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Abstract

Throughout let G = (G, +, <,0) denote a Riesz group, where -+ is not
necessarily a commutative operation. Call z € G homogeneous if z > §
and for all A,k € (0,z] there is t € (0,z] such that ¢ < A,k. In this
paper we develop & theory of factoriality in Riesz groups based on the
fact that if # € G and z is a finite sum of homogenecus elements then
z is expressible, uniquely, as & sum of finitely many mutually disjoint
homogeneous elements. We then compare our work with existing results
in lattice ordered groups and in {commutative) integral domains.
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Let G = (G,+,<,0) be a partially ordered group (po-group) with + not
necessarily commutative. A po-group G is said to be a group with interpolation
property if it satisfies the Riesz interpolation property: for all a;, a2,b01,b2 € G,
with a; < b; (4,7 = 1,2) there exists ¢ € G such that a; < ¢ < b;. A directed
p.o. group with interpolation property is called s Riesz group. It is easy to see
that & lattice ordered group is a Riesz group. There is of course an abundant
supply of “non lattice ordered” Riesz groups. (See [10], [8] and [17].) Two
elements z,y € G are disjoint if x Ay = 0, where a A b denotes infe(z,y).Call
en clement h € G homogeneous if h is strictly positive, i.e., & > 0, and for all
u,v € (0, h], u,v are non-disjoint. Two homogeneous elements h,k are said to
be related if kA k # 0. We show that every finite sum of homogeneous elements
in a Riesz group is uniquely expressible as a finite sum of mutually disjoint
homogeneous elements. This leads us to the notion of a factorial core F(@) of
every Riesz group. Here F(G) is such that (F(G))™ consists of finite sums of
Lomogeneous elements of G, taking 0 as an empty sum. We show that for a
Riesz group G, F(G) is an o-idedl, i.e., & convex normal directed subgroup of G.
We call a Riesz group G factorial if G = F(G) and indicate the connections of
our Tesults with the existing literature. A Riesz group G may be said to satisfy
Conrad’s F-condition if every strictly positive element of G exceeds at most a
finite number of mutually disjoint elements. We show that in a Riesz group that
satisfies Conrad’s F-condition every strictly positive element exceeds at most
a finite number of disjoint homogeneous elements. Our work improves upon
the work by Rachunek [13] who studied Riesz groups that contain at most a
finite number of disjoint strictly positive clements. Apparently the introduction
of factoriality has helped us treat the general case successfully. This notion of
factoriality comes from generalizations of the notion of unique factorization in
integral domains, an interested reader may consult Anderson’s recent survey




article [1] to see a description of various efforts at generalizing the notion of
factoriality.

In what follows we shall use aAb # 0, for a, b > 0, to indicate that ¢ and b are
not disjoint, i.e., there exists d < a, b such that d £ 0. This usage is notational
and does not signify that ¢ A b exists. Following [8] we call a Riesz group G an
antilattice if for a,b € G, a A b € G implies that a and b are comparable, i.e.,
e < bor b < a. A cardinal sum of a family {G;};er of partially ordered groups is
their direct sum G = Z G; where an element g = Z g; is positive if each g; is

i€l i€l
positive. For g € G1, [0,9] = {h:0< h < g} and if g > 0, (0, g] represents the
set {h:0 < h < g}. We denote by G* the set of strictly positive elements of G.
We note following Rachunek [i3] that a Riesz group is regular, i.e. if infg+(a,b)
exists then infz(a, b) exists and both are equal.

In section 1 we study the basic properties of homogeneous elements, such as
the relatedness of homogenecus elements is an equivalence relation and that the
sum of two related homogeneous elements is a homogeneous element related to
each. In short we set up the scene for the notion of factorislity. In section 2 we
define the notion of factorislity and show among various structural results that
if a strictly positive element of a Riesz group is a sum of homogeneous clements
then it is uniquely expressible as a sum of mutually disjoint homogeneous ele-
ments. In section 3 we establish that there do exist homogeneous elements and
there do exist subgroups F(G) of some Riesz groups G such that every strictly
positive element of F(G) is expressible as a sum of finitely many homogeneous
elements. Finally in section 4 we give examples of factorial Riesz groups and
explore links between the notions of factoriality in po-groups and in the rings.

1 Basic properties of homogeneous elements

The purpose of this section is to provide the basic tools that we shall need
throughout the paper. This includes a study of homogeneous elements. We
show that the sum of two related homogeneous elements is again homogeneous
related to them. Thus the set A® of all homogeneous elements, related to b, of
a Riesz group G is a subsemigroup of G. We also show that AL® =< AG®) >
is an antilattice and that if b and ¢ are two disjoint homogeneous elements of G
then AL(®) n AL(® = {0}.

For a start we note here that by the definition if £ is homogeneous in a Riesz
group then each k with 0 < k < &, is homogeneous.

Proposition 1.1 Let G be a Riesz group and let z,y € G*. Then the following
hold.

(1) = Ay # 0 if and only if there exists a ¢t € G with 0 <? < z,y.

(2) z is a homogeneous element if and only if (0, z] is lower directed, i.e., for
all a,b € (0,z] there is t € (0,z] such that ¢ < a,b. So if = is homogeneous and
there is k with 0 < A < z then h is homogeneous.




B)IzAy=0and thereisau € Gwith0 <u <ythenzAu =0
Consequently if z,y > 0 and z Ay = 0 then for each pair (4,5) € (0,2] x (0, y]
we have 1 A j = 0.

(4) Suppose that h and k are two homogeneous elements of G. Then the
following are equivalent:

(a) ANKk =0,

(b) for each pair (a,b) € (0,h] x (0,k], aAb =0,

(c) there is at least one pair (a,b) € (0, k] x (0, k] for whick a A b = 0.

(5) Suppose that » and k are two homogeneous elements of G. Then the
foliowing are equivalent: '

(r) hANE#DQ, ie., h and k are related

(s) for each pair (a,b) € (0, ] x (0, k] we have a Ab# 0,

(t) there is at least one pair (a,b) € (0, ] x (0, k] such that a Ab# 0.

(6) Relatedness is an equivalence relation on the set of all homogeneous
elements

(7) if z,y € G* and z Ay = 0 and if h is a homogeneous element then A
must be disjoint with at least one of z,y. More generally if there are mutually
disjoint positive elements by, bg, ..., b, then h must be disjoint with af least n—1
of the b;.

(8) If z € G and if there are mutually disjoint positive elements by, bg, ..., bn
withz < by +by+ ...+ b, then z = a; +az + ... + a, where 8 < g; < b; and g;
are mutually disjoint. Consequently if  is homogeneous then z < b; for some <.
Proof. (1) Recall that for z,y € G, (z Ay = 0) © Vy<zy(u < 0). Equivalently,
we get (2 Ay # 0) © Juczy(u £ 0). So, if z Ay # 0 then we have a u with u £ 0
such that u,0 < z,y. By the Riesz interpolation property there must be a ¢ with
u,0 < ¢t < z,y. Now ¢ = 0 will contradict the fact that w £ 0, so £ > 0. The
converse is obvious. Clearly (2) follows directly from (1). For (3) note that if
for some (3, j) € (0, =] % (0,y] we have ¢Aj 5 0 then by (1) there is a ¢ such that
0<¢<14,4, but then 0 < ¢ < z,y. To establish (4) note that (a) = (b) follows
from (3) and (b) = (c) is logically natural. For (¢) = (a) suppose that there is
(a,b) € (0, h] x (0, k] for which aAb = 0, yet RAk # 0. Then by (1) there is a pair
(t,£) € (0,h] x (0, %] and by (2) ¢ is homogeneous. Now as ¢,a € (0, k] we have
a t1 € (0,h] with #; < ¢,q. Similarly we can find a ¢ € (0, k] where t5 < ..
But then £1,%2 € (0,t] and so there must be a z € (0,] such that z < 1,12 and
by transitivity of < we have 0 < z < a,b, contradicting the assumption that
aAb=0. We get (5) directly from (4). For (6) only transitivity needs explaining
and for that let , s, % be three homogeneous elements with 7 As # 0 # sAt. By
(1) there exist u,v with 0 < u < 7,5 and 0 < v < 5, Now as u,v € (0, 5] and
as s is homogeneous there is a z € (0, s] such that z < u,v and this leads to the
conclusion that r and ¢ are nondisjoint. For (7), note that if & were nondisjoint
with both z,y then by (1) there would be A1, hy € (0, ] such that Ay <« and
he < y. Now since h is homogeneous we have a z € (0, h] such that z < hqy, hg
and hence 0 < z < z,y contradicting the disjointness of z,y. This observation
can be essily extended to establish the more general statement. Finally for
(8) recall from [8, Theorem 2.2(5)] that G is a Riesz group if and only if for
@, b1, b0, ... by, € GF with @ < by + by + ... + by, there exist a1,a2,...,an € G




with a; < b;and a =aj +ag + ... + an. S0 2 < by + by + ... + by, implies that
z = z1+x2+...+ &, where 0 < z; < b; and using (3) we can conclude that z; are
mutually disjoint. Next if # is a homogeneous element z cannot, by definition,
have disjoint nonzero summands, and this forces all but one of z; to be zero. [

Proposition 1.2 Let h and k be two related homogeneous elements in a Riesz
group G. Then h+ k is o homogeneous element related to both of h and k.

Proof. Let u,v € (0, h-+k]. Since G is Riesz u = a+b, v = c+d where g, ¢ € (0, A
and b,d € (0, k]. Now suppose by way of contradiction that v Av = 0. Then by
(3) a A (c+d) =0 and again by (3) a A ¢ =0 but this contradicts the fact that
k is homogenecus. [ :

Corollary 1.8 Let b be a homogeneous element in a Riesz group G. Then the
set A = {z € G:z is a homogeneous element related to b} is a convex directed
subsemigroup of G.

Proof. That A® is a subsemigroup follows from Proposition 1.2 and the fact
that (A®), +) C (G, +). For convexity let z,y € A®) with z < y and let z be
such that x < 2z < y. Then z > 0, off the bat. As y is homogeneous and as
0 < z < ¥ we conclude that 2 is homogeneous and related to y. That z is related
to b now follows from (6) of Proposition 1.i. That A® is directed follows once
we note that for 2,y € A® z Ay # 0 so, by (1) of Proposition 1.1, there is a ¢
such that 0 < ¢ < z,y and of course z,y <z +y. O

We shall call the set A®), defined in Corollary 1.3, the semigroup associated
with the homogeneous element b. Qur next step is to study the subgroup gen-
erated by A®. To faciiitate our work in that direction we prove the following
Lemma. Yet, before we do that, it seems fair to recall the easily verified fact
that if in a p.o. group G, z Ay exists for some z,y in G then for any p € G we
have p+ (x Ay)=(@+z) A (p+y).

Lemma 1.4 Lety be a homogeneous element of a Riesz group G and let z € G.
Theny® = —x+y—+z is homogeneous. If, moreover, & is a homogencous element
related to y then y* is related to y.

Proof. Because y > 0 we have —z +y +2 > 0. Now let b,k € (0,%%]. Then
h%, k=" € (0,y] and as y is homogeneous we have a ¢ such that 0 <t < h™7, k7
or 0 < t* < h, k. Next, suppose that x is homogeneous related to y. Then by
Proposition 1.1, if y® is not related to z then we must have z A y® = (. But
then 0 = z + (z A ¥®) — z = z Ay which contradicts the fact that z and y are
related. L[]

Proposition 1.5 Let b be a homogeneous element of o Riesz group G. Then
the set AL® = {z —y:z,y € A® U{0}} is a conver directed subgroup of G.
Moreover (AL®OY* = A®) and (AL®)+ = 4A® U {0}.




Proof. Our proof consists in showing that the group < A® > generated by
A®) can be put into the form of AL®). For this we note that every nonzero
element of < A®) > is a finite sum of elements of A®) and/or of inverses of
elements of A®). Using Lemma 1.4 we can push the negatives to the right
as in the following example: Consider z = 1 — %3 + 23 , where z; € A®),
Then z = zy — 29 + x3 + 22 — x2 which gives 2 = z; + (£3)%2 — 2o where
z1 + (z3)%2 € A® by Lemma 1.4. Next as A®) is convex it is easy to see that
AL®) is convex. Finally let 0 < z € AL®. Then since z = ©w—v for u,v € A®),
we have 0 < v—v < u and so u—wv is a homogeneous element and this establishes
the claim that (AL®)+ = A®) U {0}. O '

Proposition 1.8 Ifb is ¢ homogeneous element of a Riesz group G, then AL®)
is an antilatiice. ‘

Proof. That AL® is a Riesz group follows from the fact that AL®) is a convex
directed subgroup of G. For the antilattice part let z,y € AL(®) and suppose that
zAy € AL®). Then zAy = u—v where u,v € A®. Adding v—u to the equation
zAy = u—v we get 0 = (zAy)+(v—u) or (z+v—u)A(y+v—u) =0, ie, (z+v—u),
(y+v—u) are disjoint. We claim that at least one of (z+v—u), (y+v—u) is zero.
For if not then (& +v —u), (y +v—u) > 0 and so (z+v —u), (y +v—u) € A®
and thus related to b. But according to (7) of Proposition 1.1, b cannot be
nondisjoint with two disjoint elements, a contradiction. Now if (y +v —u) =0
theny =u—v =z Ay whichgivesy <z and if (z+v—u)=0wegetz <y. U
For any two related homogeneous elements b, ¢ € G we have A®) = A and
hence AL(® = AL(® ((8) of Proposition 1.1)). This leads to the question of
relationship between AL(® and AL(®) when b and ¢ are disjoint. :

Proposition 1.7 Let b and ¢ be two disjoint homogeneous elements of a Riesz
group G. Then AL® n AL = {0}.

Proof. By (4) of Proposition 1.1, A®) N A9 = ¢, Now suppose that 0 #
z € AL® N AL®). Since z € AL(® we have, by Proposition 1.5, z = u — v
where u,v € A® U {0}. Similarly since z € AL(?) we have z = p — ¢ where
p,q € A® U{0}. This gives u —v =p —q or u = p — g +v. Now, being disjoint
v and q commute. So, u =p+v —q or u+q=p+ v where u,q,p,v € G7T and
we have v < p+v and v < u + q. If w = 0 then v < g which is possible only if
v = 0, because v > 0 would contradict the disjointness of b and c. Thus v, q.p,v
are strictly positive and hence homogeneous. But then by (8) of Proposition
1.1 w < p+ v implies that v < v and v < » + ¢ implies v < u. This gives
0 = u—v =z # 0 a contradiction.

2 Unique factorization and finite sums of homo-
geneous elements

In this section we use the properties of homogeneous elements in Riesz groups,
established in section 1, to introduce the notion of factoriality. We show that




if By, be, ..., by, are mutually disjoint homogeneous elements then EAL(”*') is a

cardinal sum. Then we extend this notion to: If (G) is a set of homogeneous
elements such that for u,v € A(G), u = v or u A v = 0. We show that if, in
a Riesz group G, an element z is a sum of homogeneous elements then z is
uniquely expressible as a sum of mutually disjoint homogeneous elements.

In any partially ordered group z < ¢ if and only if there is 2 > 0 such that
rz+h=g. Soif 0 <z < g we can call z a positive summand or a factor of g.
Using idess established in Proposition 1.1(8) we prove the following resuit.

Proposition 2.1 In a Riesz group G the following hold.

(1) If z € G is expressible as a finite sum of finitely many mutually disjoint
homogeneous elements then this expression is unique up to crder of the mutually
disjoint summands. That is if £ € G is expressible as x = b; + by + ... + b, =
¢1 + ¢ + ... + ¢y, Where b; are mutually disjoint homogeneous elements and
¢; sre mutually disjoint homogeneous elements then m = n and ¢; are just a
perrmutation of b;.

(2) If z € G is expressible as a finite sum of homogeneous elements then z

is expressible uniquely as a single homogeneous element or as a finite sum of
mutually disjoint homogeneous elements. :
Proof. (1) Let z =by +bg +... + b, = ¢1 + ¢ + ... + ¢y 85 described above.
By Proposition 1.1 (8), for each 4, b; < ¢; for exactly one j and (for this j)
¢; < bi. Now if k £ 4 then ¢; is a homogeneous element related to two disjoint
homogeneous elements contradicting (7) of Proposition 1.1. So, & = ¢ and
consequently each b; is equal to some c¢;. This can be used to complete the
proof. For (2) let z = by + b + ... + b, where b; are homogeneous elements.
If all b; are related to a single homogeneous element then b1 + by + ... -+ by, is
a homogeneous element, by Proposition 1.2. If there are some summands that
are disjoint then, using the fact that in a p.o. group disjoint elements commute,
we can regroup by + by + ... + by, into blocks of mutually related homogeneous
elements. This will give us z = By + By + ... + B, where r < n and B; are
mutually disjoint homogeneous elements. Now we can apply (1) above. U]

We can now say that a Riesz group G is a factorial group if every element
of GT\{0} is expressible as a finite sum of homogeneous elements of G. Each
antilattice is a good, but a very specialized, example of a factorial Riesz group.
In this section we show that cardinal sums of antilattices are indeed factorial
Riesz groups. We also show that if a Riesz group G has at least cne homogeneous
element then G contains a convex normal subgroup F(G) that is a factorial Riesz
group. We also show that F(G) = 3 AL(® where b ranges over the maximal set
of mutually disjoint homogeneous elements of G and ) represents the cardinal
sum.

Lemma 2.2 Let b1, b, ..., b, be mutuelly disjoint homogeneous elements of a
Riesz group G and let z; € AL®) fori=1,..,n Thenz1 +Z2 + ... + 2 20
if and only if, for each i, x; > 0. Moreover 1 +z2 + ... + 2, = 0 if and only if,

for each i, z; = 0.




Proof. Clearly if each z; > 0 then 21 + 20 + ... + 2, > 0. Conversely let
x; € AL®). Then z; = u; — v; where u;,v; € A®) U {0}. Then (u1 —v1) +
(ug — v3) + ... + (8p, — v,) = 0. Now, in a p.o. group, —z and —y commute
if and only if z and y commute. Moreover disjoint elements commute. Using
these facts we can push negative terms to the right of the inequality to get
U+ ug+ ot Uy v+t ..+ v, >0 Thisgives 0 < v; S up+ug+... tuy
for 1 < ¢ < n. Using (8) of Proposition 1.1 we have v; = a1 +ag + ... +a, where
0 < a; < u;. Since v; Au; =0 for j # i we have a; =0 for j # 1 and this forces
v; < u;, which in turn gives z; = u; — v; > 0. For the moreover part note that
z; > 0 puts z; in G+ and in G* z3 + 22 + ... +z, = 0 if and only if, for each 1,
i = 0. OO

As mentioned above, our aim is to show that F(G) is a factorial Riesz group
whenever H{G) the set of all homogeneous elements of G is nonempty. To do
this we shall show that F(G) is a cardinal sum of antilattices associated with
mutually disjoint homogeneous elements. To this end the following lemma will
be useful.

Lemma 2.3 Let b and ¢ be two disjoint homogeneous elements in a Riesz group
G and let A% = A® U {0} where = is o homogeneous element. Then the
following hold.

(1) A® 4 40 = 40 4 4

(2) AL® + AL = AL + ALO®)

(8) AL® + AL() =< AP U A s=< 4@y A >

(4) (AL(b) + AL(C>)+ — A(b) + A(c)

(5) AL® + AL is convex and directed.
Proof. (1) and (2) can be easily proved using the fact that disjoint elements
(and their negatives) commute. For (3) note that AL®+AL®) C < A®UAE >
as0=b—-b=c—c Nowlet 0#£ 2 €< A® U Al > | Then z = Y €u;
where ¢; = =1 and u; are homogeneous elements related to b or ¢. Using the
fact that disjoint elements commute we can write z = »_ (;u; + »_7n,2; Where
75,8 = *1, y; € AD and 2 € A© but then 3¢y € < A® >= AL®)
and 27,2 € AL, Thus AL® + AL C < A® U A >C AL®) + ALE).
For (4) note that ¢ € (AL® + AL()* implies, by (3), that z = a3 +a2 2 0
where a1 € AL®) and ay € AL and by Lemma 2.2 this means that a; > 0
forcing a1 € AY and ag € A© . In (5), for the convexity we need to show that for
cach ¢ € (AL® + AL(D)T and for each z € Gt withz < cwehavez € (AL®) +
ALY+, Now, by (4) 0 < z < ¢ = uq + up where u3 € A® uy e A but then
by (8) of Proposition 1.1 we have £ = a1 + az where 0 < a; < u; (i=1,2).
This forces a; € A® = (AL®)*+ because AL®) is convex by Proposition 1.5.
The same conclusion for ag relative to A(C). For directedness note that every
element of AL(® + AL can be expressed as a difference of elements from
(AL(") +AL(C))+ 2_4(5) +A(c)- |

Now if H(G) # ¢ then H(G) can be partitioned into equivalence classes, each
consisting of related homogeneous elements. By Proposition 1.6, each equiva-




lence class can then be turned into a single antilattice. Proposition 1.7, implies
that antilattices representing distinct classes intersect trivially and Lemma 2.3
implies that the elements of two such classes commute. So we can talk about
the direct sum of these antilattices and this direct sum is a cardinal sum by
Lemma, 2.2. This leads us to the following theorem.

Theorem 2.4 Let G be a Riesz group such that H(G) # ¢. Then there exists
o mazimal set S of mutually disjoint elements of H(G) and the sum F(G) =
Y ses AL is the cardinal sum of all the (distinct) antilattices associated with
homogeneous elements of S and hence is a Riesz subgroup of G. Moreover,

(1) F(G) =< UA®) >=< H(G) >

(2) (F(G)F\{0} = Zyes A®) and 50 (F(G)) = Loes A

(3) F(G) is independent of the choice of S,

(4) Every homogeneous element of G belongs to F(G).

(5). F(G) is a factorial Riesz group.
Proof. We form S by choosing a homogeneous element from each equivalence
class. This ensures that § is maximal. Lemma, 2.3 in conjunction with Proposi-
tion 1.7 implies that F(G) is a direct sum. Lemma 2.2 implies that }° g AL
is 2 cardinal sum. That F(G) is a Riesz subgroup follows from the fact that
each of AL(®) is a Riesz subgroup. In case of (1) obviously F(G) C < H(G) > .
Now let z € < H(G) > . Then & = Y] €;x; where, for each 4, ¢; = 1 and =; is
a homogeneous element. Now each of the z; is related to one of 51, 52, ..., € 5,
where r < n. Using the fact that disjoint elements commute and we can regroup
the z; so that x = U1 +Us+...+U,. whereeach U; = 227:1 V1% where v;; = =1
and each z;; is related to s;. Now using Lemma 1.4, as in Proposition 1.5 we
can write U; = u; — v; where u;,v; € AG) U{0}. Thus z € 37 ALE) C F(G).
For (2) let & € (F(G))*\{0}. Then z € ¥, g AL(®) such that z > 0. So,
T = Uy + ug + ... +u, where u; € ALGY) and z = ug +ug + ... +u, > 0. This
forces u; > 0, by Lemmae, 2.2 Now as = # 0 some of the u; are strictly positive.
So, & = w11 +u12 + ... + Uik Where uy; ranges over the strictly positive members
of {uy,ug, ..., ur}. But then each of u;; is a homogeneous element related to s;
for some 8; € S. So & = uqy + Uzg + ... + Uk € Zle Als) C Doces A®. So
(F(@)™\{0} € 3 o5 A®. The reverse containment follows from the fact that
a finite sum of homogeneous elements is strictly positive. The rest is immedi-
ate. In case of (3) the independence of F(G) of the choice of S follows from
the fact that each equivalence class is represented by a unique antilattice as
remarked prior to Proposition 1.7. (4) is obvious, in view of (2). For (5) note
that by (2) every strictly positive element of F(G) is a sum of mutually disjoint
homogeneous elements. So, by definition, F(G) is a factorial Riesz group. [

Let G be a directed p.o. group, a convex normal directed subgroup H of G
ig called an o-ideal.

Theorem 2.5 Let G be a Riesz group with H(G) # ¢. Then F(G) is an o-ideal
of G.




Proof. We first note that if b and ¢ are two digjoint homogeneous elements of G,
then for any z € G, b° and ¢® are disjoint. Of course b* and ¢® are homogeneous
by Lemma 1.4. Suppose that b® and ¢® are nondisjoint then there exists a  such
that 0 < ¢ < 5, ¢® by Proposition 1.1(1). But then 0 < t™® < b, ¢ contradicting
the digjointness of b and c. But this means that H(G) and bence S is invariant
under inner automorphisms of G. This establishes the normality, in G, of F(G).
Convexity and directedness are proved on the same lines as in (5) of Lemma
2.3. O

Now comes the question: Given a Riesz group G, under what conditions is
G a cardinal sum of its antilattice subgroups associated with mutually disjoint
homogeneous elements? One answer is when G = F(G), but a more intriguing
answer can be supplied. For this let us call an antilattice subgroup A of G
a maximal antilattice subgroup if for any antilattice subgroup H of G with
A C H we have A = H. Let us also recall that F(G) =< H(G) > and make the
following elementary observation.

If B is any group under an operation *, and A is a subgroup of B then for all
axb € B\ A either ¢ € B\ A or b € B\ A. This, indirectly, leads to the conclusion
that a set § in a group B generates B if and only if for each proper subgroup
A of B we have (B\A4) N 5 5 ¢.

Theorem 2.6 A Riesz group G is a cardinal sum of its mazimal antilattice
subgroups if and only if for every proper subgroup H of G, G\H contains a
homogeneous element of G.

Proof. If G is an antilattice then every strictly positive element of G is homo-
geneous. Moreover if a proper subgroup H of a directed p.o. group G contains
all positive elements of G then H = G. So, for every proper subgroup H of
an antilattice G, G\H contains a homogeneous element. Now let G =3 ;-7 Li
be a cardinal sum of its subgroups L; where L; are maximal convex antilattice
subgroups. Then as L; N L; = {0} for ¢ # j the strictly positive elements of
L; for each i are unique to L; and for each b € L}, L; = AL®). Also for j # i,
if L; = AL{) then b and c are disjoint. (For if b A ¢ # 0 then there is ¢ such
that 0 < ¢ < b,c which would contradict L; N L; = {0}.) So every element
z of G con be written as £ = uq + Ug + ... + ¥, where u; = @; — b; where
ai,b; € (LT, (6 =1,2, ...,). Now if H is a proper subgroup of G and x € G\H
then = > (a; — b;) can be reduced to a single summand by the observation
prior to the statement of the theorem; which is a homogeneous element or the
negative of a homogeneous element. If this single element is a homogeneous
element we are done and if it is the negative of a homogeneous element say —#
where h is homogeneous, then since H is a subgroup, —h € G\H implies that
h € G\H. Conversely, if for every proper subgroup K of G, G\X contains a
homogeneous element the G =< H(G) > (= F(G)). O




3 Existence guestions

In the above two sections we have developed a general theory of factoriality in
Riesz groups, but it raises several questions:

(1) Are there (non-antilattice) Riesz groups with H(G) # ¢7 Is there a class
of Riesz groups G such that H(G) # ¢?

(2) Let G be Riesz with H(G) # ¢. Given z € G, how do we decide that
z € F(G)? '

We start with the second question first. Let us first note that if z = 0 then
z € F(G), definitely. So let us concentrate on z # 0. Now, as a Riesz group is
directed, we note that x = a — b where a,b € G*. Now, z € F(G) if and only
if z = a — b can also be written as z = a; — by where a3,b; € (F(G))T. So,
question (2) can be reformulated as:

(2°) Let G be Riesz with H(G) # ¢. Given z € G*\{0}, how do we decide
that z is a finite sum of homogeneous elements?

To these questions we address our attention now. However, on our way, we
tackle question 1 in the following lemma.

Lemma 3.1 Let G be o Riesz group and let 0 < x € G such that x exceeds at
most o finite number of mutually disjoint strictly positive elemenis of G. Then
z exceeds at most a finite number of mutually disjoint homogeneous elements of

G.

Proof. We first note the following two points: (1) In a Riesz group G, if for
z,y>0,zAy =0and 0 < u,v < zthenuAy =0and vAy =0. So, f uAv =0
then u, v,y are mutually disjoint. (2) If 0 < y¥ < z and if = exceeds at most a
finite number of mutually disjoint elements of G then so does y. [J

Next we observe that there are at most two possibilities for z: (i) For all
u,v with 0 < u,v < z there is ¢ with 0 < ¢ < u,v. In this case z is itself a
homogeneous element and we can say that = exceeds no two disjoint elements.
(i) There exist at least two disjoint strictly positive elements preceding . In this
case, let n be the largest number of mutuslly disjoint strictly positive elements
preceding . Then let {z1,2g,...,Zn} be such that 0 < z; <z with z; Az; =0
for i % j. We claim that each z; is & homogeneous element. ¥or if not and say,
by & permutation of z;, 3 is not homogeneous then there is at least one pair
T11, 719 With 0 < 213,212 < 71 such that z11 A 212 = 0. But then by note (1)
at the beginning of the proof {z11,Z12,T2,...,Zn} is a set of mutually disjoint
strictly positive elements preceding z. This contradicts the assumption that n
is the largest such number for z.

The above proof establishes the existence of a maximal set of mutually dis-
joint homogeneous elements preceding = > 0, but does not show how to get
to a homogeneous element preceding z. To isolate a homogeneous element we
adopt the following procedure from [5]. (Conrad used this procedure for lattice
ordered groups.):

Let z be a strictly positive element in a Riesz group G. If z exceeds no pair
of disjoint strictly positive elements of G then z is a homogeneous element and
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we have nothing more to establish. Now suppose that z is not homogeneous
then there is at least one pair y1,ys with 0 < y1,%2 < z such that y; Ays =0.
If any of y; is homogenous we are done. If none of the y;,y2 is homogeneous
then there exist yi1,%12 With 0 < y11,¥12 < y1 such that yu A yiz = 0. But
then Y11, %12, ¥2 is a set of mutually disjoint strictly positive elements preceding
z. Again, if y11 or y12 is a homogeneous element we are done. If not, then let
0 < w21,¥22 < y11 where ya1 A yoz = 0. This gives, as before, y21, ¥22,%12,Y2 28
a larger set of mutually disjoint strictly positive elements preceding z. Next if
none of {y1,Y22,Y12,Y2} is homogeneous we can add 0 < ¥s1,Y32 < Y21 with
ya1 Aysz = 0 to get {ys1,ysz, Y22, ¥i2, Y2} where ys1,¥s2,¥22, Y12, Y2 Drecede z.
This process can be repeated indefinitely, increasing by one the sets of nonhomo-
geneous elements preceding x. But since z can exceed at most a finite number
of mutually disjoint strictly positive elements, the procedure must stop after a
finite number of steps. Thus we arrive at a stage 0 < yn1,Yn2 < Y(n—1)1 Where
one of Yn1,Yn2, SAY Yniis such that for all 0 < u,v < yn1, wAv # 0. But then
Yn1 18 2 homogeneous element.

If a strictly positive element x of a Riesz group G exceeds at most 2 finite
number of mutually disjoint strictly positive elements we say that z satisfies
Conrad’s F-condition. Moreover the group G satisfies Conrad’s F-condition
if every strictly positive element of G does. We so designate this condition.
because it generalizes to Riesz groups the condition Conrad [5] defined for all
strictly positive elements of a lattice ordered (Lo.) group. A quick reward
that we get from imposing Conrad’s F-condition is that a Riesz group G that
satisfies Conrad’s F-condition has a nontrivial F(G). One wonders if something
like Conzad’s F-condition can be imposed on partially ordered groups that are
more general than Riesz groups. To see how Conrad’s F-condition can appear
in a more general situation see [6].

Now our task is to see if a strictly positive element = of G is expressible
as a sum of homogenecus elements. Having isolated a homogeneous element
h preceding z > 0 we have to see if we can write z = =z + hy where hy is
a homogeneous element related to A such that z3 A hy = 0. For this consider
S(h,z) = {k € A®):k < z}. We see that if S(h,z) contains hy such that by > s
for all s € S(h, ), then (z — hy) A hy = 0. For if (z — h1) A h1 # 0 there exists
¢ such that 0 < ¢ < (z — h1), k1, then ¢ is homogeneous by (2) of Proposition
1.1 and £ + hy is homogeneous, related to h by Propositions 1.1 and 1.2 and
0<t<z—hy gives hy < t+h1 < . So t + k1 € S(h,x), contradicting the
assumption that hy > s for all s € S(h,z). Conversely if £ = x1 -+ hy where by
is homogeneous related to A such that z; A ky =0, then obviously h; € S(A, x)
such that ki > s for all s € S(h,z). This discussion proves the following lemma.

Lemma 3.2 Let G be o Riesz group and let 0 < z € G. Suppese that h is o
homogeneous element of G with b < z. Then there exists a homogeneous element
hy related to h such that z = x1 + hy with 1 A by = 0 if and only if S(h,z)
contains on upper-bound.

The following theorem is now easy to prove, once we note that if there exists
another homogeneous element say k¥ < z then & < z; or & < hy. If k is not

11




related to hy then using the Riesz property and the properties of homogeneous
elements we can show that & < z;. Once this done the whole procedure can be
repeated all over again to get ¢ = z9 + k1 + h1.

Theorem 3.3 Let G be o Riesz group and let 0 < z € G. Then z € F(G) #f
and only if (i) = satisfies Conrad’s F-condition and (ii) for every homogeneous
element h < z the set S(h,z) contains an upper-bound. Consequently, G is a
factorial group if and only if every strictly positive element of G satisfies (i) and

(ii).

Remark 3.4 Since a lo. group is a special case of a Riesz group the above
result can be sharpened. Note that in a l.o. group an element h > 0 is homoge-
neous if and only if (0, h] is linearly ordered. (If h is homogeneous then for oll
z,y € (0,h] Ay € (0,h]. If z Ay does not equal either of z,y then  — (z AYY,
y—(zAy) € (0,h], but (z — (z Ay))A (y — (z Ay)) = 0 a contradiction. The
converse s obvious.) Indeed using the same reasoning we can show that in a
Lo. group G, A® (and hence ALY is linearly ordered, under induced order
from G, for homogeneous h. A homogeneous element, in a l.o. group, is called
¢ basic element in [5]. To show how the above result can be sharpened we prove
the following statement.

Proposition 3.5 Let G be a lattice ordered group, let 0 < z € G, and let b be
a basic element preceding . Then the following are equivalent:

(1) S(b,z) contains an upper bound,

(2) = = x1 + hy where 21 A hy =0 and by € A®),

(3) there exists a basic element h € A®) such that h £ .
Proof. Lemma 2.2 supplies the proof of (1) < (2). Moreover it is clear that
(2) = (3); just put h = 2h;. Now let us prove (3) = (1). Suppose that there
exists o € A® such that h £ z and let hy = h A x. Then for any k € S(b,z)
as b £ z and as k < z we conclude that k £ k, forcing & > k because h is 2
basic element. So, k € $(b,z) implies that k < h A k = hy. Finally by € S(b, @)
because h1 < z and h is homogeneous element related to b. [J

Corollary 3.8 Let G be a lattice ordered group. Then <z € F(G) if and only
if (i) = satisfies Conrad’s F-condition and (i) for every basic elemeni b < z
there exists o basic element h related to b such that h 7{_ xz. Moreover, G is
factorial if and only if each 0 < z € G satisfies (i) and ().

Recall that a p.o. group (G,~+, <) is Archimedean if in G, na < b for all
integers n implies that o = 0. Thus if (G, +, <) is Archimedean and 0 <z <y,
we can show that for some natural number n we have nz £ v.

Corollary 3.7 An Archimedean Lo. group G is factorial if and only if G sat-
isfies Conrad’s F-condition.

The proof can be extracted from the proof of the following.
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Corollary 3.8 Let G be a lattice ordered group that satisfies Conrad’s F-condition.
Then the following are equivalent:

(1) G is Archimedean,

(2) For every basic element b of G, b < z implies that for some n, nb % z.
Proof. (1) = (2) follows from the fact that G Archimedean supplies more than
(2). For (2) = (1), note that (2), in conjunction with the main hypothesis,
implies that G is factorial. Now, by Remarks prior to Proposition 3.5, for every
basic element b of G we have AL(® totally ordered under the induced order.
Now let nz < y in AL®) for all integers n. We claim that z # 0. For if z > 0
then z is a basic element. If z > ¥ we have the contradiction and if z < y then
by (2) there is a natural number m such that mz £ y a contradiction. Hence
z % 0. Next if z < 0 then —z is a basic element with —z < y, and again for
some natural number n we have n(—=z) £ y. Or, as n{—z) = —nzx, we conclude
that there is an integer —n such that —nz £ y. Now in a linearly ordered group
a member z that can neither be strictly positive, nor strictly negative must be
0. So for each basic element b € G, AL®} is a fully ordered Archimedean group,
hence o-isomorphic to 2 subgroup of the set of real numbers and hence Abelian
see [7, p. 45]. Now G, being factorial as already mentioned, G is a cardinal
sum of the AL(® as proved in Theorem 2.4 and so is an Abelian group. Now
let z,y be such that for all integers n we have nz < y. Let y =31 +y2+ ... ~Um
where y; € AL®), We show that each of y; is 0. Using the Riesz property we
can assume that ¢ = z1 + 29 + ... + T, wWhere nz; < y; foreach 1 <¢ < m
and for each integer n. Now each AL(®%) being Archimedean we have z; =0 as
shown apove. [

Part (3) of Proposition 3.5 gives the following result as a by-product.

Corollary 3.9 Let # > 0 be an element in a l.o. group and suppose that =
ezceeds a basic element b. If there is no basic element h € AL®) such that h £
then z exceeds every element of AL(®).

4 FExamples and links

We believe that questions pertaining to divisibility in commutative integral do-
mains and partially ordered groups are joined at the hip. The aim of this section
is $o explore the connections, pointing out the links of the work in this paper with
results on various types of unique factorization in commutative integral domains.
Tt seems pertinent to indicate the reasons for the "hip connection” remark. To
see the hip connection, recall that if D is an integral domain with quotient field
K then we can define a group G(D) = {kU : k € K\{0} = K*} = K*/U, where
U is the group of units of D, under multiplication (k1U)(keU) = k1koU. Now
G(D) can be partially ordered by ;U < kU < % € D (ie. ki |p ko). Now
if k1 |p ko then for any k& € K* we have kik |p kok. So the partial order is
compatible with the group multiplication and we have a partially ordered group
in G(D) which is called the group of divisibility for obvious reasons. Of course
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G(D)* ={dU:d € D*} and G(D) is directed because for every kU in G(D), k
can. be written as k = § where a,b € D. So kU = ¢U = (aU)(5U) 1.

To see the role of the group of divisibility of a (commutative) domain in
Jjoining the study of partially ordered groups and the study of divisibility it
seems necessary to bring in some more definitions. A fractionary ideal 4 of
D is a D submodule of K such that for some d € D* we have dA C D. Let
F(D) denote the set of nonzero fractionary ideals of D. For A € F(D) define
A™' = {z € K:5A C D}. Clearly for each A € F(D) we have A~* € F(D)
and (4711 = 4, € F(D). We can also define A, = N{kD: A C kD} [9].
In the p.o. group terminology, if A is a nonempty subset of 2 p.c. group G,
UAd)={xeG:z>aforallac A} and L(A) ={z € G:x <aforalla € A}.
Tor our purposes it is sufficient to see how, for ¢ # A C K* an equivalent of
U({aU :a € A}) can be used.

Note that U({aU € G(D):a € A}) = {zU € G(D):2U > aU for all a € A}
={2U € G(D) :2D C aD for all ¢ € A}. Now as 2D C ¢D means « |p z, and
since division is associate blind, we can associate with U({aU € G(D):a € A})
theset {z e K*:a|pzrforallac A} ={z € K*:a|paxforallac A} ={z ¢
K*:zcaDforallaec A} =n{aD:a € A\{0}} = u(A4). Call A C K™ bounded
from above if N{eD :a € A} # 0. So if A C K* is bounded from above then
aD :a € A\{0}} € F(D). While we are at it, it seems useful to give a ring
theoretic representation of L{A). Note that L(A) = {zU € G(D) : zU < aU for
allalU € A}. So L(A) = {zU € G(D):z |p aforall alU € A} = {zU : 2D D A}.
Since D O A would hold for z and all associates of x we can associate with
L{A) the subset [(A) = {z: 2D 2 A}. Of course A is (A is) bounded from
below, if and only if L{A) # ¢ ( I(A) # ¢).This discussion, complements a

similar discussion in [2] and supports the following statement.

Proposition 4.1 Let A be a nonempty subset of K*. If A is bounded frem above
then the ideal analogue of U({aU :a € A}) is N{aD:a € A}. If A is bounded
from below then u(i(A)) = m zD = A,.

CaD

A fractionary ideal A is an integral ideal if A C D. For ¢,b € D*, the GCD of
a, b, if it exists, is an element d € D such that d | a,b and for all 7 | a,b we have
r | d. Now recall that an integral domain D is a GCD domsin if for every pair
a,b € D*, GCD(a,b) = g exists. This GCD is unique up to associates. Now it
is well known that D is a GCD domain if and only if for every pair a,b € D*,
LCM(a,b) = ! exists. It is also known that D = aD NbD. Now as we have
seen above aD NbD = u({a,b}) which can be transiated to U({al, bU}). Now
ID = oD N bD means that a,b |[p [ and if a,b [p = then [ |p x. But this leads
to alU,bU < IU and if aU, bU < zU then IU < zU which lead to the conclusion
that IU = sup(al, bU) = oU V U and U({alU,bU}) = IU(G™). Now, a directed
p.o. group G is a lattice ordered group if and only if for each pair =,y € G+ we
have z Vy € G*. Thus if D is a GCD domain then G(D) is a lattice ordered
group. Conversely, since the above translation can be reversed, if G(D) is lattice
ordered then D is 3 GCD domain. Then there is an interesting result known as
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Krull-Kaplansky-Jaffard-Ohm theorem which states that we can associate with
each Abelian Lo. group G a Bezout domain D such that G = G(D). The reader
may look up [11] for the history of this theorem. Commutative ring theorists
exploited this result in constructing examples of integral domains with specific
divisibility properties, as indicated in [12].

The following proposition includes all the results on factorial l.o. groups
that we have proved directly or indirectly. It is interesting to note that while
the following theorem is stated for general (not necessarily commutative) lattice

ordered groups the results are reminiscent of the characterizations of semirigid
GCD domains [14]. '

Proposition 4.2 Let G be g lattice ordered group. Then the following are equiv-
alent.

(1) G is factorial according to our definition i.e. G = F(G).

(2) G is a cardinal sum of its maximal, convex, fully ordered subgroups.

(3) For every proper subgroup B of G, G\B contains a basic element.

(4) G satisfies Conrad’s F-condition and for all 0 < z € G, if & is a basic
element preceding z then there exists a basic element A that is related to b and
(5) G satisfies Conrad’s F-condition and for every basic element b € G, AL®)
is not bounded from above.

The above proposition is also related to [18], where a general theory of
factoriality was devised so that a factorial group according to that theory is a
lattice ordered group that is a cardinal sum of maximal convex, fully ordered
subgroups. Indeed, as we have witnessed in this section, the overall assumption
of the group being lattice ordered makes it much easier to define factoriality
in terms of basic elements. The message of this paper is that where there are
homogeneous (basic) elements in a Riesz (lattice ordered) group G, there is an
o-ideal F(G) that is factorial.

In [15] it was established that if in a GCD domain D a principal ideal zD
has only finitely many minimal primes then z can be uniquely expressed as
T = Z1%9...Z, where, for each ¢ with 1 < ¢ < n, x;D has a unique minimsl
prime. I would be of interest to have a l.o. group analog of this result.

Let us now look into some rather interesting cases where the Riesz property
combined with some nice factorization property delivers a lattice ordered group.

Theorem 4.3 Let G be o factorial Riesz group. If every homogeneous element
of G is a basic element, then G is o lattice ordered factorial group.

Proof. All we have to do is to note that in such a Riesz group any two related
homogeneous elements are comparable. This follows from the fact that if by
and by are related homogeneous elements then by + b2 is 2 homogenecus element
related to b; and by. But then by the condition by + b is basic and so by < bg
or by < by. Now to establish that G is lattice ordered we need to show that for
z,y € Gt we have zVy,zAy € GT. For this we note that x = 231 +Ta+..Tn, ¥ =
Y1+Yo-+...Ym Where z; are mutually disjoint basic elements and so are y;. Since z;
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commute being disjoint (resp. y; commute among themselves) we can rearrange
and assume that for 1 < i < 7, z; is related to y; and that for 4,7 > r , z;,y; are
disjoint. Construct 2 = (1 Vy1)+... 4+ (- V¥r) +Zrpi+ oo+ Tn+Yra1 + oo +Um
and w = (1 Ay1) + ... + (@r Ayr). It is now routine to verify that z =z Vy
and w=xAy. O

An element /£ > 0 in a p.o. group G may be called irreducible if for each z
with 0 < z < h implies that z = 0 or £ = h. In a Riesz group an irreducible
element acts like a prime. That is, if A > 0 is irreducible in a Riesz group and
h <z +ythen h < z or h < y. For, in a Riesz group A < z -y implies that
h=~h; +hy where 0 < Ay <z and 0 < hy < y. But then 0 < h;,hy < h and
because £ is irreducible precisely one of h; is equal to A and the other is 0.

A p.o. group G is said to satisfy the descending chain condition (DCC)
if every nonempty set of positive elements of & includes a minimal member.
Clearly if G satisfies DCC, then (a) every strictly positive element of G exceeds
an irreducible element of G and (b) every strictly positive element of G can be
expressed as a sum of irreducible elements of G. These observations lead us to
the following result.

Theorem 4.4 Let G be o Riesz group that satisfies the DCC. Then G is an
Abelian lattice ordered factorial group that is a cardinal sum of its cyclic sub-
groups generated by irreducible elements.

Proof. We note that every irreducible element is a homogenecus element. Now
let A be a homogeneous element of G. Then by DCC, h exceeds an irreducible
element and because of homogeneity h cannot exceed two or more disjoint irre-
ducible elements. Using DCC and homogeneity of & we can show, as indicated
below, that h = np for some natural number n. From this we conclude that
every homogeneous element is basic. By Theorem 4.3, to show that G is lattice
ordered all we need to show is that G is factorial. For this we proceed as follows.
Let 0 < = € G be typical strictly positive element of G. By the chain condition
z is expressible as a finite sum of irreducible elements and so exceeds at most
a finite number of mutually disjoint clements. That is z satisfies Conrad’s F-
condition. This takes care of (i) of Theorem 3.3. For (ii) we proceed ss follows.
Let 0 < =z € GG, then we have seen that x exceeds an irreducible element p.
Consider the set § = {x —rp > 0:7 € N}. Then by the chain condition S has a
minimal positive element x — rp. Because of the minimality z —rp is either 0 (in
which case 2 = rp, true in case z is homogeneous.) or disjoint from p. In either
case we have ¢ = = — rp + rp where (z — rp) Arp = 0 and by Lemma 3.2 this
is equivalent to (ii) of Theorem 3.3. So G is factorial and hence lattice ordered.
Now if p is an irreducible element of G then every strictly positive element of
AL®) is an integral multiple of p as shown above. So AL® is cyclic and hence
Abelian. Finally as G is factorial, by Theorem 2.4 there is a maximal set S of
mutually disjoint homogeneous elements such that G is a cardinal sum of ALY,
where s ranges over S. But for each s we have s = np for some irreducible p and
so ALG) = AL® . This forces G to be a cardinal sum of Abelian groups and
hence makes it Abelian. O
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Remark 4.5 The above theorem is a Riesz group version of Theorem 21 of
[3]. To see another link let us recall that an integral domain D is called a pre-
Schreier domain if the group of divisibility of D is a Riesz group. In other words
for z,y,z € D\{0}, z|yz implies that © = rs such that rly and sz, see [16] for
various characterizations of a pre-Schreier domain. Call an integral domain
D atomic if every nonzere nonunit of D is expressible as a finite product of
irreducible elements (atoms). Now an atomic pre-Schreier domain is ¢ UFD
see Corollary 1.8 of [16], see also Cohn [}]. However, Theorem 4.4, is slightly
more than a mere translation, as Corollary 1.8 of [16] is in the framework of
commutative rings.
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