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Abstract. Let R be a commutative ring with 1 6= 0. We show that if ev-
ery prime ideal containing a proper ideal is principal (resp., invertible, finitely

generated locally principal), then I is a finite product of principal (resp., in-
vertible, finitely generated locally principal) prime ideals. Let R be an integral

domain and ∗ a finite character star operation on R. We show that if every

prime ∗-ideal containing a proper ∗-ideal I is ∗-invertible, then I is a finite
∗-product of ∗-invertible prime ∗-ideals and hence is ∗-invertible.

Let R be a commutative ring with 1 6= 0. It is well known that an ideal maximal
with respect to not being principal (resp., invertible, finitely generated) is prime [8,
Exercise 10, sec.1-1] (resp., [8, Exercise 36, sec.1-4], [8, Theorem 7]). A similar proof
shows that an ideal maximal with respect to not being finitely generated locally
principal is prime. In the case of an integral domain R and a finite character star
operation ∗, a similar proof shows that a nonzero ∗-ideal I maximal with respect to
not being ∗-invertible is a prime ∗-ideal [9, Proposition 2.1]. Necessary definitions
related to star operations will be provided below.

Now the set of non-principal (resp., non-invertible, non-(finitely generated lo-
cally principal), non-(finitely generated)) ideals containing a given non-principal
(resp., non-invertible, non-(finitely generated locally principal, non-(finitely gener-
ated)) ideal is inductive. So by Zorn’s Lemma a non-principal (resp., non-invertible,
non-(finitely generated locally principal, non-(finitely generated)) ideal is contained
in an ideal maximal with respect to this property which is necessarily prime. Stated
in another way this says that if every prime ideal containing an ideal is principal
(resp., invertible, finitely generated locally principal, finitely generated), then so is
I. In the case of a finite character star operation ∗ on an integral domain R we
have that the set of non-∗-invertible ideals containing a nonzero non-∗-invertible
ideal is inductive [9, Proposition 2.1]. So by Zorn’s Lemma, I is contained in a
∗-ideal maximal with respect to this property which is necessarily prime [9, Propo-
sition 2.1]. Put another way, if every prime ∗-ideal containing a nonzero ∗-ideal I
is ∗-invertible, then I is ∗-invertible.

The purpose of this paper is to give a stronger version of these results. For
example, instead of showing that if every prime ideal containing an ideal I is prin-
cipal, then I is principal we show that I is actually a product of principal prime
ideals. Similar results are given for cases in which some kind of locally principal
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property is involved. But first a brief introduction to star operations. Our termi-
nology is standard as in Gilmer’s [6, Sections 32 and 34] for star operations and as
in [8] for any other topics, and occasionally we would refer to [11]. We provide a
quick introduction to the star operations below.

Let R denote an integral domain with quotient field K and let F (R) be the set
of nonzero fractional ideals of R. A star operation ∗ on R is a function ∗ : F (R)→
F (R) such that for all A,B ∈ F (R) and for all 0 6= x ∈ K

(a) (x)∗ = (x) and (xA)∗ = xA∗,
(b) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B,
(c) (A∗)∗ = A∗.
We note that for A,B ∈ F (R) (AB)∗ = (A∗B)∗ = (A∗B∗)∗, and call it the

∗-product. A fractional ideal A ∈ F (R) is called a ∗-ideal if A = A∗ and a ∗-
ideal of finite type if A = B∗ where B is a finitely generated fractional ideal. Any
nonzero intersection of ∗-ideals for any star operation ∗ is again a star ideal. A star
operation ∗ is said to be of finite character or of finite type if A∗ =

⋃
{B∗ | 0 6= B

is a finitely generated subideal of A}. A star operation ∗ is of finite type if and only
if for each ideal A ∈ F (R), x ∈ A∗ implies that there is a finitely generated F ⊆ A
with x ∈ F ∗. For A ∈ F (R) define A−1 = {x ∈ K | xA ⊆ R} and call A ∈ F (R)
∗-invertible if (AA−1)∗ = R. Clearly every invertible ideal is a ∗-invertible ∗-ideal
for every star operation ∗. If ∗ is of finite character and A is ∗-invertible, then A∗ is
of finite type. The most well known examples of star operations are the v-operation
defined by A 7→ Av = (A−1)−1, the t-operation defined by A 7→ At =

⋃
{Bv | 0 6= B

is a finitely generated subideal of A} and the d-operation defined by A 7→ A for
all A ∈ F (R). By definition t is of finite character and so is d. Also, for every star
operation ∗ of finite character every ∗-invertible ∗-ideal is a t-invertible t-ideal, see
[11, Theorem 1.1]. Also let I, J be integral ideals with J ⊆ I, if I is ∗-invertible,
then there is an integral ideal B such that J∗ = (IB)∗. A domain R is a Krull
domain if and only if every nonzero ideal of R is t-invertible if and only if every
t-ideal of R is t-invertible [9, Theorem 2.5].

Theorem 1. (1) Let R be a commutative ring and let I be a proper ideal of R. If
every prime ideal of R containing I is principal (resp., invertible, finitely generated
locally principal), then I is a finite product of prime ideals that are principal (resp.,
invertible, finitely generated locally principal). (2) Let R be an integral domain, ∗
a finite character star operation on R and I a proper ∗-ideal of R. If every prime
∗-ideal containing I is ∗-invertible, then I is a finite ∗-product of ∗-invertible prime
∗-ideals. Hence if every prime ∗-ideal containing I is principal (resp., invertible),
then I is a finite product of principal (resp., invertible) prime ideals.

Proof. (1) It is enough to do the finitely generated locally principal case.
So suppose that I is a proper ideal such that every prime ideal containing I is
finitely generated locally principal. Suppose that I is not a finite product of finitely
generated locally principal ideals. Let S be the set of proper ideals containing I
and not a product of finitely generated locally principal ideals, ordered by inclusion.
Since a finite product of finitely generated locally principal prime ideals is finitely
generated, the set S is inductive. Hence by Zorn’s Lemma S has a maximal element
P. By hypothesis, P cannot be prime. So, let xy ∈ P with x, y /∈ P. Then (P, x) ) P
and (P : x) = (P : (P, x)) ! P. By the maximality, in S, of P, both (P, x) and
(P : x) are each either R or a finite product of finitely generated locsally principal
ideals. But P = (P, x)(P : x) as the equality holds locally. (Let M be a maximal
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ideal. Then (P, x)M is principal and PM ⊆ (P, x)M , so, PM = (P, x)M (PM :
(P, x)M ) = (P, x)M (PM : x

1 ) = (P, x)M (P : x)M = ((P, x)(P : x))M .) So P is a
finite product of finitely generated locally principal prime ideals, a contradiction.

(2) The proof is similar to that of (1). Suppose that I is not a ∗-product of
∗-invertible prime ∗-ideals. Then as above the set S = {J | J is a proper ∗-ideal
that is not a ∗-product of ∗-invertible prime ∗-ideals} is inductive and hence by
Zorn’s Lemma has a maximal element P which is a proper ∗-ideal. By hypothesis
P cannot be prime. So let xy ∈ P with x, y /∈ P. Then (P, x)∗ ) P. So either
(P, x)∗ = R or (P, x)∗ is a ∗-product of ∗-invertible prime ∗-ideals of R and hence
∗-invertible. So there is an ideal C of R with P = (C(P, x))∗ where (P, y) ⊆ C.
(We can take C = (P (P, x)−1, y).) Then C∗ ) P and so is R or a finite product of
∗-invertible prime ∗-ideals. But then P is a finite ∗-product of ∗-invertible prime
∗-ideals, a contradiction. �

Call a property p prime reductive (resp., ∗-prime reductive) if whenever every
prime ideal (resp., prime ∗-ideal) containing I satisfies property p, then so does
I. So, for example, Theorem 1 states that the property “I is a product of finitely
generated locally principal prime ideals” is prime reductive. It is easy to see that
if not p is inductive and an ideal maximal with respect to satisfying not p is prime,
then p is prime reductive.

Recall from the introduction that R is a Krull domain if and only if every
nonzero ideal and hence every t-ideal of R is t-invertible. Now Theorem 1 shows
that every t-ideal of a domain R is t-invertible if every prime t-ideal is t-invertible,
and conversely, a known result [9, Theorem 2.5], but ours is an easy corollary
as the remarks after [9, Theorem 2.5] show. Next, Theorem 1 indicates that in a
domain R, every t-ideal is invertible if all prime t-ideals are invertible, and obviously
conversely. Recall that an integral domain R is a locally factorial Krull domain if
and only if every t-ideal of R is invertible (see e.g. [5, Theorem 2.9]). Thus Theorem
1 characterizes locally factorial Krull domains as domains whose prime t-ideals are
invertible. Next Theorem 1 characterizes domains whose t-ideals are principal as
domains whose prime t-ideals are all principal. But as each minimal prime of a
principal ideal is a t-ideal, free of charge, we conclude that every nonzero prime
ideal contains a nonzero principal prime, which forces R to be a UFD. Indeed it is
customary to call a Krull domain a t-Dedekind domain and a UFD a t-PID and
Theorem 1 leaves no doubt about the terminology being correct.

Here is a “more constructive” alternative approach to (1) of Theorem 1.

Theorem 2. Let R be a commutative ring and I a proper ideal of R. Suppose
that every prime ideal containing I is principal (resp., invertible, finitely generated
locally principal) Then I is a product of principal (resp., invertible, finitely generated
locally principal) prime ideals and hence is principal (resp., invertible,finitely gen-
erated locally principal). Consequently if I is non-principal (resp., non-invertible,
non-(finitely generated locally principal)), then I is contained in a prime ideal that
is non-principal (resp., non-invertible, non-(finitely generated locally principal)).

Proof. Note that the case of finitely generated locally principal covers the
other cases, so providing a proof for this case would be sufficient. Let I be contained
in only finitely generated locally principal prime ideals. Pass to R = R/I. So every
prime ideal of R is finitely generated locally principal. By Cohen’s Theorem R is
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Noetherian. So (0) has a reduced primary decomposition (0) = Q1 ∩Q2 ∩ · · · ∩Qn

where each Qi is a Pi-primary ideal of R with I ⊆ Q. Since Pi is finitely generated
locally principal, Qi is a power of Pi [1, Lemma 1]. Moreover, for each maximal
ideal M of R, RM is a local Noetherian ring with each prime ideal principal. So
RM is DVR or SPIR. Thus the ideals Q1, Q2, ..., Qn are pairwise co-maximal and
hence, so are Q1, Q2, ..., Qn. So, I = Q1∩Q2∩ · · ·∩Qn = Q1Q2 · · · Qn is a product
of finitely generated locally principal prime ideals. �

The following well-known result is an immediate corollary to Theorem 1.

Theorem 3. Let R be a commutative ring with 1 6= 0. (1) Suppose that every
prime ideal of R is principal. Then R is a principal ideal ring (PIR) and hence a
finite direct product of PIDs and special principal ideal rings (SPIRs). (2) R is a
Dedekind domain if and only if every nonzero prime ideal of R is invertible. (3)
Suppose that every prime ideal of R is finitely generated locally principal, then every
ideal of R is finitely generated locally principal and is a product of prime ideals; so
R is a general ZPI ring and hence is a finite direct product of Dedekind domains
and SPIRs (The converse is obvious). (4) Let R be an integral domain and ∗ a
finite character star operation on R. Then every proper ideal of R is ∗-invertible if
and only if every nonzero prime ∗-ideal is ∗-invertible, if and only if every proper
∗-ideal is a ∗-product of ∗-invertible prime ∗-ideals. In case ∗ = t these conditions
are equivalent to R being a Krull domain.

Proof. (1) By Theorem 1, if every prime ideal is principal, then every ideal is
principal. We only need remark that a PIR is a finite direct product of PIDs and
SPIRs, for example, see [8, Exercise 8, sec.3-3].

(2) By Theorem 1, if every nonzero prime ideal is invertible every nonzero ideal
is invertible, so R is an integral domain. But a domain is Dedekind if and only if
every nonzero ideal is invertible.

(3) By definition a general ZPI ring is a ring in which every ideal is a product
of prime ideals. However a ring is a general ZPI ring if and only if it is a finite
direct product of Dedekind domains and SPIRs [6, Theorem 39.2].

(4) The first part follows from Theorem 1. For the ”In case” part note that
for a finite character star operation ∗, a ∗-invertible ∗-ideal is a t-invertible t-ideal
[11, Theorem 1.1]. So a domain satisfying the above conditions is at least a Krull
domain [9, Theorem 2.5]. For the ”if and only if every proper t-ideal is a t-product
of prime t-ideals” part see [3, Corollary 3.2]. �

Remark 1. Note that if ∗ = d, then ∗-invertible becomes invertible and in
this case (4) of Theorem 3 characterizes Dedekind domains. If we were to call
a domain characterized by (4) of Theorem 3 a ∗-Krull domain, then all ∗-Krull
domains lie between Krull domains and Dedekind domains. To identify a ∗-Krull
domain strictly between Krull domains and Dedekind domains is made difficult by
the fact that in a ∗-Krull domain ∗ = t, as can be gleaned from [11].

An alternate approach to (1) of Theorem 1 is to use the following result [2,
Theorem]: Suppose that every prime ideal minimal over an ideal I is finitely gen-
erated, then there are only a finite number of prime ideals minmal over I. Indeed
for (2) of Theorem 1 there is an alternate approach as well. This approach goes
via the following finite character ∗-operation analog of [2, Theorem]. The alternate
approach may appear later.



COHEN TYPE THEOREMS 5

Theorem 4. Let R be an integral domain, ∗ a star operation of finite type
defined on R and let I be a nonzero ideal of R with I∗ 6= R. If every minimal
prime ideal over I∗is a ∗-ideal of finite type, then I has only finitely many minimal
primes.

Proof. Without loss of generality we can assume that I is a ∗-ideal. Then
every prime ideal P minimal over I is a prime ∗-ideal [7, Proposition 1.1] and
by the hypothesis, P is of finite type. Now let S = {(P1P2 · · · Pn)∗ | Pi is a
prime ideal minimal over I}. If for some C = (P1P2 · · · Pn)∗ ∈ S we have C ⊆ I,
then every prime ideal minimal over I contains some Pi and so {P1, P2, ..., Pn} is
the set of minimal primes of I, where |{P1, P2, ..., Pn}| ≤ n. To establish that
one of the C ∈ S is indeed such that C ⊆ I we arrange for a contradiction via
Zorn’s Lemma. Let’s assume that C * I for any of the C in S and define T =
{J | J is a ∗-ideal with J ⊇ I and C * J for any C in S}. Then obviously T is
nonempty as I ∈ T, and as members of S are ∗-ideals of finite type we conclude
that the union of an ascending chain in T is in T. To see this let {Uα} be an
ascending chain in T and let (P1P2 · · · Pn)∗ = (x1, x2, ..., xr)

∗ and suppose that
(x1, x2, ..., xr)

∗ ⊆ ∪Uα. Then say x1 ∈ Uα1 , x2 ∈ Uα2 , ..., xr ∈ Ur where Uα1 ⊆
Uα2 ⊆ ...Uαr . This gives {x1, x2, ..., xr} ⊆ Uαr = ∪ri=1Uαi . But as each Uα is a ∗-
ideal (x1, x2, ..., xr)

∗ ⊆ Uαr
a contradiction establishing that T is indeed inductive.

So by Zorn’s Lemma, T must have a maximal element Q. It is easy to show, as
we demonstrate below, that Q is a prime ideal and so must contain a minimal
prime P containing I. By the condition P must be a ∗-ideal of finite type and
hence must be in S and this contradicts Q being in T. For the proof that Q is
a prime, suppose that xy ∈ Q and that x, y /∈ Q. Now as Q is maximal in T ,
(Q, x)∗, (Q, y)∗ must violate the conditions defining T. Now as (Q, x)∗, (Q, y)∗ each
contain I the only violation would be that each of (Q, x)∗, (Q, y)∗ contains a member
from S. Let C1, C2 ∈ S such that C1 ⊆ (Q, x)∗ and C2 ⊆ (Q, y)∗. But then
(C1C2)∗ ⊆ ((Q, x)∗(Q, y)∗)∗ = (Q, x)(Q, y))∗ ⊆ Q because xy belongs to Q. But
then Q belongs to T and (C1C2)∗ ∈ S a contradiction, establishing that Q is indeed
a prime ideal. �

Remark 2. Theorem 4 follows from Sahandi’s work in [10]. We have kept
our proof because it is direct, short and lets the reader continue without having to
struggle with new terminology. As Sahandi points out, El Baghdadi and Gabelli [4]
have proved Theorem 4 for ∗ = t, in the context of Prufer v-multiplication domains.

Acknowledgement. We thank G.W. Chang for carefully reading an earlier
script and for alerting us to Sahandi’s work [10].
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