What v-coprimality
can do for you

Muhammad Zafrullah

Idaho State University
Pocatello,Idaho

The purpose of this talk is to introduce the
audience to the notion of v-coprimality, its
applications, its morphs and its
generalizations.

Terminology and notation.
® D anintegral domain, K = gfiD)
@® (D) nonzero fractional ideals of D,
Al ={x e K: x4 < D},
Ay, = AT = ﬂ cD, ¢ € K\{0}
AccD
@ A function, * on F(D) is a star operation, 1f

for all a € K\{0}, and 4,B € F(D)
(1*) (@)* = (a), (ad)* = ad*, (2*) A < A* and
A B= A" € B* (3%) (4*)* = A4~.



Given 4,B € F(D), (4B)* = (A*B)* = (4*B*)*
(x-mult.)

To each * associate *, defined by

A*r = U{F* : 0 = Fis a D-submodule of 4}
for 4 € F(D). Call x of finite type if 4* = A%
for all 4 € F(D). The well known #-operation is
given by 7 = vy

The identity function 4 » 4 on F(D) is the

d-operation. If {D,} is a family of overrings of
D such that D = ND,, then the function 4 » 4
* = NAD,, is also a star operation.

A € F(D) is a x —ideal of finite type if

A = B*for some f.g. B € F(D) and 4 is

x —invertible if (4B)* = D for some B € F(D).
A t-invertible t-ideal is of finite type. D is a
Prufer v-multiplication domain(PVMD) if f.g.
nonzero ideals of D are t-invertible.

Good sources: Gilmer’s [Multiplicative Ideal
Theory, Marcel Dekker, New York, 1972 and
Anderson and Cook’s [Comm. Algebra
28(2000), 2461-2475 ]

@® Definition and basics



Two nonzero elements x,y € D are called

v-coprime if (x,y), = D (i.e. xD N yD = xyD
or equivalently (x,y)~! = D.) Obviously a
proper t-ideal cannot contain a pair of
v-coprime elements.

It is easy to establish that

(a,0), = D < ((a,b) < (c/d) = c|d(c
divides d)). So (x,y), # D < (there exist
c,d € Dsuchthatc | dbut(a,b) < c/d).
Ordinarily x,y € D are said to be coprime if x
and y have no nonunit common factor in D.
Note that x,y being v-coprime implies x, y
coprime but not conversely. (Try

(x,y)y = DA (x,y) < dD.) However,
negation of coprimality is much cleaner than
the negation of v-coprimality. On the other
hand in some integral domains, such as GCD
domains the notions of coprime and
v-coprime coincide. The v-coprimality
(which can be traced back to Gilmer’s work)
is the ring theoretic equivalent of
orthogonality in directed p.o. groups. [Given
G(D) = kD : k € K*}, forrD,sD € G(D)*
we have that »D V sD € G(D) translates to



rD N sD being principal and if

rD N sD = rsD then in G(D) we have

rDV sD = rDsD which forces »D and sD to
be disjoint in G(D). ]

® Let * be a general star operation and call
x,y € D x —coprime if (x,y)* = D. Since
A* < A, for every star operation *, we know
that x,y being *-coprime implies x, y
v-coprime but not conversely. ( x,y
d-coperime means (x,y) = (x,y)qs = D means
X,y are comaximal, but not all v-coprime
pairs are comaximal.) Obviosly no proper
x-ideal contains a pair of *-coprime
elements.

@® Proposition 1. For a general star operation *
on F(D) r,s € D are *-coprime tox € D if
and only if (rs,x)* = D.

Proof. Suppose » and s are *-coprime to x and

consider (x,7s)* = (x,rx,rs)*

= (x,(rx,rs)*)* = (x,r(x,8)*)* = (x,7)* = D.

Conversely suppose (rs,x)* = D and

consider

(x, )" = (x,rs,7)" = ((x,75)",7)" = (D,7)" =
@ Corollary 2. For a general star operation * on



F(D)

(1) (rx)* =D < (r,x)* =D & (#",x™) for
any natural m, n.

(i1) (r,x)* = Dand rlxy = rly

(1)) (r,x)* = D= D = D, N Dy

(av) (r,x)y =D o D =D, N D,

(v) Letx = £ € K\D, if s has a nonunit
factor that is *-coprime with 7 then x cannot
be integral over D.

Proof. (1) is direct, for (i1) note:

(r) = ()™ = (rm,xy)*=

((r,y(r,x)*)* = (r,y)*. For (1i1) let

(r,x)* = D and consider # € D, N Dx. Then
for some naturals m,n hr™,hx™ € D. So

D 2 (hr™, hx™)* = h(¥r™,x™)* = hD (by (1)).
For (iv) use (iii) to establish that

(r,x), =D = D = D, N D,. For the
converse assume D = D, N D, and note that
(r,x)* = (r,x)D, N (r,x)Dx = D. But

(r,x)* = D = (r,x)y, = D. For (v) use the
fact that if £ is integral over D then sjr” for
some # then use (i).

Using the similarity between disjoint and
v-coprime we can associate with each



multiplicative set S the set $* =

{t € D : (t,5), = D forall s € S} and state:
Proposition 3. For each multiplicative set .S of
D we have (1) S = (S*)*and (i1)

D = DgN Dg:.

Proof. (1) direct (though lengthy) and for (i1)
we can use the same argument as in the

above Corollary.

@ The notion of v-coprimality is useful when
we need to sift through factors in the
presence of properties weaker than the GCD
property. Recall that D is an almost
GCD(AGCD) domain (monoid) if for each
pair of nonzero elements x, y there is a natural
number # such that (x”,y"), is principal. (If
for each pair x,y, n = 1 we have the GCD
domain.) I introduced this notion in [Z,
Manmath,51(1985), 29-62], studied it further
in [AZ, AB domains, J. Alg 142(1991),
285-309 ] and in [DLMZ, J. Alg 245(2001)
no 1, 161-181 ]. Here is a brief
demonstration. ((D, M) t-local= D is local
with M a t-ideal.)

@® Proposition 4. Let (D, M) be a t-local AGCD



domain. For each pair x,y € D\{0} there is a
natural number # such that x"|y" or y”|x".

Proof. Let x,y € M\{0}. Since D is AGCD,
(x",y"), = dD for some natural » and

d € D. Or (i;—,?—’;—)v = D. Because M is a

t-ideal, £-, £~ cannot both be in M, forcing

one of 1‘5—, 2’;1- to be a unit and making d an
associate of x” or of y”.

@ The notion of v-coprimality has recently
played a decisive role in the study of almost
GCD monoids and in the study of the, so
called, inside factorial domains [AZ, AGCD
monoids, Semigroup Forum], [CAZ, inside
factorial weakly Krull domains], both can be
downloaded from my web page: www.
lohar.com. (The integral domain definitions
can be directly translated to the monoid case.)

Splitting (Multiplicative) Sets (The main
application)

@ Definition. A saturated multiplicative set .S of
D is a splitting multiplicative set if each
x € D\{O}can be written as x = ds where
s € S and d is v-coprime to every member of



S. It follows that if S is splitting then

§*= {t : (¢,5)y = D,s € S} called the
multiplicative complement of S is also a
splitting set. The notion of a splitting set
seems to make the following picture in my
mind.

T = S\ Hals
g J',: SJ’L \ Lf/m*[

You can make your own, but it will help to
make a picture.

Here are a few characterizations of splitting
sets whose proofs can be found in [AAZ,
splitting the t-class group, JPAA, 74(1991)]
Proposition 5. TFAE for a sturated
multiplicative set S.

1. S is a splitting set

2. < SD > the p.o. subgroup of G(D)
generated by {sD : s € S} is a cardinal
summand of G(D) the group of divisibility of
D, i.e., there is a p.o. subgroup H of G(D)
such that < SD > &. H = G(D)



3. If 4 1s a principal integral ideal of Ds then
A N D 1s a principal ideal of D. (prin. integ.
ideals of Dy contract to prin. ideals of D).

4. There is a multiplicative subset T of D
such that (a) each element d of D\{0} can be
written as d = st where s € Sand ¢ € T and
(b) any of the following equivalent conditions
holds:

(1) If s1¢1 = 5212, wheres; € Sand¢; € T
then s, = sjuand t, = tju~!, where

u,u”t € D. (d = st is unique upto assocs.)
(W) Ifd =st(s € S,t € T), then

dDs D = tD

(ii1) Foreach s € Sand ¢t € T, (s,1), = D.
(iv) Foreach? € T, tDs N D = tD.
Definition. A splitting set .S 1s an lcm splitting
set if in addition every element of S has an
lcm with every element of D.

Proposition 6. TFAE for a saturated
multiplicative set S :

1. S 1s lcm splitting

il. 51D N s2D is principal fors; € §

1. siDNs2D =sD fors, s; € S



1v. Dg: 1s a GCD domain.

Examples and applications of splitting sets

1. In a Noetherian (Krull) domain D the
saturation of every multiplicative set .S
generated by nonzro principal primes.

2. In any domain the set U(D) of units of D is
a splitting set and so is D\{0}.

3. Divisibility/Nagata type Theorems: Let S
be an lcm splitting set in D generated by prin.
primes. Then D is a UFD, satisfies ACC on
principal ideals, is atomic, or the elements of
D satisfy a property satisfied by finite
products of principal primes if and only if the
same holds for
Ds.:[AAZ,J.Alg.152(92)78-93]

4.Structure: D is a weakly factorial domain
(locally finite intersection of localizations at
height one primes such that every t-invertible
t-ideal of D is principal) if and only if every
saturated multiplicative set in D is a splitting
set. [AZ, PAMS,109(1990), 907-913]. (It
would be interesting to see a po group
equivalent of this result.)

5. Structure: Let S be a splitting set of D
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1. If P is a prime t-ideal, then P intersects S or
P intersects S* but not both. (Any prime ideal
that intersects both contains a v-coprime
pair.)

i1. If 4 is a nonzero ideal of D then

A:Ds = (ADs):.[AAZ, JPAA, 74(1991) ]. So,
P 1s a prime t-ideal of D if and only if PDy or
PDr 1s a prime t-ideal of the respective
quotient ring.

6. Nagata type theorem: If S is Icm splitting
and Ds is a GCD domaim (PVMD) then so is
D.

7. Recall that under t-multiplication the group
of t-invertible t-ideals modulo the group of
nonzero principal ideals is called the t-class
group, C/,(D). If S is a splitting then

Cly(D) = Cl{(Ds) x Cl;(Ds:).[AAZ, JPAA,
74(1991) ]

8. If D is a GCD domain and S a
multiplicative set of D then the D + XDg[X]
construction is a GCD domain if and only if S
is a splitting set of D [Z, JPAA, 50(1988)
93-107 ].

9. If § is a splitting set generated by primes in
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a Noetherian domain D, and if the integral
closure of D is a UFD then so is the integral
closure of D [DZ, PAMS 130 (2002), no. 6,
1639-1644] |

@ Splitting sets originated in an effort to
produce generalizations of the following
theorem of Nagata: Let D be Noetherian and
let S be a multiplicative set of D generated by
prime elements of D, if Dy is a UFD then so
is D. They first appeared in Gilmer and
Parker[ Michigan Math. J. 21 (1974), 65-86]
as UF sets, which can now be described as
splitting sets generated by height one primes
and as lcm splitting sets. (Samuel in his Tata
notes No 30, 1964 on unique factorization
domains had restated Nagata’s theorem for
Krull domains.) Then Mott and
Schexnayder[Krelle’s Joutnal,
283/284(1976), 388-401] gave them the
proper setting, which also means that a
splitting set splits the group of divisibilty of
the domain into a cardinal product of two
subgroups.

@® The success with the splitting sets led us to
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the notion of t-splitting sets.

t-Splitting Sets. A multiplicative set S of D is
a t-splitting set if for each nonzero nonunit

d € D we have (d) = (4B), where A and B
are 1deals with 4 N S # ¢ and B is such that
(B,s): = D for each s € S. t-splitting sets S
are characterized by: If 4 is a principal ideal
of Dg then ADs N D is t-invertible. It was
shown in [AAZ, Arab. J. Sci. Eng. Sect. C
26(2001), no. 1, 3—-16] that for D a PVMD
and S a multiplicative set of D the
construction D + XDs[X] is a PVMD if and
only if S is a t-splitting set of D.(GCD
domains are a special case of PVMD’s). In
[CDZ, JPAA, (2003),71-86] the t-splitting
sets are further explored and there we bring
forth Nagata type Theorems that do not seem
to have anything to do with the GCD property
or the UFD property. Here is a quick
example:

Proposition 7. [CDZ,JPAA, Cor. 3.8] Let X
be an indeterminate over D,
G=A{feDX]:(4p)y, =D}andletSbea
nonempty subset of G. Then D[X] is a Krull
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(resp. Mori, integrally closed, completely
integrally closed, essential, UMT, Prufer
v-multiplication) domain if D[X]s is.
t-Splitting Sets of Ideals [CDZ (submitted)]
Let D be an integral domain, S a
multiplicative set of ideals of D and

Ds = {x € K : xA < D for some 4 € S} the
S —transform of D as in Arnold and
Brewer[J. Algebra, 18(1971), 254-263]. If I 1s
an ideal of D, then Is = {x € K : x4 < [ for
some 4 € S} is an ideal of Ds containing /.
Denote by S+ the set of ideals B of D with
(A+B); =Dforall4 € S. Call S+ the
t-complement of S. Denote by sp(S) the
"saturation" of S (set of all ideals C of D
such that C; 2 4 forsome 4 € S).Call Sa
t-splitting set of ideals if every nonzero
principal ideal dD can be written as

dD = (AB); where 4 € sp(S) and B € S-.
It turns out that S being t-splitting 1s
equivalent to sp(S) being t-splitting and that
if S is generated by principal ideals and
t-splitting then it is the usual t-splitting set
defined above. Moreover if S is t-splitting
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then (1) so is 8* (ii) for each C € S, C; |
contains a t-invertible t-ideal of sp(8S).(So, a
splitting set of ideals S is v-finite in Gabelli’s
terminology [Dekker LNPure APPL.M, 206,
117-142.]) In fact if S; is the set of all
t-invertible t-ideals in sp(S) then S; is a
t-splitting set with t-complement S+. It turns
out that a lot of results proved for (t-)splitting
sets carry through to this more general setting
albeit with some new interpretations. Here’s
a sampling of some of the results proved in
[CDZ (submitted)]

Proposition 8. Let S be a t-splitting set of
ideals of D. Then for every nonzero ideal  of
D we have I; = (4B); with 4 € sp(S) and

B € 8" and this "splitting" of / is unique up
to t-closures.

Proposition 9. Let S be a multiplicative set of
ideals of D. Then S is t-splitting iff .S 1s
v-finite and every nonzero principal ideal of
Ds contracts to a t-ivertible t-ideal.

Proposition 10. A splitting set of ideals
induces a natural cardinal product
decomposition of the ordered monoid of
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fractional t-ideals of D under the t-product
and ordered by the usual reverse inclusion.
Finally here’s something to remind you of the
earlier "Nagata type Theorems".

Proposition 11. Let F be a family of height
one t-invertible prime t-ideals of D such that
every nonzero nonunit of D belongs to at
most a finite number of members of F. Let S
be a multiplicative set generated by members
of F. The the following hold:

i. DisaPVMD iffsois Ds,

ii. D is a Krull domain iff so is Ds.

iii. D is of finite t-character iff so 1s Ds.
Finally, a word about a gap that needs to be
filled. In jumping from splitting sets to
t-splitting sets we overlooked the possibility
of studying say d-*-splitting sets, d for
divisibility. It appears to me that there is a
whole world of results parallel to those we
know about splitting sets. Let me give you a
couple of examples:

Call a saturated multiplicative set S a
d-d-splitting set if every element d € D\{0}
can be written as d = st where s € Sand #1s
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d-coprime to every member of S. Recall that
d-coprime = comax imal. Example: A
saturated multiplicative set S generated by
height one principal maximal ideals such that
no nonzero member of D is divisible by an
infinite set of nonassociated primes from S.
Proposition. If S is a d-d-splitting set
generated by principal maximal ideals, Then
D is a PID (Noetherian, Prufer) iff Dy is.
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