (x7, ..., x7), is principal). The following theorem
summarizes some of the results from [16] concerning AGCD-domains.

TueoreM 3.1. (1) Let R be an AGCD-domain. Then R is an AGCD-
domain and R< R is a root extension. (2) Let R be an integrally closed
integral domain. Then R is an AGCD-domain if and only if R is a PVMD
with torsion t-class group.

We next give a slight generalization of part of Theorem 3.1 (1) which will
be used later. :

PROPOSITION 3.2. Let R be an integral domain and let a,be R— {0}.
Suppose that there exists a positive integer n with a" R b"R locally prin-
cipal (e.g., invertible). Then a/b is integral over R if and only if (a/b)" e R.
In particular, if R is an integral domain with the property that for each
a, be R— {0}, there exists an n=n(a,b) with a" R b"R locally principal,
. then xe R if and only if x™ € R for some positive integer m.

" Proof. Suppose that a/b is integral over R. Let M be a maximal ideal
of R. Then a/b is integral over R, and a"Ry N b"Ry = (a"RNB"R)y Is
principal for some n It suffices to show that (a/b)"€ R, for then
(a/bY e ) Ry=R (where the intersection runs over all maximal ideals N of
R). Since a"R, Nb"R,, is principal, we can write (a/b)"=a"/b"=u/w
where u, we R,, with ((u, w)), = Ry But a/b integral over R,, implies
that a"/b"=u/w is integral over R,,. Since ((u, w)uy),= Ry and w/w is
integral over R,,, w must be a unit in Ry, so a"/b"e Ry |

In the spirit of [1], we can define an integral domain R to be an almost
generalized GCD-domain (AGGCD-domain) if for each a,beR~— {0},
there is an n = n(a, b) with a"R n b"R invertible. Many of the results
concerning AGCD-domains and AP-domains (for a, b€ R— {0}, (a", b") is
invertible for some n) can be extended to AGGCD-domains. We leave
these extensions to the interested reader.




290 ANDERSON AND ZAFRULLAH

Theorem 3.1 shows that an integrally closed AGCD-domain has torsion
t-class group. We can extend this result to arbitrary AGCD-domains, but
to do so, we need to genperalize the well-known fact (which we will use
throughout this paper) that for an invertible ideal A =({a,}) we have
A"=({a?}). Section6 continues the investigation of the relationship
between the ideals 4” and ({a}}).

LemMaA 33. Let R be an integral domain and let {a,} S R—{0}. If
({a,}), is t-invertible, then (az}).=(({a})"): and hence ({a}}), is also
t-invertible. .

Proof. Since ({a,}), is t-invertible, ({a,}),=(a;, -, a;), for some finite
subset {a,.., a;} S{a,}. Let 4= (@, ., a;). It is easily verified that
getn=D+t o gle=Din=1 (gn "), (This is the key step in the proof that
an invertible ideal (a,,..,a,) satisfies (a,...a)"= (af, .., a}), see (9,
Theorem 6.5].) Multiplying both sides by (41— D=1, applying the
t-operation to both sides, and using the fact that (A4, =R yields
that (@, . @)= (a1, - a5)"),- Since (al, ., al), < ({a5}). < (({a})"). =
(@, -» a;)"):» we bave the desired equality. 1

Lemma 3.3 can be used to prove the previously mentioned fact
that if R is an AGCD-domain, then for ay, .., a,e R— {0}, (a}, . a5),
is principal for some n=n(a;, a,). For by induction assume that

(@r, ..ai ), is principal for some m, say (@7, s @l y)e = (d). Now for

some IA (d’,z(a’;')’)l.’is princlipal. B/ut (d’; (@)= {(a}, - a”_ ), a),=
(@ g @) @)= (@5 o @1 7).

TueoREM 3.4. Let R be an AGCD-domain. Then CI(R), the t-class
group of R, is torsion. '

Proof. Let A be a rinvertible t-ideal of R. Then 4=(a;, . a,);
for some a,..a,€K—{0}. Then (ay,. a,),=d " (by, .., b;). where
by, ... bye R—{0}. Since R is an AGCD-domain, there exists an n with
(b7, s BY): principal. By Lemina 3.3, (4"),=d~"(b}, ., b}), and hence
(4"), is principal. 1

A Krull domain R has the property that every flat overring is a localiza-
tion if and only if CI(R) is torsion, ie., R is almost factorial. The question
was raised in [16] whether a PYMD with torsion t-class group (or
equivalently, an integrally closed AGCD-domain) has the property that
every flat overring is a localization. We next show that this is indeed the
case for any AGCD-domain.
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THEOREM 3.5. Let R be an AGCD-domain. Then every flat overring of R
is a localization of R. . :

Proof. Let R’ be a flat overring of R. Let a/be R’ where a, be R— {0}.
Then there exists an » with (a",b"),=(¢) for some ceR. Put
a*=d'c,b"=b'c, so a*/b"=a'/b’ where (a,b’),=R. Now (a,b'),=R
implies that a’RNb'R=a’b’R. Since R is a flat overring of R,
dR bR =(a@RAVR)R =a'b’'R’. But a'/b’eR’, so a’€b'R’ and hence
@R =a'R' nb'R =a'b'R’. This implies that 5’R' = R’, so b’ is a unit in R".
So a'/b'e Rs where S={seR|s is a unit in R'}. But (a/b)"=a"/b"=
a'/b’' € Rs. This shows that Rg< R’ is an integral extension. Since RsS R’
is also a flat extension, we must have R’ = Ry [13, Theorem 4.15]. §

COROLLARY 3.6. Let R be a PVMD with torsion t-class group. Then
every flat overring of R is a localization of R.

The converse of Corollary 3.6 is not true since even a Priifer domain
with the property that every (necessarily flat) overring is a Jocalization
need not have torsion ideal class group. The question of exactly which
PVMDs have the property that every flat overring is a localization will be
considered in a future paper by Evan Houston and the second author.

We end this section by correcting a remark made in [16]. Remark 3.10
stated that an AGCD-domain of characteristic 0 is integrally closed. This
is not true. As we shall see (Theorem 4.17), the domain Z+2iZ=2 [2i] is
an AGCD-domain of characteristic 0 that is not integrally closed.

4. ALmosT BtzouT DOMAINS

A GCD-domain R is characterized by the property that for
a,be R— {0}, (a, b), is principal, while a Bézout domain R is charac-
terized by the stronger property that for a, be R— {0}, (a, b) is principal.
Since an AGCD-domain R is defined by the property that for
a, be R— {0}, (a", b"), is principal for some #, it seems reasonable to make
a corresponding extension of the definition of a Bézout domain to define an
almost Bézout domain. '

DEFINITION 4.1.  An integral domain R is an almost Bézout (AB-)domain
if for @, be R— {0} there exists a positive integer n=n(a, b) such that
(a",b") is principal while R is an almost Prifer (AP-)domain if for
a, be R— {0} there exists a positive integer n="n(q, b) such that (a”, b") is
invertible. . '

DEFINITION 4.2. Let R be an integral domain. R is called an almost
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principal ideal (AP1-)domain if for any nonempty subset {a,} S R— {0},
there exists an n=n({a,}) with ({a}}) principal. R is called an AD-domain
if for any nonempty subset {a,} S R— {0}, there exists ann= n({a,}) with
({a%}) invertible. :

We have avoided using the term “almost Dedekind” for an AD-domain
because the term almost Dedekind is already used to mean an integral
domain that is locally Dedekind. The next lemma shows that we could
have defined an AB-domain by a formally stronger property.

LEMMA 4.3. An integral domain R is an AB-domain (respectively, AP-
domain) if and only if for a,, .., a;€ R— {0}, there exists an n= n{(@y, s @s)
with (a”, .., a}) principal (respectively, invertible).

Proof. (1) AB-domain case. (<) Clear. (=) Assume s>2. By
induction there exists an zn with (@, ai_y)=(e) and an m with
(am_,, a7y =(f) for some e, feR Then (e7)= (@, o ay_y )" =
(@, .. ai™ ) and (fM)=(a;2y, a"™). Choose [ with ((e™Y, (f)") principal.
Then (@) o a™) = (@, . @) + (@i, @) = (@775 ar ) +
(@™, a™™) = (™, £ is principal.

(2) AP-domain case. (<) Clear. (=) Again the proof is by
induction on s. As in the proof of the AB-domain case, there is a ¢
with A=(a’,..a._) B=(a3 a'), and D =(a},a’) invertible. Put
E=a,A~'D™'+a.B ' D7 Tt is casily seen that (a},..,a;) E=R, s0
(@', .., a;) s invertible. (This proof is essentially (2)= (1) of [13, Theorem
667 #

Certainly an AB-domain is an AGCD-domain and hence has torsion
t-class group. The next result gives the exact relationship between
AB-domains and AP-domains.

LEMMaA 44. Let R be an integral domain. Then the following conditions
are equivalent.

(1) R is an AB-domain (respectively, API-domain).

(2) Ris an AP-domain (respectively, AD-domain) with torsion t-class
group.

(3) R is an AP-domain (respectively, AD-domain) with torsion class
group. |

Proof. We only do the AB-domain case. The proof of the API-domain

case is similar. (1)=>(2). Since an AB-domain is an AGCD-domain, it has
torsion t-class group by Theorem 3.4. (2)=(3). Clear. (3)=(1). Let
a,be R— {0}. By hypothesis, there is an 7 with (", b") invertible. Since
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|
the class group is torsion, there is an [ with (a”, b")' = (a”, b™) principal.
Hence R is AB-domain.

It is well known that an overring of a Bézout domain is a Bézout domain

(e.g., [5]). The same is true of AB-domains. (We are thankful to Evan
Houston for this observation.)

LEMMA 4.5. Let R be an AB-domain (respectively, AP-domain) and let S
be an overring of R. Then S is an AB-domain (respectively, AP-domain).

Proof. Suppose that R is an 4B-domain. Let x, y € S. Then there exists
a 0#reR with rx, rye R. Then for some n, ((rx)", (ry)") R is principal.
Hence ((rx)", (ry)") S is principal. Since ((rx)", (ry)*) S=r"(x",y") S is
principal, so is (x”, y*) S. Hence S is an AB-domain.

Suppose that R is an AP-domain. The above proof remains valid if
“principal” is replaced by “invertible.” |

If R is an AGCD-domain, then R is an AGCD domain and R R is a
root extension. A similar statement holds for AB-domains; in fact, its
converse is true too.

THEOREM 4.6. Let R be an integral domain and S an overring with
Rc S< R Then R is an AB-domain (respectively, AP-domain) if and only
if S is an AB-domain (respectively, AP-domain) and for each s€ S, there
exists an n=n(s) with s"€ R.

Proof. (=) Suppose that R is either an AB-domain or an AP-domain.
It follows from Lemma 4.5 that § is either an AB-domain or an AP-
domain. The fact that R< S is a root extension follows from Proposition
32

(<) Suppose that S is an AP-domain. Let a, be R— {0}. Then there
exists an n with (a”, ") S invertible. Hence there is an ideal C of S with
(a", ") SC=2zS for some 0#zeS. Here C is necessarily invertible and
hence is finitely generated, say C=/(cy, ..., ¢x) Where ¢;€S. (In the case
where S is an AB-domain, we may take k=1 and C=(1).) Now each
a'c,=zd,;, b"c;=zd, for some d,;, dy€S, i=1,..,k Now there exists
an [ with 2/, ¢!, d},, d, € R, i=1, ..., k. Hence ac!=2'd}, and b™ ¢\ =z'd},,
so (a¥, b™)R(c!,..,ci) Rcz'R. Hence (a”, b™)R((c},..,cr))R=z'4
for some ideal 4 of R Now z/AS=(a™ b™)S(c},..ci)S=
((a”, ™) SY ({15 s k) S)'=2'S since (a”, b") S and (cy, .., ¢;) S are inver-
tible. Hence 4S=S. Since RS S is an -integral extension, 4=R. So
(@, B")(ct, .., ct)=2'R. Thus (a™,b™) is invertible. Hence R is an
AP-domain. (In the case where S is an AB-domain, taking C=(1) gives
(a”’, bnl)=zl R) l
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Integrally closed AB-domains are easily characterized. Recall that an
integral domain R is said to be root closed if for xe K, the quotient field
of R, x" e R for some positive integer n implies that xe R.

Tueorem 4.7. Let R be an integral domain. Then the following
statements are equivalent.

(1) R is an integrally closed AB-domain (respectively, AP-domain).
(2) R is a root closed AB-domain (respectively, AP-domain).

(3) R is a Prifer domain with torsion class group (respectively, Priifer
domain).

Proof. {(1)=>(2). Clear. (2)=(3). Let R be an AP-domain that is root
closed. Let M be a maximal ideal of R. It suffices to show that R, is a
valuation domain. Now R, is a quasi-local AP-domain. So for
a,be Ry, — {0} some (a",b") Ry is principal. Hence a"/b" or b"/a" € Ry
since R,, is quasi-local. Since R, is root closed, afb or bjae Ry, Hence Ry
is a valuation domain. If further R is an AB-domain, then R has torsion
ideal class group by Lemma 4.4. (3)=(1). Clear. 1}

‘CoROLLARY 48. (1) R is an AB-domain if and only if R is a Prifer
domain with torsion class group and RS R is a root extension.

 (2) R is an AP-domain if and only if R is a Priifer domain and R R
is a root extension.

Corollary 4.8 gives a satisfactory characterization of AB-domains and
AP-domains. As an application of Corollary 4.8, we next give a general
method for copstructing new AB-domains from old ones.

TuroreM 4.9. Let D be an integral domain with quotient field K. Then
D is an AB-domain (respectively, AP-domain) if and only if R=D + X. K[ X]
is an AB-domain (respectively, AP-domain).

" Proof. R=D+XK[X] has quotient field K(X). Also, R= D+ XK[X]
where D is the integral closure of D in K. It easily follows that DcDisa
oot extension if and only if R< R is a root extension. Also, it is well
known (for example, see [6]) that D is Pritfer if and only if D+ XK[X]
is Priiffer. By Corollary 4.8(2), R is an AP-domain if and only if
R+ XK[X] is an AP-domain.

Suppose that D is a Priifer domain. Every ideal of D+ XK[X] has the
form f(X)4 + XK[X]) for some ideal 4 of D [6]. It easily follows
that C(D) and C(R) are isomorphic. Hence C(D) is torsion if and only if
C(R) is torsion; so D~ is an AB-domain if and only if R is an
AB-domain. 1§




ALMOST BEZOUT DOMAINS 295

Actually, the fact that D+ XK[ X] is an AB-domain implies that D is an
AB-domain follows since D is a homomorphic image of D + XK[X] and
our next theorem which states that the homomorphic image of an
AB-domain is an AB-domain. This result could have been stated right after
Definition 4.2.

THEOREM 4.10. Let R be an integral domain. Let P be a prime ideal of
R. If R is an AB-domain, then R/P is an AB-domain. Similar statements hold
Sfor AP-domains, API-domains, and AD-domains.

Proof. Let x,ye R/P. Then there exist a,be R with d=x and 5=y.
Now R is an AB-domain, so (a" 6") is principal for some n Hence
(x", y")=(a", b")=(a", b™) is principal. }

We have shown that R is an AB-domain if and only if R is an AB-
domain and RS R is a root extension. It seems reasonable to conjecture
that R is an API-domain if and only if R is an API-domain and R< R is
a root extemsion. Unfortunately, this comjecture is false as is seen by
Example 4.14. However, the following more restrictive result.is true.

THEOREM 4.11. Let R be an integral domain and S an overring with
RS S<S R Suppose that there exists a fixed positive integer n where s"e R
for each se€ S. Then R is an API-domain (respectively, AD-domain) zf and
only if S is an API- domazn (respectively, AD-domain).

Proof. (=) Suppose that R is an APl-domain. Let {s,}=5—{0}.
Then {s;} < R—{0}. So there is an integer k>0 with {57} R principal.
Hence {s*} S is also principal. The same proof with “principal” replaced
by “invertible” shows that if R is an AD-domain, then S is also an
AD-domain. )

(<) Let {x,} =R— {0}. Now S is an API-domain, so ({x%}) S=2zS
for some integer k>0 and zeS. Now x¥=s,z for some s,eS. Hence
x*=57z" where s7,z"eR. So ({x}) R=({z"s7}) R=z"({s2}) R. Now
2'S= (28" =(({x;}) Sy = ({x}}) S=2"({s7}) S; so ({s7})S=S. Since
R < S is integral, we must have ({s7}) R=R. Hence ({x"" }} R=2z"R. Thus
R is an API-domain. A similar proof shows that 1f S is an AD-domain,
then R is an AD-domain. §

-While Theorem 4.11 may be viewed as the API-domain analog of
Theorem 4.6, it should be noted that in the proof of Theorem 4.11 we have
not used the hypothesis that S is contained in the quotient field of R. In
fact, the following result is true and its proof follows along the same lines
as the proof of Theorem 4.11. Let R< § be an extension of commutative
rings. Suppose that there is a natural number » with the property that se S
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implies that s"€ R. Then R is an APl-ring (respectively, AD-ring) if and

only if S is an API-ring (respectively, AD-ring). Theorem 4.6 also has a

similar extension. Let RS be a root extension of commutative rings.

Then R is an AB-ring (respectively, AP-ring) if and only if S is an AB-ring

(respectively, AP-ring). :
The API-domain analog of Theorem 4.7 does carry over.

TuroreM 4.12. For an integral domain R the following statements are
equivalent.

(1) R is an integrally closed API-domain (respectively, AD-domain).
(2) Ris a root closed API-domain (respectively, AD-domain).

(3) R is a Dedekind domain with torsion class group (respectively,
Dedekind domain).

Proof. (1)=>(2). Clear. {(2)=>(3). Suppose that R is a root closed
API-domain. Let 4 be an ideal of R, say 4= {a,}. Then for some 7, ({a2})
is principal. Let M be a maximal ideal of R. Then ({a}})n is principal and
is in fact generated by some So for each «, aija, € Ru- Since Ry, is
root closed, each a,/a, € R, Hence An={aNu=(au)n is principal
and A’;,=(a’910)M=({a§})M. Since the equality A%, =({a}})u holds for
each maximal ideal M, we have A" =({a"}) and hence A" is principal.
Thus A is invertible. Hence R is 2 Dedekind domain with torsion class
group. A similar proof shows that if R is an AD-domain, then R is 2
Dedekind domain. (3)=(1). Suppose that R is a Dedekind domain and
let {x,} = R—{0}. Then ({x,}) is invertible, so R is an AD-domain. Sup-
pose that C(R) is torsion. Then there exists an z with ({x,})" principal.
But then ({x7})=({x.})" is principal, so R is an API-domain. 1

COROLLARY 4.13. Let R be an integral domain. Suppose that there exists
an n so that x € R implies that X" € R. Then R is an API-domain if and only
if R is a Dedekind domain with torsion class group. R is an AD-domain if
and only if R is a Dedekind domain.

Proof. Combine Theorems 411 and 4.12. 1}

ExaMpiE 4.14. Let Kbea field of characteristic p >0 and Jet K< Lbe
a purely inseparable field extension. Let R=K+ XL[X 7. Then the integral
closure R of R in its quotient field L(X) is LL[X], 2 PID. For each
fe L[X], there is an m >0 with f”"e R So Ris an AB-domain. However,
R is an API-domain if and only if there exists 2 fixed m with L7 < K. In
particular, if K= Z,(T)and L= Ura Z,,(TI"P"), then R= K+ XL[X] has
the property that R is a PID and RS R is a root extension, but R is not
an API-domain.. : :
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Proof. If L’" = K, then f*" € R for each fe R = L[X]. So by
Theorem 4.11, R is an API-domain. Suppose that R is an API-domain.
Consider the set {IX | /e L}. Then there exists an » with {/"X"} R finitely
generated, say {I"X"} R={[{X", .., [, X"} R for some [y, ..., [;€ L. But then
for each leL, ' X"=f, " X"+ --- +f,[" X" where f}, .., f,€ R. Equating
coefficients, gives that I"=f;(0) 7+ --- +£,(0) Iz K(/}, ..., [}). But then
for some fixed n, ["e F for each /e L where F is a finite field extension
of K contained in L. Now for I/eL, some [”'eF and ["eF. Let
k=GCD(n, p')=p" where 0<t,<t. Then /e F. Hence if we choose r
with p” >n, then [”" e F for each [ L. Since [ F: K] < co0, we actually have
[P" e K for some m. |

Here is another example of an API-domain in characteristic p>0. In
fact, it was this example which motivated the definition of an AB-domain.

ExampLE 4.15. Let F be a field of characteristic p>0 and let
R=F[[{X*|5€S}]] where S is.a primitive numerical monoid (ie., § is
an additive submonoid of the nonnegative integers under addition and
GCD{S}=1). Hence there exists an n with meS for m=n [10,
Theorem 2.4]. So R2F[[X", X"*% ..]] and hence R=F[[X]] is a
PID. Suppose that char F=p>0. Let f=Y2,a,X'e F[[X]]. Then
=32 @ X" e FI[X", X"+, ..]J]S R because p">n. By Corollary
4.13, R is an API-domain.

On the other hand, suppose that char F=0. If R is an AB-domain, then
there exists an m with (1+X)"eR But 1+mX+ -.-=(1+X)"eR
implies that 1€ S, so R=F[[{X*|xeS}]]=F[[X]].

In [16] it was incorrectly stated that an AGCD-domain of characteristic
0 is integrally closed. So far, all our non-integrally closed examples have
been in characteristic p>0. The next example is perhaps the simplest
example of a non-integrally closed API-domain of characteristic 0. While
Example 4.16 is essentially a special case of Theorem 4.17, we have
included it due to its simplicity.

ExAMPLE 4.16. Let R,=Z+2"Zi where i=./— 1. Then for a+ bie
Z[i], (a+ bi)* e R, since 2" | (¥) for j odd. Since Z[{] is a PID, R, is an
API-domain. Note that char R, =0 and that for n> 1, R, is not integrally
closed.

In the preceding example, Z[2i]=Z+2iZ is a non-integrally closed
API-domain while Z[i] is of course a PID. This raises the interesting
question of when Z[2ﬁ] or Z[ﬁ] is an API-domain. The next
theorem completely answers this question.

THEOREM 4.17. Let m be a square-free integer.
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(1) If m=2,3mod 4, Z[ﬁ] is a Dedekind domain with finite class
group and hence is an API-domain.
(2) If m=5mod 8, Z[/m] is not integrally closed, but Z[/m]=
Z+[(1 +ﬁ)/2] Z is a Dedekind domain with finite class group and
x? eZ[ﬁ] for each er{ﬁ]. So Z[/m] is an API-domain.

(3) If m=1mod8, Z[/m]=Z+[(1+/m)21Z is a Dedekind
domain with finite class group, but [(1+/m)[2) ¢ Z [\/;] forallnz=1, so
Z[\/;] is not an API-domain (in fact, not even an AP-domain).

) Z[2ﬁ]=Z +2./mZ is not integrally closed, but is an API-
domain if and only if m# 1 mod 8.

Proof. (1) It is well known that Z {\/E] is a Dedekind domain with
finite class group and hence is an API-domain by Theorem 4.12. It is also
well known that for m=2,3 mod4, Z[/m]=Z[/m] while for
m=1mod 4, Z[/m]=Z+ [(1 +/m)/2] Z. So (1) follows.

(2) Suppose that m=5 mod 8, so Z[/m]=Z+[(1+/m)2]Z.
Hence Z[./m] is not integrally closed. Let x=a-+b[(1++/m)2]e
Z[/m]. Then x* = (a® + 3ab(2a + b(1 + m))/4 + &°(1 + 3m)/8) +
((3a*b+3ab?)/2+b*(3+m)/8) \/;1_ Now 1+m is even, so 2a+b(1+m)=
2(a+ b((m+1)/2)) where (m+1)/2 is odd. If a or b is even, the product is
divisible by 2 while if  and b are both odd, a + b(m + 1)/2 is even. In either
case, ab(2a + b(1 +m)) is divisible by 4, so 3ab(2a+ b(1+m))/4€ Z. Since
m=5mod8, 1+3m=0mod 8, so b*(1 + 3m)/8 e Z. So the first quantity in
parentheses is in Z. Now (3a’b + 3ab*)/2 = 3ab((a+ b)/2)e Z since if a and
b are both odd, then a+b is even. Also, m+3=5+3=0 mod38, so
b*(3+m)8eZ. Hence x*eZ[/m]. By Corollary 413, Z[\/m] is an
API-domain.

(3) We show that for m=1 mod 8, Z[\/E] < Z[/m] is not a root

extension. To do this, it suffices to show that [(1 + ﬁ)/Z]” ¢Z [\/;] for
all 7> 1. Put [(1++/m)2]" = (a,+b,~/m)/2 where a,, b, € Z. It suffices
to prove the following. : ‘

CLaM. a,=b,=1 or 3mod 4.

Proof by induction on #; the case n=1 being certainly true. Now

ap.' +bn+l\/g__ l:l +\/'—7;] [a"—{—b,,\/;;:l
L2 2

2

_ [{a, +mb,)2+ [a, +h,)2]/m
- : |
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(by induction, a,, + mb, and a, + b, are both even!). So a, ., = (a,+mb,)/2
and b,,,=(a,+b,)/2. Since m=1 mod8, m=8k+1, s0 a,,,=
(a,+(8k+1) b,)/2 =(a,+b,)/2+4kb,=(a,+b,)/2=b,,, mod 4. Suppose
that b, , =0 or 2 mod 4. Then (a,+b,)/2 =0, 2 mod 4, s0 a,+b,=0mod 4.
But this is impossible, since a,=b,=1 or 3mod 4.

4) Z[2\/m] = Z + 2 /mZ is not integraily closed since
JmEZ[2/m] but (/m):=meZ[2/m]. Suppose that Z[2/m] is

an AB-domain, then the overring Z [\/—m_} is also an AB-domain, so
m#% 1 mod 8. Conversely, suppose that m# 1 mod 8. Then Z[ﬁ] is an
API-domain. However, for er[ﬂ], x?e Z[2,/m]. Thus by Theorem
4.11, Z[Z\/;] is also an API-domain.

We have studied AB-domains and AP-domains via the invertibility of
certain ideals. Priifer domains are also characterized by the property that
they are locally valuation domains. The analog of this characterization of
AP-domains is given in the next section (Theorem 5.8). Some more results
on AB-domains are also given in the next section. There are many other
questions concerning AB-domains and API-domains that we have left
unanswered. ' ‘ '

'

5. More oN AGCD-DomaInNs AND AB-DOMAINS

In this section we will show that a prime ideal P of an AGCD-domain
R is a t-ideal if and only if Rp is an AB-domain. We show that an AGCD-
domain R is an AB-domain if and only if Spec(R) is treed. We also show
that R is an AP-domain if and only if R, is an AV-domain for each maxi-
mal ideal P of R. Here by an AV-domain we mean an integral domain R
with the property that for a, 5e R— {0}, a” | " or b" | a" for some n. We
end this section by considering the question of when R an AGCD-domain
implies that R is an AGCD-domain.

An integral domain R will be called t-local if R has 2 unique maximal
t-ideal. It is easily seen that R is z-local if and only if R has a unique maximal
ideal M and M is a t-ideal. The t-dimension of an integral domain R is the
length of the longest chain of prime t-ideals. It is easily seen that an integral

- domain R has r-dimension one if and only if every prime t-ideal is minimal.

Of course, a minimal prime ideal is always a t-ideal.

LemMa 5.1. Let R be a t-local AGCD-domain. Then R is an AB-domain.
‘Proof. Let'x, ye R—{0}. Then for some n, (x", y"), = (d) where de R.
Hence (x"/d, y"/d),= R. Since R is t-local, either x"/d or y"/d must be a
unit. But this amounts to x”|y” or ¥"|x", so (x",y") is principal. 1
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In [17,18] it was shown that if P is a prime t-ideal of an integral
domain R it is not necessary that P, should also be a prime t-ideal of Rp.
However, this can not happen for an AGCD-domain as shown by the next
lemma.

LemMA 5.2. Let R be an AGCD-domain. Let P be a prime t-ideal of R.
Then Pp is a prime t-ideal of Rp.

Proof. Suppose that P, is not a t-ideal of R,. Then there exist
Xy s Xy € P— {0} With ((Xy, ., X,)p). = Rp. Hence ((x7, ... x7)p)e=Rp
for all m>1 by Lemma 3.3. But since R is an AGCD-domain, there
is an m with (x7, .., xJ),=(d). Since x7, .., x"eP and P is a t-ideal,
we must have deP. But then (x7,..,x7)p<(d)pSPp. Hence Rp=
(X7, ... X™) ). S Pp, a contradiction. ]

THEOREM 5.3. Let R be an AGCD-domain. Let P be a nonzero prime
ideal of R. Then P is a t-ideal if and only if Rp is an AB-domain.

Proof. (=) Suppose that P is a prime t-ideal. By Lemma 5.2, Ppis a
t-ideal of Rp. But (Rp, Pp) is a t-local AGCD-domain and hence by
Lemma 5.1 is an AB-domain.

(<) Suppose that R, is an AB-domain. Then R, is a Priifer domain
and hence Spec(Rp) is treed. By Corollary 2.2, Spec(R p) is also treed. Let
0+ xe P. Shrink P to a prime ideal P, minimal over (x). Then P, is a
t-ideal. Hence P=1J P, is also a rz-ideal.

Theorem 5.3 generalizes the well-known result that a prime ideal P of a
GCD-domain R is a t-ideal if and only if R, is a valuation domain.

COROLLARY 5.4. Let R be an AGCD-domain. Then the Sfollowing
statements are equivalent.

(1) R is an AB-domain.

(2) Every prime ideal of R is a t-ideal.

(3) Every maximal ideal of R is a t-ideal.
* (4) Spec(R) is treed.

Proof. (1)=(2). Theorem 5.3. (2)=(3). Clear. (3)=(4). Let M
be a maximal ideal of R. Then M is a t-ideal, so by Theorem 5.3, R, is an
AB-domain. Hence as in the proof of (<) of Theorem 5.3, Spec{R,,) is
treed. Hence Spec(R) itself is treed. (4)=(1). Suppose that Spec(R) is
treed. But then Spec(R) is also treed by Corollary 2.2. So R is a PVMD
with Spec(R) treed, hence R is a Priifer domain and R has torsion (¢—)
class group. By Corollary 4.8, R is an AB-domain. :
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. P.M. Cohn [5] called an integral domain R pre-Bézout if in R coprime
elements are comaximal.- He showed that R is' Bézout if and only if R is a
GCD-domain and is pre-Bézout. Let us call R a v-pre-Bézout domain if for
x, ye R— {0}, (x, y),= R implies that (x, y)= R. Then R is an AB-domain
if and only if R is an AGCD-domain and is v-pre-Bézout. The proof is
straightforward. Thus while the v-pre-Bézout condition is much weaker
than the pre-Bézout condition, it sometimes still implies the same results.
However, while any t-local Noetherian domain is v-pre-Bézout, it was
established in [14] that a pre-Bézout Noetherian domain must be a PID.

One of the many characterizations of Priifer domains is that Priifer
domains are locally valuation domains. Similarly almost Priifer domains
may be characterizing using almost valuation domains.

DermiTION 5.5. Let R be an integral domain. R is an almost valuation

domain (AV-domain) if for a,be R— {0}, there exists an n=n(aq, b) with
a"/b” or b"/a".

Equivalently, R is an almost valuation domain if and only if for each"
xe K— {0}, there exists an n=n(x) > 1 with x” or x "€ R. It is easily seen
that if R is an AV-domain and S is an overring of R, then S is also an AV-
domain. Also, given a root extension R < S (where S need not be contained
in the quotient field of R), R is an AV-domain if and only if S is.an AV-
domain. If R is an AV-domain with quotient field X and L is a subfield of
K, then Rn L is an AV-domain with quotient field L. The next theorem
gives several characterizations of AV-domains.

THEOREM 5.6. For an integral domain R the following conditions are
equivalent.

(1) R is an AV-domain.

(2) R is a valuation domain and R< R is a root extension.
(3) ‘R is a t-local AGCD-domain.

(4) R is a quasi-local AB-domain. -

Proof. (1)=>(2). Now R is an AB-domain, so R< R is a root exten-
sion by Theorem 4.6. Let x€ K— {0}. Then there exists an » with x"€ R or

x~"e R. Hence x" or x~"e R. Since R is integrally closed, x or x~'eR.
Hence R is a valuation domain. (2)=(3). By Corollary 4.8, R is an AB-
domain and hence an AGCD-domain. Since R< R is a root extension,
Spec(R) and Spec(R) are homeomorphic (Theorem 2.1). Hence R is quasi-
local. By Theorem 5.3, the maximal ideal of R is a t-ideal. Hence R is
tlocal. (3)=(4). By Lemma 5.1, R is an AB-domain. And certainly a
t-local domain is quasi-local. (4) = (1). Let a, b€ R— {0}. Then there exists
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an n with (a" b") principal. Since R is quasi-local, (a”, b")=(a") or
(a", b")=(b"). So a"|b" or b"|a". Thus R is an AV-domain. |

The following technical lemma is needed to show that a locally
AV-domain is an AP-domain. ‘

LEMMA 5.7. Let R be an integral domain. Let x,ye R— {0}. Suppose
that for each maximal ideal M of R, there exists a natural number n, with
(x™™, y"™) ,, principal. Then there exists an N with (xV, y") invertible.

Proof. Let M be a maximal ideal of R. Now (x", y"¥),, is principal, so
(x™, y"™),, = aR,, for some a,, e (x", y™). In fact, we can take a, =x"
or y™. So there exists an f,, € R— M with f),(x™, y"™) € a,,R. Hence for
> 1, f5 (x™%, y) © £ (x, y™)E S dfy, R. So (x", y"#*) Ry, =ak, Ry,
for all k>1. Since R=({fy|M is a maximal ideal of R}), we have
R=(fi, . f,) for some finite set of maximal ideals {M,,.., M, } with
fu=fieR—M,; Put N=ny, ---ny,. Then (x",y")R,=ay™ Ry,
Since for each maximal ideal M of R, we have some f;¢ M, it follows that
(xV, yM)s is principal. Thus (x", y") is finitely generated and locally
principal, hence invertible. ||

THEOREM 5.8. Let R be an integral domain. Then R is an AP-domain if
and only if for each maximal ideal M of R, Ry, is an AV-domain.

Proof. (=) Suppose that R is an AP-domain. Let M be a maximal
ideal of R. Then R,, is a quasi-local AP-domain, hence a quasi-local AB-
domain and hence an AV-domain. (<) Suppose that for each maximal
ideal M of R, R,, is an AV-domain. Let x, ye R— {0}. Then for each maxi-
mal ideal M of R, there is a natural number n,, with (x™¥, y"¥),, principal.
By Lemma 5.7, there is a natural number N with (x”, y”) invertible. Hence
R is an AP-domain. ||

We have seen that R is an AB-domain if and only if R is an AB-domain
and RS R is a root extension. If R is an AGCD-domain, then R is an
AGCD-domain and R< R is a root extension. We have been unable to
prove the converse: if RS R is a root extension and R is an AGCD-
domain, then R is an AGCD-domain. However, we do have the following
result.

THEOREM 5.9. An integral domain R is an AGCD-domain if and only if
(i) R is an AGCD-domain, (ii) R__C_ﬁ is a root extension, and (iii) if
Xys ey Xn € R— {0} with ((x,, .., x,) R), =R, then ((xy, .., x,) R),=R.

Proof. (=) Suppose that R is an AGCD-domain. Then (i)
and (ii) hold by Theorem 3.1. Suppose that xi, .., x,€ R—{0} with
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((xy, «» X,) R), # R. Then for some m ((x7, .., x') R),=(d) where de R is
necessarily a nonunit. Then (x7,..,x7)R<dR#R where the last
» inequality follows since R< R is integral. So ((x7,..,xT)R),#R It
i follows from Lemma 3.3 that ((x, ..., x,) R),# R. (<) Suppose that (i),
' (i), and (jii) hold. Let x, ye R— {0}. Then there exists ann>1 and a de R
5 with ((x", y") R),=dR. Now x"/d, y"/de R, so there exists an [ with x"/d/,
% y"/d'eR. But then ((x"/d,y"/d")R),=R. By (iii), (x"/d’y"/d"),=R.
Hence (x™, y™),=d' R. It follows that R is an AGCD-domain. [

~ We give condition (iii) a name.

DeFinmmioN 5.10. Let R be an integral domain and S an overring of R.
We say that R is t-linked under S if whenever x,, .., x,€ R— {0} with
((x15 v X,) S)py =S, then {(xy, ..., x,) R),=R.

Note that R z-linked under S is equivalent to if xy, ..., X, € R do not share
a maximal 7-ideal in R, then x4, ..., X, do not share a maximal z~ideal in R.
This is the converse of the notion of S being a z-linked overring of R that
was introduced in [7]. There an overring S of R was defined to be z-linked
if for each Aef(R) with 4,=R, then (45),=S. It was shown that § is
t-linked over R if and only if for each prime t-ideal P of §, (PN R),#R.
It is not known whether the integral closure R of 2 general integral domain
R is t-linked over R. However, it is easily shown that if R< R is a root
extension and R is an AGCD-domain, then R is t-linked over R. We end
this section with the following result.

THEOREM 5.11. Let R be an integral domain of t-dimension one. If R is
an. AGCD-domain and R< R is a root extension,.then R is an AGCD-
domain.

Proof. We first show that if R is an integral domain of ¢-dimension one,
then R is t-linked under R Let x,, .., X, € R such that ((xy, .., X,} R),=R.
Suppose that (x;, .., X,), # R. Then x,, .., x,, belong to a maximal t-ideal P
of R. Let P’ be a prime ideal of R lying over P. Since R has t-dimension
one, rank P=1. Hence rank P'=1, so P’ is a t-ideal. But then
((xy, -, x,) R),SP'# R, a contradiction. Thus (i), (ii), and (iii) of
Theorem 5.9 hold, so R is an AGCD-domain. §

6. IDEALS GENERATED BY POWERS OF ELEMENTS

In the previous sections we have been given elements of a ring R and
have considered the ideal generated by powers of these elements. In this
section we change our point of view slightly. Given an ideal 7, instead of
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just a set of elements, we consider the ideal generated by all nth powers of
elements of the ideal 1.

DermviTioN 6.1, Let I be an ideal of a commutative ring R. For n>1,
define I, = ({{" | iel}).

I is nearly principal (respectively, nearly invertible) if for some n2 1, I, is
principal (respectively, invertible).

Certainly I, is an ideal of R with I,=I". If I=({a,}), then
({aZ})ysI,=I". If I is locally principal, then I"=({aj}) and hence
I'=1I,=({a}). Of course, I;=I". As we shall see (Theorem 6.12),
if R contains a field of characteristic 0, then "=/, for all n>1.
However, in R=Z[X, Y], we have (X", Y") s (X, ¥), (X, Y)" for n>1.
In fact for n=2, we have (X2, Y?)& (X2 2XY, Y¥)=(X, V). (X, Y)*=
(X2, XY, Y?). For any ring R, it is easily seen that (q, b), = (a?, 2ab, b?).

Clearly if I is principal (respectively, invertible), then I is nearly principal
(respectively, nearly invertible). Also, for [ invertible, [, =I"forn>1,s0 1
is nearly principal if and only if /" is principal for some #, ie., [ is torsion
in C(R). '

Using Definition 6.1 we can define some classes of integral domains
closely related to the AB-domains and API-domains previously defined.

DEerINITION 6.2. Let R be an integral domain. Then R is nearly Bézout
(respectively, nearly Prifer) if for each finitely generated nonzero ideal I of
R, I, is principal (respectively, invertible) for some n=n(I).

R is nearly PID (respectively, nearly Dedekind) if for each nonzero ideal
I of R, I, is principal (respectively, invertible) for some »n = n(J).

Alternative, R is nearly Bézout if every finitely generated ideal is nearly
principal while R is nearly PID if every ideal is nearly principal.

We will show that for R root closed, the notions of almost Bézout and
nearly Bézout coincide. Similar statements will hold for almost Priifer
domains, API-domains and AD-domains. This will follow from our

_investigation of (I,,),. Recall that an integral domain R is n-root closed if for
x €K, the quotient field of R, x"e R implies x € R. Certainly an integrally
closed domain is n-root closed for each n 21 (i.e., root closed).

LEMMA 6.3. Let R be an integral domain that is n-root closed. Let
¢¢ {aﬂf} ER— {0}’ Then ({az})r= (({az})")r-

Proof. It suffices to show that {a}} < d/bR implies that ({a,})" = d/bR.
For then ({a,})" < ({a"}). and hence ({a}}).= (({a.})"),. Now consider
s s @y € {a,) and let .m = n,+ -~ +n,. Since {a;} = d/bR, each
bal edR, so d|ba,. So d"|b"a,’. Hence d"=d="|p¥ T (as )" =
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b*(az --- ay)". So (bag; --- ay/d)*e R. Thus ba™ --- ay/de R since R is

1

n-root closed. Hence af! --- a¥ e d/bR, so that ({a,})"=d/bR |

COROLLARY 64. Let R be an n-root closed integral domain. Then
({az})e=(({a. "), for any nonempty collection {a,} < R— {0}.

Proof. Let xe{({a,})");- Then x ¢ (245 s @5,)"), for sOme {a,,, .., a, }
< {a,}. By Lemma 6.3, ((a,,, .. a,)")y=(ay,, .., a} ), < ({a}}),. Since the
other containment is always true, we have equality. J

THEOREM 6.5. Let R be an n-root closed integal domain and let
A={({a,}) be an ideal of R. Then ({az}):=(4,),=(A4"),. Hence ({a’}),=
(4,),=(47),.

Proof. By Corollary 64, ({a7}),=(({a,})"),. Since A=({a"}), we

have ({a7}), = (4,), < (4"),=(({a,})"),= ({a}}), and the desired equality
follows. §

COROLLARY 6.6. Let R be an n-root closed integral domain and let
ay; . @, € R—{0}. Then (a}, .., a"),= ((@y, s @,)n)e = (@}, .y a,)"),.

COROLLARY 6.7. Suppose that R is an n-root closed integral domain. Let
A=({a,}). If ({a}}) is a t-ideal (e.g., ({a’}) is locally principal), then
({az})=A,= A" If A, is a t-ideal, then A= A".

Proof. Suppose that ({a}}) is a r-ideal. Then 4”2 ({a2})=({a’}).=
(47),2 4" so ({a}})=A4,=A" The second statement is proved in a
similar manner. §

Actually, the converse of Corollary 6.4 is also true. This gives an
interesting characterization of R being n-root closed.

THEOREM 6.8. For arn integral domain R and positive integer n, the
Jollowing statements are equivalent.

(1) R is n-root closed. :

(2) For any {a,} = R— {0}, ({a*}),=(({a,})")..

(3) For any {a,} = R—{0}, ({a2}),=(({@.})"),-

(4) For any ay, ..,a,e R—{0}, (a}, .., a%),=((ay, ... a,)"),.
(5) For any a,be R— {0}, (a", b"), = ((a, b)"),.

Proof. (1)=(2). Corollary 6.4. (2)=>(3). This follows since for any
ideal 4, (4,),=4,. (3)=(4)=(5). Obvious. (5)=(1). Suppose that
(a/b)" € R where a,be R— {0}. Now a”/b” € R implies that (a”, b")= (b").
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Hence (6") = (b"), = (a" b"), = ((&,8)"),. So R =0b""((ad)"), =
(6-"(a, b)"), = ((a/b, 1)"),. Hence a/be (a/b,1)"<R. |

Of course, in (4) and (5) instead of the v-operation, we could have used
the t-operation. Also, it follows from Theorem 6.8, that an integral domain
R is root closed if and only if (&%, 5"),=((a, b)"), for all n=>1 and for all
a,be R—{0}.

Let R be an integral domain. In Section 4 (Lemma 4.4) we observed that
R is an AB-domain (respectively, API-domain) if and only if R is an
AP-domain (respectively, AD-domain) and C(R) is torsion. Similarly, R is
nearly Bézout (respectively, nearly PID) if and only if R is nearly Priifer
(respectively, nearly Dedekind) and C(R) is torsion. Also, in each case, the
condition that C(R) be torsion can be replaced by the condition that
CI,(R) be torsion. Finally, it is easily seen that an API-domain is a nearly
PID.

While the exact relationship between almost Bézout domains and nearly
Bézout domains remains somewhat of a mystery, the two notions coincide
for integrally closed domains.

THEOREM 6.9. For an integral domain R, the following conditions are
equivalent.
(1) R is an AB-domain (respectively, API-domain) and R is root closed.
(2) R is an AB-domain (respectively, API-domain) and R is integrally
closed. ‘
(3) R is nearly Bézout (respectively, nearly PID) and R is root closed.
(4) R is nearly Bézout (respectively, nearly PID) and R is integrally
closed.
(5) R is Priifer (respectively, Dedekind) with C{(R) torsion.

Proof. (1)<>(2)<>(5). Theorem 4.7 (respectively, Theorem 4.12).
Certainly (5)=>(4)=>(3). (3)=(5). Suppose that R is root closed and
nearly Bézout. Let J be a nonzero finitely generated ideal of R. Since R 1s
nearly Bézout, there is an n with [, principal. By Corollary 6.7, [,=TI"
Since I" is principal, 7 is invertible and I is torsion in C(R). Hence R is
Priifer and C(R) is torsion. The proof for R pearly PID is similar. 1

A similar theorem holds for nearly Priifer domains.

TueoreM 6.10. For an integral domain R, the following conditions are
equivalent.

(1) Ris an AP-doMain (respectively, AD-domain) and R is root closed.
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(2) R is an AP-domain (respectively, AD-domain) and R is integrally
closed.

(3) R is nearly Prifer (respectively, nearly Dedekind) and R is root
closed.

(4) R is nearly Priifer (respectively, nearly Dedekind) and R is
integrally closed.

(5) R is Priifer (respectivély, Dedekind).

Remark 6.11. In the statement of Theorem 6.9 we can add the
following condition: (3a) For a,be R— {0}, (a,b) is nearly principal
(respectively, nearly invertible) and R is root closed. For (a, b), principal
implies that (a, 5)" = (a, b), and hence that (a, b) is invertible. Since every
ideal of R generated by two elements is invertible, it is well-know that R
is Priifer. Moreover, C(R) is torsion. For let [= (ay, .., a,). Now for
each n, I"=(aj}, .., a7). By induction on s, some power (af,..,al_,)=
{ay, ..., a,_y)" is principal, say = (c). Then I" = (@%, ww ai_,, a2)=(c, a”). So
there is an m with I"™ = (c, a”)™ principal. :

We next look at conditions under which A,=A" for an ideal 4 of R.
Our main result along these lines is the next theorem which states

that 4,=4" for all ideals 4 of R if R contains a copy of the rational
numbers Q.

THEOREM 6.12. Let R be a commutative ring with identity containing a
field of characteristic zero. Let I be an ideal of R. Then I'= I,=
({@" | ael}) for all natural numbers n.

Proof. The proof is by induction on »; the case n=1 being trivial.
Suppose by induction that 7, _,=/""1.

Consider the set T of all polynomials 6(X, Y)e Q[X, Y] of the form
X, N)=X"""Y+LX""2 Y+ ... +1,_  XY"~'. Put KO(X,Y))=the
number of nonzero /. So I(6(X, ¥))>0 with I(6(X, ¥))=0 if and only
if 0(X,Y)=X"""'Y. Let S={0(X,Y)eT|0(a,b)el, for ail a bel}.
Since (1/n){(a+8)"—a"—b")=a""'b+ -.-el, for all a,bel, we have
(X, V)=(1/n)({(X+ Y)Y —X"— Y")e S. So S#¢. Choose §(X, Y)e S with
[(6) minimal. If /(6)=0, then X, Y)=X""1Y, so a"~'bel, for all
a, be I Hence for fixed bel, I,_; b<1,. But by induction J,_,; =I""1 so
rr~'bcl, for all bel Hence "=I""'Ic],, so I"'=1I, So we may
suppose that /(0)>0. Let (X, Y)=X""'Y+ L X" "2 Y+ ... + [ X"'Y"
where [;#0. So i=2 Now 26(X,Y)—6(X,2Y)=(2'-2) X"~ ¥+
(2'—=4) LX7?Y+ - +(2'-2)LX"'Y. So @'(X,Y)=(2—2)"!
(0(X, Y)—-0(X,2Y))eS and has UO'(X, ¥))<I(O(X,Y)). This contra-
diction shows that /(8)=0. J , '
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COROLLARY 6.13. Let R be an integral domain containing a field F of
characteristic zero.

(1) R is nearly Priifer if and only if R is Priifer.

(2.) R is nearly Bézout if and only if R is Priifer and C(R) is torsion.
(3) R is nearly Dedekind if and only if R is Dedekind.

(4) R is nearly PID if and only if R is Dedekind and C(R) is torsion.

Suppose that R contains a field F with char F=p>0. The proof of
Theorem 6.12 breaks down in two places. First, we need 1/ne F. But this
is easily handled by assuming that (n,p)=1. In fact, this assumption
is necessary. For let F be any field with char F=p>0 and take
R= F[[X2 X311 Then (X%, X°)'=(X¥' X¥'+1) whie (X3 X3, =
(X%'). The second place where the proof breaks down is finding a ke F
with k‘—k a unit in F (or just in R). Also, to apply the induction
hypothesis, we need that I, ,=I""'. Suppose that we take n with
1<n<p. Then (n,p)=1 and since 2<i<n—1<p—1, X=X =0 has at
most { solutions in Z,, so there is a k€ Z, with k' —k a unit in Z, and all
i<n—1 have these properties. Hence for n with 1 <r<p, I,=I". We state
this result as the next theorem.

THEOREM 6.14. Ler R be a commutative ring with identity containing a
field of characteristic p>0. Let I be an ideal of R. Then I'=I,=
({a" | aeI}) for all natural numbers n with 1 <n<p.

In Z[X, Y], (X, Y)'2(X, Y), for all n>1. So if R does not contain a
field, we may have [,,& I" for all n> 1. So suppose R contains a field F. If
char F=0, then I,=1[" for all n> 1 by Theorem 6.12. If char F=p >0, then
I,=I"for all » with 1<n<p by Theorem 6.14. But we may have [, < I”.
(For in F[X, Y], (X, Y)P"_.(Xﬂ X77Y, . Y27, V) = (X, Y),, )
It seems reasonable to conjecture that 1f (p, n)=1, then I"=1,. But
even - this need not be true. For in Z,[X, ¥] we have (X, Y)’'=
(X3, XY, XY?, ¥?), while it may be verified that (X, ¥);=(X> X*Y+
XY%4 Y.

However, if char F =2 and F has more than two elements then
(X, Y)3=(X, Y)* in F[X, Y]. For then there is an element /& F with > 1.
Then PX?*Y+1PXY? and IX*Y+PXY?=X*(IX)+ X(IY) e (X, Y);.
(P=1)X*Ye(X, Y); and hence X?Ye(X, Y)s, so (X, ¥Y)*=(X, Y),. This
shows. that (a, #)* = (a, b), for any ring R containing a field F with either
char F>3 or char F=2 and F# Z,.
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=

Note added in progf. Two of the first author’s students, Rebecca Lewin and Kent Knopp
have continued the investigations of this paper. Lewin studied AGGCD-domains and nearly

GCD-domains and Knopp investigated the ideal /, and showed that nearly Bézout implies
almost Bézout, but not conversely.
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