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This paper examines the transfer of the almost valuation property to various construc-
tions of ring extensions such as bi-amalgamations and pairs of rings. Namely, Sec. 2
studies the transfer of this property to bi-amalgamation rings. Our results cover previ-
ous known results on duplications and amalgamations, and provide the construction of
various new and original examples satisfying this property. Section 3 investigates pairs
of integral domains where all intermediate rings are almost valuation rings. As a conse-
quence of our results, we provide necessary and sufficient conditions for a pair (R, T ),
where R arises from a (T, M, D) construction, to be an almost valuation pair. Further-
more, we study the class of maximal non-almost valuation subrings of their quotient
field.
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1. Introduction

Throughout, all rings considered are commutative with identity. The concept of val-
uation domains play a central role in several fields of mathematics such as number
theory and algebraic geometry. In [1], Anderson and Zafrullah enlarged the class of
valuation domains in the following way: they called a domain R an almost valuation
domain (AV-domain for short) if given any two elements x, y ∈ R, there is a positive
integer n such that the ideals xnR and ynR are comparable, which is equivalent to:
for every x ∈ qf(R) (the quotient field of R), there exists an integer n ≥ 1 such that
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xn ∈ R or x−n ∈ R. Among other things, they proved that an integral domain R is
an AV-domain if and only if the integral closure R′ of R is a valuation domain and
R ⊆ R′ is a root extension. Later, in [17], the authors extended this notion defined
in [1], to class of rings with zero-divisors. In particular, they defined an almost
valuation ring (AV-ring for short) and they investigated when this condition is sat-
isfied by an amalgamated algebra and by an idealization (also called Nagata’s ring).
Recently, in [12], Jahani-Nezhad and Khoshayand extended the notion of pseudo-
almost valuation domain, introduced by Badawi in [3], to pseudo-almost valuation
ring with zero-divisors. In [13], the authors proved that the class of AV-rings is
properly contained in the class of pseudo-almost valuation rings. They also proved
that pseudo-almost valuation rings are precisely the pullbacks of AV-rings.

The following diagram of implications summarizes the relations between the
main three notions involved in this paper:

R is a valuation ring
⇓

R is an almost valuation ring
⇓

R is a quasi-local ring with linearly ordered prime ideals.

Recall that the above implications are irreversible, in general, as shown by exam-
ples provided in [3, 12, 17].

In this paper, we examine when a bi-amalgamation is an AV-ring. Our results
capitalize previous works on amalgamations and duplications as well as generate
new original examples of AV-rings which are not valuation rings and quasi-local
rings that are not AV-rings. Furthermore, we investigate pairs of integral domains
where all intermediate rings are AV-domains. As a consequence of our results, we
provide necessary and sufficient conditions for a pair (R, T ), where R arises from
a (T, M, D) construction, to be an AV-domain pair. We also study the class of
maximal non-almost valuation subrings of their quotient field. In particular, we
show in Theorem 3.8 that if the “bottom” ring is integrally closed, then the class
of maximal non-almost valuation, maximal non-quasi-local, maximal non-pseudo
valuation and maximal non-valuation, subrings of their quotient field coincide. In
Theorem 3.9, we prove that if A is a non-quasi-local integral domain which is not
integrally closed, then A is never a maximal non-almost valuation subring of its
quotient field. In the case A is quasi-local non-integrally closed, we prove that A

is a maximal non-almost valuation subring of its quotient field if and only if each
proper overring of A is an AV-domain, A′ is a valuation domain and A ⊆ A′ is not
a root extension.

Section 2 is devoted to the study of AV-ring property in bi-amalgamated alge-
bras. For this purpose, we recall the definition of bi-amalgamation of rings: Let
f : A → B and g : A → C be two ring homomorphisms and let J and J ′

be two ideals of B and C, respectively, such that Io := f−1(J) = g−1(J ′). The
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bi-amalgamation (or bi-amalgamated algebra) of A with (B, C) along (J, J ′) with
respect to (f, g) is the subring of B × C given by

A ��f,g (J, J ′) := {(f(a) + j, g(a) + j′) | a ∈ A, (j, j′) ∈ J × J ′}.
This construction was introduced in [15] as a natural generalization of duplica-
tions [7, 10, 11] and amalgamations [8, 9]. In [15], the authors provide original
examples of bi-amalgamations and, in particular, show that Boisen–Sheldon’s CPI-
extensions [6] can be viewed as bi-amalgamations (notice that [8, Example 2.7]
shows that CPI-extensions can be viewed as quotient rings of amalgamated alge-
bras). They also show how every bi-amalgamation can arise as a natural pullback
(or even as a conductor square) and then characterize pullbacks that can arise as
bi-amalgamations. Then, the last two sections of [15] deal, respectively, with the
transfer of some basic ring theoretic properties to bi-amalgamations and the study
of their prime ideal structures. All their results recover known results on duplica-
tions and amalgamations. Recently, in [16], the authors established necessary and
sufficient conditions for a bi-amalgamation to inherit the arithmetical property,
with applications on the weak global dimension and transfer of the semihereditary
property.

Section 3 is devoted to the study of pairs of AV-domains and maximal non-
almost valuation subrings. Recall that if each intermediate ring T between R and S

(that is for each T ∈ [R, S]) satisfies a ring theoretic property P , then (R, S) is said
to be a P -pair. Let R ⊂ S be an extension of integral domains such that R does
not satisfy a ring theoretic property P and each proper S-overring of R satisfies
P . Then R is called a maximal non-P subring of S. The notions of P -pairs and
maximal non-P subrings were studied for different properties P (for instance P :=
Noetherian, valuation, quasi-local and pseudo-valuation, see [5, 14, 19]). To com-
plete this circle of ideas, we study the property P := almost valuation. Throughout,
for an integral domain R, we denote by qf(R) (respectively, R′) the quotient field
of R (respectively, the integral closure of R). For a ring extension R ⊂ S, we denote
by [R, S] (respectively, ]R, S]) the set of all rings T such that R ⊆ T ⊆ S (respec-
tively, R ⊂ T ⊆ S). We shall call a ring T in [R, S] an S-overring of R. Such a
ring is said to be a proper S-overring of R if T �= S. When S = qf(R), then each
ring T ∈ [R, qf(R)] is called an overring of R. We denote by Nil(R), the set of all
nilpotent elements of R, and by Jac(R), the Jacobson radical of R. Recall that an
extension of integral domains R ⊆ S is said to be a root extension if for each x ∈ S,

there exists a positive integer n such that xn ∈ R.

2. Transfer of AV-Ring Property to Bi-Amalgamated Algebras

The main idea of this section is to produce new examples of rings satisfying AV-ring
property.

Let f : A → B and g : A → C be two ring homomorphisms and let J and
J ′ be two ideals of B and C, respectively, such that f−1(J) = g−1(J ′). All along
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this section, A ��f,g (J, J ′) will denote the bi-amalgamation of A with (B, C) along
(J, J ′) with respect to (f, g).

Our first result investigates the transfer of AV-ring property to bi-amalgamation
A ��f,g (J, J ′) in case J and J ′ have trivial nilpotent elements.

Theorem 2.1. Assume that J ∩Nil(B) = 0 and J ′ ∩Nil(C) = 0. Then the follow-
ing statements are equivalent :

(1) A ��f,g (J, J ′) is an AV-ring.
(2) f(A) + J and g(A) + J ′ are AV-rings and J = 0 or J ′ = 0.

Proof. (1) ⇒ (2) Assume that A ��f,g (J, J ′) is an AV-ring. Using the fact that
the AV-ring property is stable under factor ring and in view of the isomorphisms:

A ��f,g (J, J ′)
0 × J ′

∼= f(A) + J

and

A ��f,g (J, J ′)
J × 0

∼= g(A) + J ′

given by [15, Proposition 4.1(2)]. It follows that f(A)+J and g(A)+ J ′ are
AV-rings. Next, we claim that J = 0 or J ′ = 0; otherwise, for nonzero ele-
ments j ∈ J and j′ ∈ J ′, we would have (0, j′)n ∈ (j, 0)n(A ��f,g (J, J ′)) or
(j, 0)n ∈ (0, j′)n(A ��f,g (J, J ′)) for some integer n ≥ 1. It follows that j′n = 0 or
jn = 0 which yields a contradiction since J ′ ∩ Nil(C) = 0 and J ∩ Nil(B) = 0. The
converse is straight via [15, Proposition 4.1(2)].

Notice that in Theorem 2.1, the conditions “J ∩Nil(B) = 0” and “J ′∩Nil(C) =
0” are necessary to have the equivalence of assertions (1) and (2). A counter-example
for the special case of duplication rings is given in [17, Example 2.7].

Theorem 2.1 allows us to construct new original class of AV-domains which are
not valuation domains.

Example 2.2. Let K be a field, H = K(X) be the quotient field of K[X ]. Consider
A := H, B := H+Y 3H [[Y ]], f : A ↪→ B be the natural injection and J := Y 3H [[Y ]]
be the maximal ideal of B. Let C := A ∝ A be the trivial ring extension of A by
A, g : A ↪→ C be the natural injection and J ′ := 0 be the trivial ideal of C.
Clearly, J ∩ Nil(B) = 0, J ′ ∩ Nil(C) = 0 and f−1(J) = g−1(J ′) = 0. Observe
that f(A) + J = H + Y 3H [[Y ]] is an AV-domain by [1, Theorem 5.6] (as the
integral closure (f(A)+J)′ = H +Y H [[Y ]] is a valuation domain and (f(A)+J) ⊂
(f(A) + J)′ is a root extension) and g(A) + J ′ = A ∝ 0 + 0 � A which is a field
and so is an AV-domain. Then:

(1) A ��f,g (J, J ′) is an AV-domain.
(2) A ��f,g (J, J ′) is not a valuation domain.
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Proof. (1) By Theorem 2.1, A ��f,g (J, J ′) is an AV-domain since f(A) + J and
g(A) + J ′ are AV-domains and J ′ = 0.

(2) Since f(A) + J = H + Y 3H [[Y ]] is not integrally closed, then it is not a
valuation domain. Hence, by [16, Theorem 2.1(1)], A ��f,g (J, J ′) is not a valuation
domain.

Recall that the amalgamation of A with B along J with respect to f is given by

A ��f J := {(a, f(a) + j) | a ∈ A, j ∈ J}.
Clearly, every amalgamation can be viewed as a special bi-amalgamation, since
A ��f J = A ��idA,f (f−1(J), J).

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.3. Under the above notations, assume that f−1(J) ∩ Nil(A) = 0 and
J ∩ Nil(B) = 0. Then A ��f J is an AV-ring if and only if both A and f(A) + J

are AV-rings and J = 0 or f−1(J) = 0.

Remark 2.4. We recall here the following result proved by Mahdou et al.: “Let A

and B be a pair of rings and f : A → B be a ring homomorphism. If J is a nonzero
proper ideal of B having no nontrivial nilpotent elements and A is reduced, then
A ��f J is an AV-ring if and only if f is injective, f(A) + J is an AV-ring and
f(A) ∩ J = 0” [17, Theorem 2.4]. Corollary 2.3 recovers the above result. Indeed,
in the case J is a nonzero proper ideal of B having no nontrivial nilpotent elements
and A is reduced, the assumptions f−1(J) ∩ Nil(A) = 0 and J ∩ Nil(B) = 0 hold.
Moreover, we show that the following statements are equivalent:

(1) “A and f(A) + J are AV-rings and f−1(J) = 0”.
(2) “f is injective, f(A) + J is an AV-ring and f(A) ∩ J = 0”.

Indeed, (1) ⇒ (2) Notice that ker(f) ⊆ f−1(J) = 0. So f is injective, therefore the
conclusion is trivial.

(2) ⇒ (1) Since f(A)+J is an AV-ring and f(A) � f(A)+J
J , then f(A) is an AV-

ring (as a factor ring of an AV-ring) and since f is injective, then A(� f(A)) is also
an AV-ring. Using the fact that f(A)∩J = 0, then f−1(J) = f−1({0}) = ker(f) = 0
since f is injective.

Let I be a proper ideal of A. The (amalgamated) duplication of A along I is a
special amalgamation given by

A �� I := A ��idA I = {(a, a + i) | a ∈ A, i ∈ I}.
The next corollary is a consequence of Corollary 2.3 on the transfer of AV-ring
property to duplications and is [17, Corollary 2.6].

Corollary 2.5. Let A be a reduced ring. Then A �� I is an AV-ring if and only if
so is A and I = 0.
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The following proposition is a partial result about when a bi-amalgamation is
an AV-ring, in case J and J ′ have nontrivial nilpotent elements.

We recall an important characterization of a local Gaussian ring A. Namely, for
any two elements a and b in the ring A, we have 〈a, b〉2 = 〈a2〉 or 〈b2〉; moreover if
ab = 0 and 〈a, b〉2 = 〈a2〉, then b2 = 0 (see, [4, Theorem 2.2]).

Proposition 2.6. Assume that (A, m) is a local Gaussian ring, J × J ′ ⊆ Jac(B ×
C), J2 = 0, J ′2 = 0, and f(a)J = f(a)2J, g(a)J ′ = g(a)2J ′, for all a ∈ m. Then
A ��f,g (J, J ′) is an AV-ring.

Proof. Assume that (A, m) is local Gaussian, J2 = 0, J ′2 = 0 and f(a)J = f(a)2J ,
g(a)J ′ = g(a)2J ′, for all a ∈ m. By [15, (b) Proposition 5.3], A ��f,g (J, J ′) is local
since A is local and J×J ′ ⊆ Jac(B×C). Let (f(a)+i, g(a)+i′) and (f(b)+j, g(b)+j′)
be elements of A ��f,g (J, J ′). Two cases are possible:

Case 1: a or b �∈ m. Then a or b is invertible in A. Assume without loss of
generality that a is invertible, then (f(a)+ i, g(a)+ i′)(f(a−1)− f(a−1)2i, g(a−1)−
g(a−1)2i′) = (1, 1). So (f(a) + i, g(a) + i′) is invertible in A ��f,g (J, J ′). Therefore,
(f(b) + j, g(b) + j′) ∈ (f(a) + i, g(a)+ i′)A ��f,g (J, J ′). Hence, it follows that there
exists an integer n = 1 such that (f(a) + i, g(a) + i′)n and (f(b) + j, g(b) + j′)n are
comparable, as desired.

Case 2: a and b ∈ m. Using the fact that A is local Gaussian, then 〈a, b〉2 = 〈a2〉
or 〈b2〉. We may assume that 〈a, b〉2 = 〈a2〉. So we have, b2 = a2x for some x ∈ A,

and so f(b)2 = f(a)2f(x), g(b)2 = g(a)2g(x). By assumption, 2f(b)j ∈ f(b)2J
and 2f(a)if(x) ∈ f(a)2J. Therefore, there exist j1, i1 ∈ J such that 2f(b)j =
f(a)2f(x)j1, 2f(a)if(x) = f(a)2i1, and similarly, there exist j′1, i

′
1 ∈ J ′ such that

2g(b)j′ = g(a)2g(x)j′1, 2g(a)i′g(x) = g(a)2i′1. In view of the fact that J2 = 0 and
J ′2 = 0, one can easily check that (f(b)+j, g(b)+j′)2 = (f(a)+ i, g(a)+ i′)2(f(x)+
f(x)j1 − i1, g(x) + g(x)j′1 − i′1). Hence, there exists an integer n = 2 such that
(f(a) + i, g(a) + i′)n and (f(b) + j, g(b) + j′)n are comparable, as desired. Thus,
A ��f,g (J, J ′) is an AV-ring.

Proposition 2.6 recovers the special case of amalgamated algebras, as recorded
in the next corollary.

Corollary 2.7. Let f : A → B be an injective ring homomorphism and J be
an ideal of B such that J ⊆ Jac(B). If (A, m) is local Gaussian, J2 = 0 and
f(a)J = f(a)2J, af−1(J) = a2f−1(J) for all a ∈ m, then A ��f J is an AV-ring.

Proof. It is easy to show that (f−1(J))2 ⊆ f−1(J2). Since f is injective and J2 =
0, it follows that (f−1(J))2 ⊆ f−1({0}) = 0. Therefore, by using Proposition 2.6,
A ��f J = A ��idA,f (f−1(J), J) is an AV-ring.

The following corollary is an immediate consequence of Corollary 2.7, which
gives the special case of duplication rings.
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Corollary 2.8. Let (A, m) be a local Gaussian ring and I be an ideal of A. If
I2 = 0 and aI = a2I for all a ∈ m, then A �� I is an AV-ring.

Proposition 2.6 enriches the literature with new original class of AV-rings that
are not valuation rings.

Example 2.9. Let (A, m) be a valuation domain, K := qf(A). Let E be a K-
vector space such that dimK(E) ≥ 2 and B := A ∝ E be the trivial ring extension
of A by E. Consider f : A ↪→ B be the natural injection (defined by f(a) = (a, 0)).
Let F := A/m, C := A ∝ F be the trivial ring extension of A by F and g : A ↪→ C

be the canonical embedding of A in C. Let J = 0 ∝ E be the ideal of B and
J ′ = 0 ∝ F be the ideal of C. Clearly, f−1(J) = g−1(J ′) = 0, J2 = J ′2 = 0, and
f(a)J = f(a)2J = 0, g(a)J ′ = g(a)2J ′ = 0 for all a ∈ m. Then:

(1) A ��f,g (J, J ′) is an AV-ring.
(2) A ��f,g (J, J ′) is not a valuation ring.

Proof. (1) By using Proposition 2.6, A ��f,g (J, J ′) is an AV-ring.
(2) Since f(A) + J = A ∝ 0 + 0 ∝ E = A ∝ E which is not a valuation ring

by [17, Corollary 2.2], then by [16, Theorem 2.1(1)], A ��f,g (J, J ′) is not a valuation
ring.

Now, we consider the case where J and J ′ are regular ideals.

Proposition 2.10. Assume that J (respectively, J ′) is a nonzero proper regular
ideal of B (respectively, C). Then A ��f,g (J, J ′) is never an AV-ring.

Proof. Assume by the way of contradiction that A ��f,g (J, J ′) is an AV-ring.
Using the fact that J × J ′ is a regular ideal, then there is a regular element (j, j′)
in J × J ′ such that 0 �= j and 0 �= j′. Obviously, (j, j′) and (0, j′) are elements of
A ��f,g (J, J ′) which is an AV-ring. And so there is a natural integer n ≥ 1 such
that (0, j′)n ∈ (j, j′)nA ��f,g (J, J ′) or (j, j′)n ∈ (0, j′)nA ��f,g (J, J ′). Two cases
are possible:

Case 1: (0, j′)n ∈ (j, j′)nA ��f,g (J, J ′).

So, (0, j′)n = (0, j′n) = (j, j′)n(f(a) + i, g(a) + k) for some (f(a) + i, g(a) + k) ∈
A ��f,g (J, J ′). Therefore, jn(f(a) + i) = 0 and j′n(1 − g(a) − k) = 0. It follows
that f(a) = −i ∈ J and g(a) = 1 − k. And so a ∈ f−1(J) = g−1(J ′). Therefore,
g(a) ∈ J ′ and g(a) + k = 1 ∈ J ′. Consequently, J ′ = C and g−1(J ′) = A = f−1(J)
and so J = B, which is a contradiction.

Case 2: (j, j′)n ∈ (0, j′)nA ��f,g (J, J ′).

Then (jn, j′n) = (0, j′n)(f(a) + s, g(a) + l) for some (f(a) + s, g(a) + l) ∈ A ��f,g

(J, J ′). It follows that jn = 0, which is a contradiction again. Hence, A ��f,g (J, J ′)
is never an AV-ring, as desired.
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Corollary 2.11. Let f : A → B be a ring homomorphism. Assume that f−1(J)
(respectively, J) is a nonzero proper regular ideal of A (respectively, B). Then A ��f

J is never an AV-ring.

Proof. Recall that A ��f J = A ��idA,f (f−1(J), J). By Proposition 2.10, we
deduce the result.

Corollary 2.11 capitalizes the following result for duplication rings.

Corollary 2.12. Let A be a ring and I be a nonzero proper regular ideal of A.
Then A �� I is never an AV-ring.

Proposition 2.10 provides the construction of new class of quasi-local rings which
are not AV-rings.

Example 2.13. Let (A, m) be a quasi-local domain, K := A/m and E be a nonzero
K-vector space. Consider the injective ring homomorphism f : A ↪→ A ∝ E given
by f(a) = (a, 0). Let I be a nonzero prime ideal of A such that I ⊂ m (for instance
(A, m) := (K[[X1, . . . , Xn]], 〈X1, . . . , Xn〉) be the formal power series ring in n

variables, I := 〈X1〉 and E := Kq, where n and q are two positive integers). Consider
the canonical surjective ring homomorphism g : A → A/I. Let J := m ∝ E and
J ′ := m/I. Clearly, f−1(J) = m = g−1(J ′). Then:

(1) A ��f,g (J, J ′) is a quasi-local ring.
(2) A ��f,g (J, J ′) is not an AV-ring.

Proof. (1) Since A is a quasi-local ring, then by [2, Theorem 3.1], f(A) + J =
A ∝ 0 + m ∝ E = A ∝ E is a quasi-local ring and g(A) + J ′ = A/I + m/I =
A/I is also a quasi-local ring. Hence, A ��f,g (J, J ′) is a quasi-local ring by [15,
Proposition 5.4(1)].

(2) Let (n, e) ∈ m ∝ E such that 0 �= n and 0 �= e and let a ∈ m − I. Since
I is a prime ideal of A, then a is a regular element in J ′ and so ((n, e), a) is a
regular element in J ×J ′. It follows that J ×J ′ is a regular ideal of (A ∝ E)×A/I.

Therefore, by Proposition 2.10, A ��f,g (J, J ′) is not an AV-ring.

3. Pairs of Almost Valuation Domains and Maximal
Non-Almost Valuation Subrings

In this section, we characterize pairs of almost valuation domains and maximal
non-almost valuation subrings.

First, we give the definition of pairs of almost valuation domains.

Definition 3.1. Let R ⊂ S be an extension of integral domains. We say that
(R, S) is an almost valuation domain pair (for short AV-domain pair) if each ring
T ∈ [R, S] is an AV-domain.
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As an initial step toward understanding what pairs of domains (R, S) are
AV-domains pairs, we determine how the quotient fields of R and S must be related.

Proposition 3.2. Let R ⊂ S be an extension of integral domains. If each proper
S-overring of R is an AV-domain, then the following statements hold :

(1) R ⊂ S is an algebraic extension.
(2) If moreover R is not a field, then R and S have the same quotient field and for

each T ∈ [R, S], T ⊆ T ∗ ⊆ T ′ are root extensions, where T ∗ denotes the integral
closure of T in S.

(3) (R, S) is a residually algebraic pair.

Proof. (1) Assume that R ⊂ S is not an algebraic extension. Then there exists
t ∈ S such that t is transcendental over R. Thus, the domain T = R[t] is a proper
S-overring of R and so is an AV-domain. Consequently, T is quasi-local, which is a
contradiction. Hence, R ⊂ S is an algebraic extension.

(2) Let K be the quotient field of R. Assume by the way of contradiction that
there exists an element b ∈ S such that b �∈ K. Since R ⊂ S is an algebraic extension
then b is algebraic over R. Therefore, there is a ∈ R such that ab is integral over
R. Set α = ab. Let n = [K(α) : K] be the dimension of K(α) as a K-vector space.
Consider a nonzero non-unit element β ∈ R (such element exists since R is not a
field) and consider the domain D = R + αβR + α2βR + · · · + αn−1βR. Then D is
an intermediate ring between R and S. So D is an AV-domain. Since α is integral
over R, then α is integral over D. From [1, Theorem 5.6], it follows that D ⊆ D′ is
a root extension, as D is an AV-domain. Using the fact that α ∈ D′, there exist an
integer q ≥ 1 and a0, . . . , an−1 ∈ R such that

αq = a0 + a1αβ + · · · + an−1α
n−1β. (∗)

Two cases are possible:

Case 1: q ≤ n − 1. By identification of the coefficients of αq, we obtain aqβ = 1,
which is a contradiction, since β is a non-unit element.

Case 2: q ≥ n. There exist b0, . . . , bn−1 such that αq = b0 + b1α + · · · +
bn−1α

n−1. Let j be the smallest integer for which bj �=0. One can easily check that
B = {1, α, . . . , αj−1, αq, αj+1, . . . , αn−1} is an other basis of K(α) as a K-vector
space. Substituting αj by its linear combination of elements of the basis B into
equation (∗), we deduce that there exist r0, . . . , rn such that αq = ro + r1αβ + · · ·+
rj−1α

j−1β + rjα
qβ + rj+1α

j+1β + · · · + rnαnβ. It follows that 1 = βrj , which is a
contradiction again, since β is a non-unit element.

Hence, S ⊆ K and so qf(S) = K, as desired.
Notice that T ⊆ T ∗ and T ∗ ⊆ T ′ are root extensions since T ⊆ T ′ is a root

extension by [1, Theorem 5.6], as T is an AV-domain.
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(3) Let T ∈ [R, S], for each prime ideal Q of T , setting P = Q ∩ R. Let A be a
ring between R/P and T/Q.

R
φ ��

��

R/P

��
R1

φ ��

��

A

��
T

φ �� T/Q.

Let R1 = (T, Q, A). Since A = φ(R1) is a homomorphic image of R1 which is an
AV-domain, then A is an AV-domain. Therefore, each proper T/Q-overring of R/P

is an AV-domain and it follows from assertion (1) that R/P ⊂ T/Q is an algebraic
extension. Hence, (R, S) is a residually algebraic pair, as desired.

We state now the following result about pairs of AV-domains.

Theorem 3.3. Let R ⊂ S be an extension of integral domains.

(1) If R is a field, then the following statements are equivalent :

(i) (R, S) is an AV-domain pair.
(ii) S is a field algebraic over R.

(2) If R is not a field, then the following statements are equivalent :

(i) (R, S) is an AV-domain pair.
(ii) R is an AV-domain and S is an overring of R.

Proof. (1) (i) ⇒ (ii) By Proposition 3.2, R ⊂ S is an algebraic extension. Since R

is a field, then so is S.
(ii) ⇒ (i) If S is field algebraic over R, then each intermediate ring between R

and S is a field and so is an AV-domain.
(2) (i) ⇒ (ii) Straightforward from assertion (2) of Proposition 3.2.
(ii) ⇒ (i) Let T ∈ [R, S] and x ∈ qf(T ). By assertion (2) of Proposition 3.2,

qf(T ) = qf(R) = qf(S), and so x ∈ qf(R). Using the fact that R is an AV-domain,
there exists an integer n ≥ 1 such that xn or x−n ∈ R ⊆ T . Hence, T is an
AV-domain.

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. Let R be an integral domain that is not a field and K be a field
containing R. Then the following statements hold :

(i) (R, qf(R)) is an AV-domain pair if and only if R is an AV-domain.
(ii) (R, K) is an AV-domain pair if and only if R is an AV-domain and K = qf(R).
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Recall that R := (T, M, D) is a pullback of canonical homomorphisms

R ��

��

D

��
T

φ �� T/M,

where T is an integral domain, M is a maximal ideal of T , φ : T → T/M is
the natural projection, D is an integral domain contained in K = T/M and R =
φ−1(D).

Now, we give necessary and sufficient conditions for (R, T ) to be an AV-domain
pair, when R arises from a (T, M, D) construction, where M is a maximal ideal
of T .

Corollary 3.5. If R := (T, M, D), k := qf(D) and K := T/M, then the following
statements are equivalent :

(i) (R, T ) is an AV-domain pair.
(ii) R is an AV-domain.
(iii) T and D are AV-domains and the extension k ⊆ K is a root extension.

Proof. (i) ⇔ (ii) Combining [1, Theorem 5.6] and [1, Lemma 4.5], it follows that T

is an AV-domain as an overring of R and so by using statement (2) of Theorem 3.3,
the conclusion is trivial.

(ii) ⇔ (iii) This follows readily from [18, Theorem 2.2].

Now, we define the notion of maximal non-almost valuation subring.

Definition 3.6. Let R ⊂ S be an extension of integral domains. We say that R is
a maximal non-almost valuation subring of S if R is not an AV-domain and each
proper S-overring of R is an AV-domain.

Next, we study the localization and homomorphic image of maximal non-almost
valuation subring.

Proposition 3.7. Let R ⊂ S be an extension of integral domains. Assume that
R is a maximal non-almost valuation subring of S, then the following statements
hold :

(i) For each multiplicative subset U of R, either (U−1R, U−1S) is an AV-domain
pair or U−1R is a maximal non-almost valuation subring of U−1S.

(ii) For each prime ideal Q of S, set P = Q∩R, either (R/P, S/Q) is an AV-
domain pair or R/P is a maximal non-almost valuation subring of S/Q.

Proof. Observe that each ring between the localizations of R and S is clearly
the localization of a ring between R and S and that each ring T between R/P

and S/Q is the homomorphic image of a ring between R and S (considering a
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pullback, namely the ring T1 of the construction (S, Q, T )). Thus, in both cases,
each intermediate ring is an AV-domain, with the possibility that U−1R itself,
or R/P itself, is an AV-domain in which case, one clearly obtains an AV-domain
pair.

The following theorem establishes that the class of maximal non-almost val-
uation, the class of maximal non-quasi-local, the class of maximal non-pseudo-
valuation, and the class of maximal non-valuation subrings of their quotient field
coincide when the “bottom” ring R is integrally closed.

Theorem 3.8. Let R be an integrally closed domain with quotient field K. Then
the following statements are equivalent :

(i) R is a maximal non-almost valuation subring of K.
(ii) R is a maximal non-quasi-local subring of K.
(iii) R is a maximal non-pseudo-valuation subring of K.
(iv) R is a maximal non-valuation subring of K.

(v) R is a semilocal Prüfer domain with exactly two maximal ideals M and N such
that [(0), M [= [(0), N [.

Proof. (i) ⇒ (ii) Using the fact that every AV-domain is quasi-local, it follows that
each proper overring of R is quasi-local. We claim that R is not quasi-local. Deny.
(R, K) would be a pair of quasi-local rings and by [14, Lemma 1], R′ is a prüfer
domain. Since R is a quasi-local integrally closed domain, then R is quasi-local and
is a Prüfer domain. Therefore, R is a valuation domain and so R is an AV-domain,
which is absurd. Consequently, R is a maximal non-quasi-local ring.

(ii) ⇒ (i) Since R is not a quasi-local ring, then R is not an AV-domain.
From [14, Corollary 1], it follows that each proper overring of R is a valuation
domain. Therefore, each overring of R is an AV-domain, as desired.

(iii) ⇔ (ii) From [14, Theorem 3].
(ii) ⇔ (iv) ⇔ (v) Trivial from [14, Corollary 1].

Now, we treat the case where the bottom ring R is not integrally closed.

Theorem 3.9. Let R be an integral domain with quotient field K. Assume R is
not integrally closed. Then the following statements hold :

(1) If R is not a quasi-local ring, then R is never a maximal non-almost valuation
subring of K.

(2) If R is a quasi-local ring, then the following statements are equivalent :

(i) R is a maximal non-almost valuation subring of K.
(ii) Each proper overring of R is an AV-domain, R′ is a valuation domain and

R ⊆ R′ is not a root extension.

The proof of Theorem 3.9 requires the following lemma.
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Lemma 3.10. Let R be an integral domain with quotient field K. Assume that R

is not a quasi-local ring. If R is a maximal non-almost valuation subring of K, then
R is a maximal non-quasi-local subring of K.

Proof. Straightforward.

Proof of Theorem 3.9:
(1) From [14, Corollary 1], R is not a maximal non-quasi-local subring of K since

R is not integrally closed. By Lemma 3.10, it follows that R is never a maximal
non-almost valuation subring of K.

(2) (i) ⇒ (ii) Since R is a maximal non-almost valuation subring of K, then
each proper overring of R is an AV-domain and so is a quasi-local domain. Using
the fact that R is a quasi-local domain, then (R, K) is a quasi-local pair. Therefore,
by [14, Lemma 1(ii)], R′ is a prüfer domain which is a quasi-local domain, making
R′ a valuation domain. By [1, Theorem 5.6], it follows that R ⊆ R′ is not a root
extension (as R is not an AV-domain).

(ii) ⇒ (i) Since R ⊆ R′ is not a root extension and R′ is a valuation domain,
then by [1, Theorem 5.6], R is not an AV-domain. Hence, the conclusion is trivial.
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