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Abstract. Let D be an integral domain with quotient field K. Call D an

almost GCD domain (AGCD domain) if for all 0 6= a, b ∈ D, there is an

integer n = n(a, b) ≥ 1 such that anD ∩ bnD is principal. We say that D

is a locally AGCD domain (resp., strongly locally AGCD domain) if DM is

an AGCD domain for all maximal ideals M of D (resp., for all 0 6= a, b ∈ D,

there is an integer n = n(a, b) ≥ 1 such that anD ∩ bnD is locally principal).

In this paper, we study some ring-theoretic properties of locally and strongly

locally AGCD domains. Let X be an indeterminate over D. We use the ring

D+XnK[X] for an integer n ≥ 2 to give some examples of locally and strongly

locally AGCD domains.

0. Introduction

0.1. Motivation and Results. Let D be an integral domain and D∗ = D \ {0}.
Then D is called a GCD domain if aD ∩ bD is principal for all a, b ∈ D∗. As in
[33], we say that D is an almost GCD domain (AGCD domain) if for all a, b ∈ D∗,
there is an integer n = n(a, b) ≥ 1 such that anD ∩ bnD is principal. Clearly, a
GCD domain is an AGCD domain and a ring of fractions of an AGCD domain
is an AGCD domain. Also, it is known that if D is an AGCD domain, then
Clt(D) is torsion [7, Theorem 3.4]. Moreover, if D is integrally closed, then D is
an AGCD domain if and only if D is a PvMD with Clt(D) torsion [33, Theorem
3.9]. (Necessary definitions will be provided later.) An almost factorial domain is a
Krull domain with torsion divisor class group; hence, a Krull domain is an almost
factorial domain if and only if it is an AGCD domain.

As in [3], we say that D is a generalized GCD domain (GGCD domain) if aD∩bD
is invertible for all a, b ∈ D∗. A locally GCD domain D is an integral domain in
which DM is a GCD domain for all maximal ideals M of D. Hence, a locally GCD
domain is integrally closed, and D is a locally GCD domain if and only if aD ∩ bD
is locally principal for all a, b ∈ D∗ [13, Theorem 1.1]. Thus, a GGCD domain is
a locally GCD domain. Following [30], we say that D is an almost GGCD domain
(AGGCD domain) if for all a, b ∈ D∗, there exists an integer n = n(a, b) ≥ 1 such
that anD ∩ bnD is invertible. Clearly, if D is an AGGCD domain, then DM is
an AGCD domain for all maximal ideals M of D. The purpose of this paper is
to introduce and study two generalizations of AGCD domains. One of them is an
integral domain D such that DM is an AGCD domain for all maximal ideals M of
D. Such an integral domain will be called a locally AGCD domain. The other is
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an integral domain D in which, for all a, b ∈ D∗, there is an integer n = n(a, b) ≥ 1
such that anD ∩ bnD is locally principal. We will call this type of integral domain
a strongly locally AGCD domain (for short, s-locally AGCD domain).

Let M be a maximal ideal of D, and let 0 6= α, β ∈ DM . Then αDM = aDM

and βDM = bDM for some a, b ∈ D∗, and αnDM ∩ βnDM = anDM ∩ bnDM =
(anD ∩ bnD)DM for all integers n ≥ 1. Thus D is a locally AGCD domain if
and only if for all a, b ∈ D∗ and all maximal ideals M of D, there is an integer
n = n(a, b, M) ≥ 1 such that anDM ∩ bnDM is principal (cf. Theorem 2.2); and
D is an s-locally AGCD domain if and only if for all a, b ∈ D∗, there is an integer
n = n(a, b) ≥ 1 such that anDM ∩bnDM is principal for all maximal ideals M of D.
An invertible ideal is locally principal; hence we have the following implications.

GCD domain +3

®¶

GGCD domain +3

®¶

locally GCD domain

®¶
AGCD domain +3 AGGCD domain +3 s-locally AGCD domain

®¶
locally AGCD domain.

None of the implications is reversible except that we do not know an example of a
locally AGCD domain that is not an s-locally AGCD domain.

In this paper, we study some ring-theoretic properties of s-locally AGCD domains
and locally AGCD domains. Precisely, in Section 1, we first give examples of s-
locally AGCD domains that are neither AGGCD domains nor locally GCD domains.
We prove that the integral closure and flat overrings of an s-locally AGCD domain
are both s-locally AGCD domains. We also prove that an s-locally AGCD domain
D is a UMT domain if and only if D is an APvMD, if and only if D is an AGGCD
domain. In Section 2, we show that if D is a locally AGCD domain, then the
integral closure D̄ of D is a locally AGCD domain; and D is of finite t-character
if and only if D̄ is a PvMD of finite t-character. We prove that if D is of finite
character or if D is a PvMD, then D is a locally AGCD domain if and only if D is
an s-locally AGCD domain, if and only if D is an AGGCD domain. We also prove
that if D is integrally closed, then D is a locally AGCD domain if and only if the
polynomial ring D[X] over D is a locally AGCD domain. Finally, we prove that
if K is the quotient field of D, then D is a locally AGCD domain if and only if
D + XK[X] is a locally AGCD domain.

0.2. Definitions related to the t-operation. Let D be an integral domain with
quotient field K, and let F (D) be the set of all nonzero fractional ideals of D. For
A ∈ F (D), let A−1 = {x ∈ K | xA ⊆ D}; so A−1 ∈ F (D). Let Av = (A−1)−1 and
At =

⋃{Iv | I ⊆ A, I ∈ F (D), and I is finitely generated} for all A ∈ F (D). Hence
if ∗ = v or t, then the map A 7→ A∗ is a function from F (D) into F (D) such that
for all 0 6= x ∈ K and I, J ∈ F (D), (i) (xD)∗ = xD and (xI)∗ = xI∗, (ii) I ⊆ I∗
and I ⊆ J implies I∗ ⊆ J∗, and (iii) (I∗)∗ = I∗ (i.e., ∗ is a star operation as defined
in [25, p. 392]). Clearly, I ⊆ It ⊆ Iv, and if I is finitely generated, then It = Iv.
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An I ∈ F (D) is called a ∗-ideal if I∗ = I, while a ∗-ideal is a maximal ∗-ideal if it is
maximal among proper integral ∗-ideals of D. It is easy to see that if I ∈ F (D) is
invertible, then I = It = Iv; so aD = (aD)t = (aD)v for all a ∈ D∗. Let ∗-Max(D)
be the set of maximal ∗-ideals of D. It is well known that t-Max(D) 6= ∅ when
D is not a field; each maximal t-ideal is a prime ideal; and D =

⋂
P∈t-Max(D) DP .

However, this need not be true for v-Max(D) since a rank-one nondiscrete valuation
domain D has v-Max(D) = ∅. An I ∈ F (D) is said to be t-invertible if (II−1)t = D.
Let T (D) be the group of t-invertible fractional t-ideals of D under I ∗ J = (IJ)t,
and let Prin(D) be its subgroup of principal fractional ideals. Then the t-class
group Clt(D) of D is the abelian group Clt(D) = T (D)/Prin(D). Hence, if D is a
Krull domain, then Clt(D) is the usual divisor class group; and if D is a Dedekind
domain, then Clt(D) = Pic(D), the Picard group (or ideal class group) of D. For
a reference on the t-class group, see [9].

A Prüfer v-multiplication domain (PvMD) is an integral domain in which all
nonzero finitely generated ideals are t-invertible. We recall from [7] that D is an
almost valuation domain if for all a, b ∈ D∗, there exists an integer n = n(a, b) ≥ 1
such that either an|bn or bn|an. Following [7], we say that D is an almost Prüfer
domain (AP-domain) if for all a, b ∈ D∗, there exists an integer n = n(a, b) ≥ 1 such
that (an, bn) is invertible. As the t-operation analogue, D is said to be an almost
Prüfer v-multiplication domain (APvMD) if for all a, b ∈ D∗, there exists an integer
n = n(a, b) ≥ 1 such that (an, bn) is t-invertible. Clearly, D is an AP-domain (resp.,
APvMD) if and only if DM is an almost valuation domain for all maximal ideals
(resp., maximal t-ideals) M of D [7, Theorem 5.8] (resp., [31, Theorem 2.3]). Also,
almost valuation domain ⇒ AP-domain ⇒ AGGCD domain ⇒ APvMD.

1. s-Locally AGCD domains

Let D be an integral domain with quotient field K, X be an indeterminate over
D, and D[X] be the polynomial ring over D.

We begin this section with an interesting proposition that motivates the study
of the so-called s-locally AGCD domains. As we have already noted, AGGCD
domains are s-locally AGCD domains, while the next proposition shows that an
s-locally AGCD domain need not be an AGGCD domain.

Proposition 1.1. Let D be a locally GCD domain with charD = p 6= 0, and let
Rn = D + XnK[X] for an integer n ≥ 2.

(1) Rn is an AGCD domain if and only if D is an AGCD domain.
(2) Rn is not a locally GCD domain.
(3) For all α, β ∈ Rn, αpn

Rn ∩ βpn

Rn is locally principal. Thus Rn is an
s-locally AGCD domain.

(4) If D is not a GGCD domain (cf. [13, Corollary 3.6] for such an integral
domain), then Rn is not an AGGCD domain.

Proof. (1) This follows from [16, Corollary 2.12].
(2) This is an immediate consequence of the fact that a locally GCD domain is

integrally closed, but Rn is not integrally closed.
(3) Let P be a prime ideal of D, and let R = DP + XK[X] (note that DP = K

when P = (0)). Then DP , and so DP + XK[X], is a GCD domain [19, Corollary



4 D.F. ANDERSON, G. W. CHANG AND M. ZAFRULLAH

1.3]. Hence αR ∩ βR = hR for some h ∈ R. Note that αpn

R ∩ βpn

R = hpn

R [33,
Lemma 3.6]. Also note that since charD = p, then fpn ∈ DP + XnK[X] for all
f ∈ R. Thus, αpn

(DP + XnK[X]) ∩ βpn

(DP + XnK[X]) = hpn

(DP + XnK[X]).
Let M be a maximal ideal of Rn, and let P = M ∩D. Then (Rn)M = (DP +

XnK[X])MD\P
, and thus αpn

(Rn)M ∩ βpn

(Rn)M is principal. Hence, αpn

Rn ∩
βpn

Rn is locally principal.
(4) Assume that D is not a GGCD domain, but Rn is an AGGCD domain.

Then D is an AGGCD domain [15, Corollary 2.13], and hence D is a PvMD [31,
Theorem 2.4] because an AGGCD domain is an APvMD and a locally GCD domain
is integrally closed. Thus, D is a GGCD domain since a locally GCD domain is a
PvMD if and only if it is a GGCD domain [13, Corollary 1.9], a contradiction. ¤

An almost Dedekind domain D is an integral domain such that DM is a PID
(DVR) for all maximal ideals M of D. Hence, an almost Dedekind domain is
locally factorial, and thus is a locally GCD domain. Clearly, D is a Dedekind
domain if and only if D is a Noetherian almost Dedekind domain.

Corollary 1.2. Let D be an almost Dedekind domain with quotient field K and
charD 6= 0, and let Rn = D + XnK[X] for an integer n ≥ 2. Then Rn is an
s-locally AGCD domain, but not a locally GCD domain. Moreover, if Pic(D) is
not torsion, then Rn is not an AGCD domain.

Proof. The first result follows directly from Proposition 1.1. For the second result,
note that Pic(D) is a subgroup of Clt(Rn). Hence, Clt(Rn) is not torsion, and
thus Rn is not an AGCD domain [7, Theorem 3.4]. ¤

By Proposition 1.1, if D is a locally GCD domain with charD 6= 0, then D +
XnK[X] is an s-locally AGCD domain for n ≥ 2, but not a locally GCD domain.
Moreover, if D is not an AGCD domain, then D + XnK[X] is not an AGCD
domain for n ≥ 2. Hence, if D is a Dedekind domain such that Pic(D) is not
torsion and charD 6= 0 (see [17, Theorem 7] or [23, Theorem 14.10] for such a
Dedekind domain), then D +XnK[X] for n ≥ 2 is an s-locally AGCD domain that
is neither a locally GCD domain nor an AGCD domain. Also, if D is not a GGCD
domain (see [13, Corollary 3.6] for such an integral domain), then D +XnK[X] for
n ≥ 2 is an s-locally AGCD domain that is not an AGGCD domain.

Lemma 1.3. Let D ⊆ R be a root extension of integral domains such that R is
root closed, and let a, b, c ∈ D∗. If aD ∩ bD = cD, then aR ∩ bR = cR.

Proof. Note that aD ∩ bD = cD ⇔ c
aD ∩ c

bD = ( c
a · c

b )D; aR ∩ bR = cR ⇔
c
aR ∩ c

bR = ( c
a · c

b )R; and c
a , c

b ∈ D; so it suffices to show that aR ∩ bR = abR
under the assumption that aD ∩ bD = abD. Obviously, abR ⊆ aR ∩ bR. For the
reverse containment, let x ∈ aR ∩ bR. Then x = ar = bs for some r, s ∈ R, and
since R is a root extension of D, there is an integer n ≥ 1 such that rn, sn ∈ D.
Hence, xn = anrn = bnsn ∈ anD ∩ bnD = anbnD because (a, b)v = D implies
(an, bn)v = D, and so xn = anbnβ for some β ∈ D. Thus ( x

ab )
n = β ∈ D ⊆ R, and

since R is root closed, x
ab ∈ R or x ∈ abR. Therefore, aR ∩ bR ⊆ abR. ¤

Let D̄ be the integral closure of D in K. Although the authors of [7] didn’t
name an s-locally AGCD domain, the notion of s-locally AGCD domains was first



LOCALLY AGCD DOMAINS 5

studied in [7, Proposition 3.2]. There, it was shown that if D is an s-locally AGCD
domain, then D̄ is a root extension of D.

Proposition 1.4. Let D be an s-locally AGCD domain with integral closure D̄.
(1) D̄ is a root extension of D, and hence D is integrally closed if and only if

D is root closed.
(2) D̄ is an s-locally AGCD domain.
(3) A flat overring R of D is an s-locally AGCD domain.

Proof. (1) [7, Proposition 3.2].
(2) Let 0 6= x, y ∈ D̄. Then, by (1), there is an integer k ≥ 1 such that

xk, yk ∈ D, and since D is an s-locally AGCD domain, xmkD ∩ ymkD is locally
principal for some integer m = m(xk, yk) ≥ 1. Let M be a maximal ideal of D̄, and
let M ∩D = P . Then P is a maximal ideal of D such that M is the unique maximal
ideal of D̄ lying over P by (1); so D̄M = D̄D\P and D̄M is a root extension of DP .
Note that (xmkD ∩ ymkD)DP = xmkDP ∩ ymkDP = cDP for some c ∈ D, and
hence, by Lemma 1.3, xmkD̄M ∩ ymkD̄M = (xmkD̄ ∩ ymkD̄)D̄M = cD̄M . Thus,
xmkD̄ ∩ ymkD̄ is locally principal.

(3) Let 0 6= a, b ∈ R. Then there is a 0 6= d ∈ D such that da, db ∈ D; so
I = dnanD ∩ dnbnD is locally principal for some integer n = n(da, db) ≥ 1. Let M
be a maximal ideal of R. Since R is flat over D, RM = DM∩D [32, Theorem 2], and
so IRM = IDM∩D is principal. Thus, (anR ∩ bnR)RM = 1

dn IRM is principal. ¤

A nonzero prime ideal Q of D[X] is an upper to zero in D[X] if Q ∩ D = (0),
and we say that D is a UMT-domain if every upper to zero in D[X] is a maximal
t-ideal. It is well known that D is an integrally closed UMT-domain if and only if
D is a PvMD [27, Proposition 3.2]. As in [34], we say that D is conditionally well
behaved if MDM is a t-ideal of DM for all maximal t-ideals M of D.

We know that an APvMD is a UMT-domain [31, Theorem 3.8], and since an
AGGCD domain is an APvMD, an AGGCD domain is also a UMT-domain. Thus,
an AGCD domain is a UMT-domain (cf. [10, Lemma 3.1]), while an s-locally
AGCD domain need not be a UMT-domain. For example, let D be a locally GCD
domain that is not a PvMD (see [13, Example 3.11] for such an integral domain).
Then D is not a UMT domain, and thus a locally GCD domain (so also an s-locally
AGCD domain) need not be a UMT domain. The next result is the s-locally AGCD
domain analogue of [13, Corollary 1.9] that a locally GCD domain D is a PvMD if
and only if D is a GGCD domain.

Proposition 1.5. The following statements are equivalent for an s-locally AGCD
domain D.

(1) D is a UMT domain.
(2) D is conditionally well behaved.
(3) D is an APvMD.
(4) D is an AGGCD domain.

Proof. (1) ⇒ (2) This follows from [22, Theorem 1.5].
(2) ⇒ (3) Let a, b ∈ D∗. Then anD ∩ bnD is locally principal for some integer

n = n(a, b) ≥ 1. Note that anD ∩ bnD = anbn(an, bn)−1; so for every maximal
t-ideal M of D, ((an, bn)DM )−1 = (an, bn)−1DM is principal. Thus, ((an, bn)DM )v
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is principal, and since MDM is a t-ideal of DM by assumption, (an, bn)DM is
principal. This means that DM is an almost valuation domain, and hence D is an
APvMD.

(3)⇒ (4) Let a, b ∈ D∗. Since D is an APvMD, there is an integer n = n(a, b) ≥ 1
such that (an, bn) is t-invertible. Also, since D is an s-locally AGCD domain,
ankD ∩ bnkD is locally principal for some integer k = k(an, bn) ≥ 1. Note that
((an, bn)k)t = (ank, bnk)t [7, Lemma 3.3]; so (ank, bnk), and thus ankD ∩ bnkD, is
t-invertible. Hence, ankD ∩ bnkD is invertible [2, Theorem 2.1].

(4) ⇒ (1) This is clear by the comments before the proposition. ¤

Recall that D is said to be of finite t-character if every nonzero nonunit of D is
contained in only a finite number of maximal t-ideals of D. It is known that integral
domains for which t = v (e.g., Noetherian domains) are of finite t-character [26,
Theorem 1.3] and the polynomial ring over an integral domain of finite t-character
is of finite t-character ([28, Proposition 4.2] or [5, Corollary 3.4]).

Corollary 1.6. Let D be an integral domain of finite t-character. Then D is an
s-locally AGCD domain if and only if D is an AGGCD domain.

Proof. An AGGCD domain is always an s-locally AGCD domain. Conversely, if
D is of finite t-character, then D is conditionally well behaved [5, Theorem 1.1].
Thus, the result follows directly from Proposition 1.5. ¤

2. Locally AGCD domains

We say that an integral domain D is a locally AGCD domain if DM is an AGCD
domain for all maximal ideals M of D. Hence, AGCD domains, locally GCD
domains, and s-locally AGCD domains are locally AGCD domains.

Let D be a Dedekind domain with Pic(D) not torsion (see, for example, [17,
Theorem 7] or [23, Theorem 14.10] for such a Dedekind domain). Then D is a
locally factorial domain (hence locally GCD domain), but D is not an AGCD
domain because the t-class group (Picard group) of an AGCD domain is torsion.
Next, note that a locally GCD domain is integrally closed while an AGCD domain
does not have to be integrally closed. We begin this section with an example of
integrally closed AGCD domains that are not locally GCD domains.

Example 2.1. Let D be a PID, p ∈ D be a prime element, m ≥ 2 be an integer,
X be an indeterminate over D, and R = D[X; pm

X ]. Then R is an integrally closed
AGCD domain that is not a locally GCD domain.

Proof. Since D is a PID (and hence a Krull domain), R is a Krull domain [4,
Theorem 8], but R is not a locally GCD domain [4, Theorem 9] because pmDpD is
not a prime ideal. Also, note that Clt(R) = Z/mZ [4, Theorem 18], and so Clt(R)
is torsion. Hence, as a Krull domain is a PvMD, R is an integrally closed AGCD
domain. ¤

We next give a nice characterization of locally AGCD domains.

Theorem 2.2. The following statements are equivalent for an integral domain D.
(1) D is a locally AGCD domain.
(2) DP is an AGCD domain for all prime ideals P of D.
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(3) For all a, b ∈ D∗ and for all maximal ideals M of D, there exists an integer
n = n(a, b,M) ≥ 1 such that anDM ∩ bnDM is principal.

Proof. (1) ⇒ (2) This follows from the fact that a ring of fractions of an AGCD
domain is an AGCD domain.

(2) ⇒ (3) Let a, b ∈ D∗ and M be a maximal ideal of D. Then DM is an
AGCD domain by (2), and hence there is an integer n = n(a, b) ≥ 1 such that
(anD ∩ bnD)DM = anDM ∩ bnDM is principal. Clearly, n also depends on M .

(3) ⇒ (1) Let M be a maximal ideal of D, and let 0 6= α, β ∈ DM . Then as
α = c

s and β = d
t for some c, d ∈ D and s, t ∈ D\M , we have that αDM = cDM

and βDM = dDM . Note that by (3), there is an integer n = n(c, d, M) ≥ 1 such
that cnDM ∩ dnDM = (cnD ∩ dnD)DM is principal. Thus, αnDM ∩ βnDM is
principal. ¤

Corollary 2.3. Let D be an integral domain with integral closure D̄ such that
D[X] ⊆ D̄[X] is a root extension (e.g., D is integrally closed). If D is a locally
AGCD domain, then D[X] is a locally AGCD domain.

Proof. Let M be a maximal ideal of D[X], and let P = M ∩ D. Then DP is an
AGCD domain by Theorem 2.2, D̄D\P is the integral closure of DP , and DP [X] ⊆
D̄D\P [X] is a root extension. Hence, DP [X] is an AGCD domain [6, Theorem 3.4],
and thus D[X]M = DP [X]MD\P

is an AGCD domain. ¤

Corollary 2.4. Let D be a locally AGCD domain. If R is a flat overring of D
(e.g., a fraction ring of D), then R is a locally AGCD domain.

Proof. Let Q be a maximal ideal of R, and let P = Q ∩ D. Then RQ is an
AGCD domain because RQ = DP [32, Theorem 2] and DP is an AGCD domain
by Theorem 2.2. ¤

We next give the locally AGCD domain analogue of [33, Theorem 3.4] that the
integral closure of an AGCD domain is an AGCD domain.

Corollary 2.5. Let D be a locally AGCD domain with integral closure D̄.
(1) D̄ is a locally AGCD domain.
(2) If D is of finite t-character, then D is an APvMD.
(3) D is of finite t-character if and only if D̄ is a PvMD of finite t-character.
(4) D is integrally closed if and only if DM is a PvMD with Clt(DM ) torsion

for all maximal ideals M of D.

Proof. (1) Let M be a maximal ideal of D̄, and let P = M ∩ D. Then DP is an
AGCD domain by Theorem 2.2, D̄D\P is the integral closure of DP , and D̄M =
(D̄D\P )MD\P

. Hence, D̄D\P is an AGCD domain [33, Theorem 3.4], and thus D̄M

is an AGCD domain.
(2) Let P be a maximal t-ideal of D. Then DP is an AGCD domain by Theorem

2.2 and PDP is a t-ideal of DP [5, Theorem 1.1]. Hence, DP is an almost valuation
domain [7, Theorem 5.6]. Thus, D is an APvMD [31, Theorem 2.3].

(3) By (2) and [31, Theorem 3.6], we may assume that D̄ is a PvMD. Let M be
a nonzero prime ideal of D̄, and let P = M ∩ D. Then DP is an AGCD domain
and D̄D\P is the integral closure of DP . Hence, D̄D\P is a root extension of DP ,
and so MD̄D\P is the unique prime ideal of D̄D\P lying over PDP . Thus, M is the
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unique prime ideal of D̄ that contracts to P ; whence it suffices to show that M is
a t-ideal of D̄ if and only if P is a t-ideal of D. (This implies that M is a maximal
t-ideal if and only if P is a maximal t-ideal.)

Assume that M is a t-ideal of D̄, and note that D̄ is a PvMD. Hence MD̄D\P is
a t-ideal of D̄D\P , and since DP is an AGCD domain and MD̄D\P ∩DP = PDP ,
we have that PDP is a t-ideal of DP (see the proof of [20, Proposition 3.1(b)]).
Thus, P = PDP ∩D is a t-ideal of D. Conversely, assume that P is a t-ideal of D.
Then D̄D\P is a Prüfer domain by [22, Theorem 1.5] and [31, Theorem 3.8], and so
MD̄D\P is a t-ideal of D̄D\P . Hence, M = MD̄D\P ∩ D̄ is a t-ideal of D̄.

(4) Clearly, D is integrally closed if and only if DM is integrally closed for all
maximal ideals M of D. Thus, the result follows since D is an integrally closed
AGCD domain if and only if D is a PvMD with Clt(D) torsion [33, Theorem
3.9]. ¤

An integral domain D is said to be of finite character if every nonzero nonunit
of D is contained in only a finite number of maximal ideals of D. It is clear that
AGGCD domains are locally AGCD domains. The next result shows that if D is of
finite character, then D is a locally AGCD domain if and only if D is an AGGCD
domain. This result is the locally AGCD domain analogue of [5, Corollary 1.3] that
if D is of finite t-character, then D is a locally GCD domain if and only if D is a
GGCD domain. (Also, see Corollary 1.6.)

Corollary 2.6. The following statements are equivalent for an integral domain D
of finite character.

(1) D is a locally AGCD domain.
(2) D is an s-locally AGCD domain.
(3) D is an AGGCD domain.

Proof. (1) ⇒ (2) Assume that D is a locally AGCD domain. Let a, b ∈ D∗,
and let I = aD ∩ bD. Then there are only finitely many maximal ideals of
D containing I, say, M1, . . . ,Mk, because D is of finite character. By assump-
tion and Theorem 2.2, there is an integer ni = ni(a, b, Mi) ≥ 1 for i = 1, ..., k
such that aniDMi ∩ bniDMi is principal. Hence, if we let n = n1 · · ·nk, then
anDMi ∩ bnDMi = (aniDMi ∩ bniDMi)

n
ni is principal, where the equality holds be-

cause xD∩ yD = dD ⇔ ( d
x , d

y )v = D ⇔ ( dm

xm , dm

ym )v = D ⇔ xmD∩ ymD = dmD for
all integers m ≥ 1 and x, y, d ∈ D∗. Also, it is clear that if M is a maximal ideal of
D with M 6= Mi for i = 1, . . . , k, then anDM ∩ bnDM = DM . Hence, anD ∩ bnD
is locally principal.

(2) ⇒ (3) Let a, b ∈ D∗. Then there is an integer n = n(a, b) ≥ 1 such that
anD ∩ bnD is locally principal. Also, since D is of finite character, anD ∩ bnD is
invertible [8, Theorem 4].

(3) ⇒ (1) Clear. ¤

An integral domain D is called a v-finite conductor domain if (a) ∩ (b) is a v-
ideal of finite type for all a, b ∈ D∗. Clearly, PvMDs, Mori domains, Noetherian
domains, and GCD domains are v-finite conductor domains. (A Mori domain is an
integral domain that satisfies the ascending chain condition on integral v-ideals.)
We next prove that a v-finite conductor locally AGCD is an AGGCD domain. For
this, we first need a lemma whose proof is similar to that of [7, Lemma 5.7].
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Lemma 2.7. Let x, y ∈ D, and assume that for every maximal ideal M , there
is an integer nM ≥ 1 such that ((xnM ) ∩ (ynM ))DM = aMDM for some aM ∈
(xnM ) ∩ (ynM ) and fM ((xnM ) ∩ (ynM )) ⊆ aMD for some fM ∈ D\M. Then there
is an integer N ≥ 1 such that (xN ) ∩ (yN ) is locally principal.

Proof. Let M be a maximal ideal of D, and let DfM
= D[ 1

fM
]. Then ((xnM ) ∩

(ynM ))DfM = aMDfM since fM ∈ D\M , and thus ((xnM k) ∩ (ynM k))DfM =
ak

MDfM
for every integer k ≥ 1 [33, Lemma 3.6]. Clearly, D = ({fM ′ | M ′ is a max-

imal ideal of D}), and hence D = (f1, ..., fm) for some maximal ideals M1, ..., Mm

with fi = fMi
∈ D\Mi. So if we let N = nM1 · · ·nMm

, then ((xN ) ∩ (yN ))Dfi
=

a
N

nMi

Mi
Dfi

. Since (f1, ..., fm) = D * M , we have fi /∈ M for some i. Thus,
((xN ) ∩ (yN ))DM is principal for every maximal ideal M of D. ¤

Proposition 2.8. The following statements are equivalent for a v-finite conductor
domain D (e.g., D is a PvMD).

(1) D is a locally AGCD domain.
(2) D is an s-locally AGCD domain.
(3) D is an AGGCD domain.

Proof. (1) ⇒ (3) Let x, y ∈ D∗. It suffices to show that there is an integer N ≥ 1
such that (xN ) ∩ (yN ) is locally principal because D a v-finite conductor domain
implies that (xN ) ∩ (yN ) is invertible [2, Theorem 2.1]. Let M be a maximal ideal
of D. Then there is an integer nM ≥ 1 such that ((xnM ) ∩ (ynM ))DM = aMDM

for some aM ∈ (xnM )∩ (ynM ). Since (xnM )∩ (ynM ) is of finite type by assumption,
there is a finitely generated ideal I of D such that (xnM ) ∩ (ynM ) = Iv. Hence,
DM = (aMDM : ((xnM )∩ (ynM ))DM ) = (aMDM : (IvDM )v) = (aMDM : (IDM )v)
= (aMDM : IDM ) = (aMD : I)DM = (aMD : Iv)DM = (aMD : ((xnM ) ∩
(ynM )))DM , which shows that there is an fM ∈ D\M such that fM ((xnM ) ∩
(ynM )) ⊆ aMD. Thus, by Lemma 2.7, there is an integer N ≥ 1 such that (xN ) ∩
(yN ) is locally principal.

(3) ⇒ (2) ⇒ (1) Clear. ¤

We next show that if D is integrally closed, then D is a locally AGCD domain
if and only if D[X] is a locally AGCD domain. To do this, we first need the notion
of Nagata rings. Let S = {f ∈ D[X] | c(f) = D}, where c(f) is the ideal of
D generated by the coefficients of f . Then S is a saturated multiplicative subset
of D[X], and hence D[X]S is an overring of D[X]. The ring D[X]S , called the
Nagata ring of D, is denoted by D(X). It is known that D is a Prüfer domain
if and only if D(X) is a Prüfer domain [11, Theorem 4], if and only if D(X) is
a Bezout domain [12, Theorem 2.2]. Since a Krull domain is a PvMD, the next
lemma also generalizes [23, Proposition 8.9] that if D is a quasi-local Krull domain,
then Clt(D) = Clt(D(X)).

Lemma 2.9. Let D be an integral domain.
(1) D is a PvMD if and only if D(X) is a PvMD.
(2) If D is a quasi-local PvMD, then Clt(D) = Clt(D(X)).

Proof. (1) (⇒) Let Q be a maximal t-ideal of D(X). Then Q ∩ D[X] is a prime
t-ideal of D[X]; so if Q ∩D 6= (0), then Q = (Q ∩D)(X) and Q ∩D is a maximal



10 D.F. ANDERSON, G. W. CHANG AND M. ZAFRULLAH

t-ideal of D (cf. [27, Proposition 1.1]). Hence, DQ∩D is a valuation domain, and
thus D(X)Q = DQ∩D(X) is a valuation domain. Next, assume that Q ∩D = (0).
Then D(X)Q = K[X]Q∩K[X], and thus D(X)Q is a rank-one DVR. Hence, D(X)
is a PvMD.

(⇐) If P is a maximal t-ideal of D, then P (X) is a prime t-ideal of D(X) [29,
Proposition 2.2]. Hence, D(X)P (X) = D[X]P [X] is a valuation domain, and since
D[X]P [X] ∩K = DP , DP is a valuation domain.

(2) For a t-invertible t-ideal J of an integral domain R, let [J ] ∈ Clt(R) be the
equivalence class of T (R) containing J . We claim that ϕ : Clt(D) → Clt(D(X))
defined by ϕ([I]) = [ID(X)] is a group isomorphism. It is routine to check that ϕ is
a group homomorphism. Let M be the maximal ideal of D, and let I be a nonzero
ideal of D such that ID(X) is principal. Then D(X) = (ID(X))(ID(X))−1 =
(ID(X))(I−1D(X)) = (II−1)D(X), and hence II−1 * M . Thus, I is invertible,
and since D is quasi-local, I is principal. Hence, ϕ is injective. Finally, let A be an
ideal of D[X] and S = {f ∈ D[X] | c(f) = D} such that AS is t-invertible. Then
there is a nonzero finitely generated ideal B of D[X] such that (AS)t = (BS)t.
Note that D[X] is a PvMD; so B is t-invertible, and since Clt(D) = Clt(D[X]) [24,
Theorem 3.6], there is a t-invertible t-ideal I of D and 0 6= u ∈ K(X) such that
Bt = uID[X]. Thus, ϕ([I]) = [(BS)t], and so ϕ is surjective. ¤

Corollary 2.10. Let D be an integrally closed domain. Then D is a locally AGCD
domain if and only if D[X] is a locally AGCD domain.

Proof. (⇒) Corollary 2.3.
(⇐) Let M be a maximal ideal of D. Then M [X] is a prime ideal of D[X],

and hence D[X]M [X] = DM (X) is an AGCD domain by Theorem 2.2. Note that
DM (X) is an integrally closed quasi-local domain; so DM (X) is a PvMD with
Clt(DM (X)) torsion by Corollary 2.5. Thus, by Lemma 2.9, DM is a PvMD with
Clt(DM ) torsion, and so DM is an AGCD domain [33, Theorem 3.9]. ¤

We next give the locally AGCD domain analogue of [1, Proposition 1] that if D
is a locally GCD domain, then D is a Prüfer domain if and only if M((a) ∩ (b)) =
Ma ∩Mb for all maximal ideals M of D and all a, b ∈ D∗.

Proposition 2.11. The following statements are equivalent for a locally AGCD
domain D.

(1) D is an almost Prüfer domain.
(2) For all maximal ideals M of D and all a, b ∈ D∗, there exists an integer

n = n(a, b,M) ≥ 1 such that M(anD ∩ bnD) = Man ∩Mbn.
(3) For all a, b ∈ D∗, there exists an integer n = n(a, b) ≥ 1 such that M(anD∩

bnD) = Man ∩Mbn for all maximal ideals M of D.
(4) D is an AGGCD domain and for all a, b ∈ D∗, there exists an integer

n = n(a, b) ≥ 1 such that (an, bn)v = (an, bn).

Proof. (1) ⇒ (3) Suppose that D is an almost Prüfer domain and M is a maximal
ideal of D. Then (an, bn) is invertible for some integer n = n(a, b) ≥ 1, and so
(an, bn)DM is anDM or bnDM [25, Proposition 7.4]. Hence, if M ′ is a maximal
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ideal of D, then

(M(anD ∩ bnD))DM ′ = MDM ′ · (anDM ′ ∩ bnDM ′)

= (MDM ′ · anDM ′) ∩ (MDM ′ · bnDM ′)

= (Man)DM ′ ∩ (Mbn)DM ′

= (Man ∩Mbn)DM ′ ,

where the second equality follows because MDM ′ = DM ′ when M 6= M ′. Thus,
M(anDM ∩ bnDM ) = Man ∩Mbn.

(3) ⇒ (2) Clear.
(2) ⇒ (1) Let a, b ∈ D∗. We show that (aj , bj) is invertible for some integer

j ≥ 1. By [7, Lemma 5.7], we may assume that D is quasilocal with maximal ideal
M ; so D is an AGCD domain. Let c ∈ D∗ and n ≥ 1 be an integer such that
(an, bn)v = cD. Replacing (a, b) by (an/c, bn/c), we may assume that (a, b)v = D,
that is, aD ∩ bD = abD. By hypothesis, there exists an integer m ≥ 1 such
that M(amD ∩ bmD) = Mam ∩ Mbm. Again, replacing (a, b) by (am, bm), we
may assume that m = 1. Suppose that (a, b) is not invertible. By [1, Lemma 2],
aD∩bD = aM ∩bM = M(aD∩bD), which gives the contradiction M = D because
aD ∩ bD = abD.

(1) ⇔ (4) Note that D is an AGGCD domain if and only if for all a, b ∈ D∗,
there is an integer n = n(a, b) ≥ 1 such that (an, bn)v is invertible [30, Theorem
3.2]. Thus, the result follows because an invertible ideal is a t-ideal. ¤

Let S be a multiplicative subset of D∗ and n be a positive integer. We next
study the prime ideals of the ring D + XnDS [X] that intersect S. This result is
already known for the ring D + XDS [X] ([21, Lemma 3.7], [19, Theorem 2.1], and
[5, Lemma 2.1]).

Lemma 2.12. Let S be a multiplicative subset of D∗, P be the set of prime ideals
of D intersecting S, n be a positive integer, and Rn = D + XnDS [X].

(1) If A is an ideal of Rn such that A ∩ S 6= ∅, then A = (A ∩ D)Rn =
(A ∩D) + XnDS [X]. Moreover, At = (A ∩D)t + XnDS [X].

(2) {P + XnDS [X] | P ∈ P} is the set of prime ideals of Rn intersecting S.
(3) Let P ∈ P. Then P + XnDS [X] is a prime ideal (resp., maximal ideal,

prime t-ideal, maximal t-ideal) of Rn if and only if P is a prime ideal (resp.,
maximal ideal, prime t-ideal, maximal t-ideal) of D.

Proof. (1) Let s ∈ A ∩ S. Then, for every f ∈ DS [X], we have f
s ∈ DS [X], and so

Xnf = s ·Xn f
s ∈ A. Thus, (A ∩D) + XnDS [X] = A. Also, if g = a + Xnh ∈ A,

where a ∈ A∩D and h ∈ DS [X], then g ∈ (a, s)Rn. Hence, A ⊆ (A∩D)Rn. Thus,
if A ∩ S 6= ∅, then A = (A ∩D)Rn = (A ∩D) + XnDS [X].

Next, to show that At = (A ∩D)t + XnDS [X], we recall from [14, Lemma 2.1]
that if I is a nonzero finitely generated ideal of D, then (IRn)−1 = I−1Rn. Thus,
we have the result by an argument similar to the proof of [21, Lemma 3.7].

(2) and (3) Clearly, P is a prime ideal of D if and only if P + XnDS [X] is a
prime ideal of Rn. Hence, this follows directly from (1) above. ¤

Recall from [16, Corollary 2.12] (resp., [15, Corollary 2.14]) that if n ≥ 2, then
Rn = D + XnK[X] is an AGCD domain (resp., AGGCD domain) if and only if D
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is an AGCD domain (resp., AGGCD domain) and charD 6= 0. We next give the
locally AGCD domain analogue.

Proposition 2.13. Let D be an integral domain with quotient field K, and let
Rn = D + XnK[X] for an integer n ≥ 1.

(1) R1 is a locally AGCD domain if and only if D is a locally AGCD domain.
(2) If charD 6= 0, then the following statements are equivalent.

(a) D is a locally AGCD domain.
(b) Rn is a locally AGCD domain for some n ≥ 1.
(c) Rn is a locally AGCD domain for all n ≥ 1.

Proof. (1) (⇒) See the proof of ((b) ⇒ (a)) of (2) below.
(⇐) Let M be a maximal ideal of R1, and let P = M ∩ D. If P = (0), then

(R1)M = K[X]MD∗ , and since K[X] is a PID (thus an AGCD domain), (R1)M

is an AGCD domain. Next, if P 6= (0), then (R1)D\P = DP + XK[X]. Hence,
(R1)D\P is an AGCD domain [6, Corollary 3.11] because DP is an AGCD domain
by Theorem 2.2. Thus, (R1)M = ((R1)D\P )MD\P

is an AGCD domain.
(2) (a) ⇒ (c) An argument similar to the proof of Proposition 1.1(3) also shows

that if D is a locally AGCD domain, then Rn is a locally AGCD domain for all
n ≥ 1.

(c) ⇒ (b) Clear.
(b) ⇒ (a) Let P be a maximal ideal of D. Then M = P +XDS [X] is a maximal

ideal of Rn by Lemma 2.12 such that (Rn)D\P = DP + XnK[X] and (Rn)M =
((Rn)D\P )MD\P

. So, by replacing D + XnK[X] with DP + XnK[X], we may
assume that D is quasi-local with maximal ideal P . Let T = Rn \ (P + XnK[X]).
Then T = {a + Xnf | a is a unit in D and f ∈ K[X]}, and by (b), (Rn)T is
an AGCD domain. Let a, b ∈ D∗. Then there is an integer m ≥ 1 such that
am(Rn)T ∩ bm(Rn)T = g(Rn)T for some g = c + Xnh ∈ Rn with c ∈ D, and it is
routine to check that amD ∩ bmD = cD. Thus, D is an AGCD domain. ¤

We do not know an example of a locally AGCD domain that is not an s-locally
AGCD domain. In fact, in the proof of Proposition 2.8, as ((xnM ) ∩ (ynM ))DM =
aMDM , where aM ∈ (xnM ) ∩ (ynM ), we can take aM = sM xnM ynM

h , where sM ∈
D \M and h ∈ D is such that hDM = ((xnM , ynM )DM )v. But how we can manage
an fM ∈ D\M such that fM ((xnM )∩ (ynM )) ⊆ aMD, when (xnM )∩ (ynM ) is not of
finite type, is elusive at best. Of course, there are examples of locally GCD domains
that are not PvMDs (cf. [13, Example 3.11]) in which (x)∩ (y) is locally principal,
despite the fact that (x) ∩ (y) is not of finite type. So we end this paper with the
following question.

Question 2.14. Is there a locally AGCD domain that is not an s-locally AGCD
domain?
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