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Abstract. Let D be an integral domain with quotient �eld K: Call R an
overring of D if D � R � K and call an overring R of D t-linked over
D if, whenever for a �nitely generated ideal A of D we have A�1 = D we
have (AR)�1 = R: In this note I review some results on PVMDs in terms
of t-linked overrings and show that for D a locally GCD PVMD every �at
overring of D is a quotient ring of D if and only if for each �nitely generated
nonzero ideal A of D there is an element a and a natural number n such that
An � (a) � (A�1)�1: This may serve as an analogue of the well known result
that every overring of D is a quotient ring if and only if for every nonzero
�nitely generated ideal A of D there exist an element a and a natural number
n such that An � (a) � A:

1. Introduction

Let D be an integral domain with quotient �eld K: Call R an overring of D
if D � R � K and an overring R of D t-linked over D if, whenever for a �nitely
generated ideal A of D we have A�1 = D we end up with (AR)�1 = R: An
overring R of D is a �at overring if R is a �at D module. It is well known that
R is a �at overring of D if and only if ((y) : (x))R = R for all x=y 2 R, see, e.g.,
[22, Proposition 4.10] and x; y 2 Dnf0g: We also know that if R is D-�at and if
x1; :::; xr 2 Knf0g; then (\(xi))R = \xiR see, e.g., Theorem 1 of [21].

CallD an f-qr domain if every �at overring R ofD is a quotient ring ofD: Also
call an integral domain D an almost GCD domain if for each pair x; y 2 Dnf0g
there is a natural number n = n(x; y) such that xnD \ ynD is principal. After
having shown in [30] that if D were an integrally closed AGCD domain, every �at
overring of D was a quotient ring of D I took a steep angle of �ight and my article,
[30], ended with some, apparently, unsupported and unguarded claims laced with
a lot of wishful thinking and hopes that one could �nd for �at overrings of PVMDs
and Krull domains results similar to those for overrings of Prufer domains and
Dedekind domains whose overrings are quotient rings. That is I claimed that a
Krull domain D had a torsion divisor class group if and only if every �at overring
of D was a quotient ring and hoped that for PVMDs one could �nd a condition
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similar to the one found for Prufer domains, so that for a PVMD satisfying that
condition every �at overring was a quotient ring. It turned out that I could not
�nd a reference for my claim about Krull domains, nor a proof. Later, the notion of
t-linked overrings presented itself as a more potent notion than the �at overrings,
see [10] for details. The aim of this article is to report on what I did to verify my
claims and to show that what I hoped for PVMDs can be easily pulled o¤ for locally
GCD PVMDs (or generalized GCD domains of [1]) and to indicate that perhaps
t-linked overring approach is the way to go as far as PVMDs are concerned. (That
is, a t-linked overring is a stronger alternative to a �at overring.) Theorem 2.17,
Corollary 2.18, Remark 2.19 seem to indicate that when I proposed the study of
t-linked overrings, I was hoping to �nd some way of making sure that I was perhaps
right, in making the claims that I did in [30]. But alas, I could not pull that
o¤, because of a counter example mentioned in Remark 2.19 of [10]. I have also
included some simpler proofs of some results on t-linked overrings.

Since a �at overring R of D is t-linked over D as well [10], it seems pertinent to
treat t-qr (every t-linked overring is a quotient ring) domains. Yet to see the proof,
clearly, one needs to know the techniques involved in the proof and the terminology
that one may not be familiar with, even before seeing the plan of the paper.

Let F (D) be the set of nonzero fractional ideals of D. A star operation is a
function A 7! A? on F (D) with the following properties:

If A;B 2 F (D) and a 2 Knf0g, then
(i) (a)? = (a) and (aA)? = aA?.
(ii) A � A? and if A � B, then A? � B?.
(iii) (A?)? = A?.
We may call A? the ?-image ( or ?-envelope ) of A. An ideal A is said to be a

?-ideal if A? = A. Thus A? is a ?-ideal (by (iii)). Moreover (by (i)) every principal
fractional ideal, including D = (1), is a ?- ideal for any star operation ?.

For all A;B 2 F (D) and for each star operation ?, we can show that (AB)? =
(A?B)? = (A?B?)?. These equations de�ne what is called ?-multiplication ( or
?-product). Associated with each star operation ? is a star operation ?f de�ned
by A?f =

S
fJ?j 0 6= J is a �nitely generated subideal of Ag, for each A 2 F (D).

We say that a star operation ? is of �nite type or of �nite character if ? = ?f , i.e.,
A? = A?f for each A 2 F (D).

De�ne A�1 = fx 2 KjxA � Dg, for A 2 F (D). Thus A�1 = \a2Anf0g( 1a ).
Also de�ne Av = (A�1)�1 and At = Avf =

S
fJvj 0 6= J is a �nitely generated

subideal of Ag. By the de�nition At = Av for each �nitely generated nonzero ideal
of D: The functions A 7! Av and A 7! At on F (D) are more familiar examples
of star operations de�ned on an integral domain. A fractional ideal A 2 F (D) is
?-invertible if (AA�1)? = D: An invertible ideal is a ?-invertible ?-ideal for each
?-operation ? and so is a v-ideal. A v-ideal is better known as a divisorial ideal
and using the de�nition it can be shown that Av = \x2Knf0g

A�xD
xD. The identity

function d on F (D), de�ned by A 7! A is another example of a star operation.
Indeed a "d-invertible" ideal is the usual invertible ideal. There are of course many
more star operations that can be de�ned on an integral domain D. But for any
star operation ? and for any A 2 F (D); A? � Av. Some other useful relations
are: For any A 2 F (D); (A�1)? = A�1 = (A?)�1 and so, (Av)? = Av = (A?)v.
Using the de�nition of the t-operation one can show that an ideal that is maximal
w.r.t. being a proper integral t-ideal is a prime ideal of D, each nonzero ideal A of
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D with At 6= D is contained in a maximal t-ideal of D and D = \DM , where M
ranges over maximal t-ideals of D: The set of maximal t-ideals of D is denoted by
t-Max(D). An integral domain D is said to be a Prufer v-multiplication domain
(PVMD) if every nonzero �nitely generated ideal of D is t-invertible. For more on
v- and t-operations the reader may consult sections 32 and 34 of Gilmer [16]. I
plan to study PVMDs in connection with t-linked overrings in Section 2, indicating
also that t-linked has more "teeth" than �at. In Section 3, I study cases where �at
coincides with t-linked.

2. t-linked overrings and PVMDs

As I have said above I was looking for ways to undo my mistake. I had been
going over several ways to get to �at overrings or something close to them. The idea
of t-linked overrings sounded somewhat preposterous, but apparently that was the
only thing on my mind when Evan Houston told me that David Dobbs was coming
to UNC Charlotte, NC, and he was fast thinking of some problems to work on,
with him. I said, "Why don�t we work on extensions D � R such that if A�1 = D
implies (AR)�1 = R for all nonzero �nitely generated ideals A of D?"
He looked at me quizzically for a bit, but being a sharp man that he is, soon grasped
the idea. So, the next day when Dobbs came he (Evan) opened the session with,
"Muhammad here thinks that we should study ...". The idea of "study" was sort
of "collective brain storming". Now the resulting write up being written by David
Dobbs, who in my opinion is at par with Carl Faith, at least in writing style, is
bound to be in a scholarly style and a bit hard to understand. So I have chosen
to include some of the results with proofs that I could understand. Personally I
approach PVMDs via Prufer domains.

An integral domain D is a Prufer domain if every nonzero �nitely generated
ideal of D is invertible. The so called Prufer v-Multiplication Domains or PVMDs
are a generalization of Prufer domains. They were introduced as a sort of curiosity
by Dieudonne in [9], picked up by Bourbaki in [4] as Pseudo Pruferian and stud-
ied as a class of domains by Gri¢ n [19] as v-multiplication domains. They got
their current name in Gilmer�s book [16] and were called PVMDs in [29]. After
[19], they got studied as a generalization of Prufer domains in [23]. The trend of
studying PVMDs as a generalization of Prufer domains continued with the study
of t-linked overrings in [10]. So, as a prelude to our study of PVMDs I would look
at Prufer domains. We call a a ring R containing D; as a subring, an extension of
D. Moreover, R is a simple overring of D; if R = D[u] for some u 2 Knf0g:

Theorem 1. (Theorem 6.13 of [22]) An integral domain D is a Prufer domain
if and only if every overring of D is integrally closed.

Corollary 1. A domain D is a Prufer domain if and only if every simple
overring of every overring of D is integrally closed.

Proof. If D is a Prufer domain, then it is well known that every overring
R of D is integrally closed and so is every simple overring of every overring R
of D: Conversely, suppose that every simple overring of every overring R of D is
integrally closed. Let P be a maximal ideal of D. We shall show that DP is a
valuation ring. Let u 6= 0 belong to the quotient �eld K of D. By hypothesis,
DP [u

2] is integrally closed, and since u is integral over DP [u2]; we conclude that
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u 2 DP [u
2]. Then there are elements v0 , . . . , vn 2 DP such that u =

v0+v1u
2+ :::+vnu

2n...(I). If we multiply the previous equation ((I)) by v2n�10 =u2n,
we obtain (v0=u)2n� (v0=u)2n�1 +v1v0(v0=u)2n�2+ :::+vnv2n�10 = 0. Thus v0=u is
integral over DP , hence v0=u 2 DP : If v0=u is a unit in DP ; then u 2 DP . If v0=u
is not a unit in DP , then 1 � (v0=u) is a unit in DP : If we multiply the equation
expressing u in terms of powers of u2; that is (I), throughout by 1=u2n; we get
(1� v0=u)(1=u)2n�1 � v1(1=u)2n�2 � :::� vn = 0: Since (1� v0=u) is a unit in DP
we conclude that 1=a is integral over DP and so is in DP : Now, for any u 2 Knf0g
we have u 2 DP or u�1 2 DP : Thus DP is a valuation domain. Since P was an
arbitrarily chosen maximal ideal, we conclude that D is a Prufer domain. �

Remark 1. The above corollary has been included so that we can "lift" the
proof of Theorem 6.13 of [22] as an example of a simple and direct proof. The
following lemma was provided to me by Evan Houston.

Lemma 1. Let D be an integral domain and let P be a prime t-ideal of D: Then
for every u 2 Knf0g the ring DP [u] is t-linked over D:

Proof. Let T = D[u] and let P be a prime t-ideal of D: Then by Propotion
2.9 of [10], TDnP = D[u]DnP is t-linked over D: But D[u]DnP = DP [u]. This follows
because if we set S = DnP; then S is a multiplicative set of D[u] and D � D[u]:
So DS � D[u]S and as u belongs to the RHS we have DS [u] � D[u]S . On the
other hand x 2 D[u]S implies that x = f(u)=s for some s 2 S and f(u) 2 D[u]:
But f(u) 2 DS [u] and s is a unit in DS [u]; forcing x = f(u)=s in DS [u]: Thus
DS [u] = D[u]S or substituting for S = DnP we have DP [u] = D[u]DnP : �

Theorem 2. An integral domain D is a PVMD if and only if every t-linked
overring of D is integrally closed.

Proof. Let D be a PVMD and let T be any t-linked overring of D: Then by
Proposition 2.13 of [10] T = \TDnP where P varies over prime t-ideals of D: Now
for each prime t-ideal P of D; TDnP is an overring of DP ; a valuation ring, and
so TDnP = D} for some prime ideal } � P: Since D}; being an overring of DP is
a valuation domain, } must be a prime t-ideal [29]. Thus T is what was termed
as a subintersection in [23] of the PVMD D: Being an intersection of valuation
domains T is integrally closed. Conversely suppose that every t-linked overring of
D is integrally closed. Let u 2 Knf0g and let P be a maximal t-ideal of D: Then,
by Lemma 1 DP [u2] is t-linked over D and so by the condition DP [u2] is integrally
closed. But then u being integral over DP [u2] we conclude that u 2 DP [u2]: Taking
steps as in the proof of Corollary 1 we show that DP is a valuation domain for each
maximal t-ideal, a characteristic property of PVMDs. �

Just for keeps sake we keep the following corollary.

Corollary 2. An integral domain D is a PVMD if and only if every simple
extension of every t-linked overring of D is integrally closed.

Given a nonzero ideal A of D we can de�ne the ideal transform T (A) = fx 2
KjxAn � D; for some natural number ng: The ideal transform (A-transform) was
introduced by Nagata in [25] and [26] and has been studied by a number of authors
of which Gilmer and Huckaba [17] are my favorites. As indicated in [25] T (A) is
always an overring of D: Brewer [7] has shown that if A is a �nitely generated
ideal and if F = fP�g is the family of prime ideals which do not contain A, then
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T (A) = \P2FDP� . Also if k is a positive integer such that Ak � B, then T (A) �
T (B), [17, Proposition 1]. Let�s add to these results the following observations.

Lemma 2. Let A be a v-ideal of �nite type and let F = fP�g be a family of
prime t-ideals not containing A: Then T (A) = \P2FDP� :

Proof. Let�s �rst note that, by the de�nition of an ideal transform, if A is
a nonzero �nitely generated ideal then T (A) = T (Av): (Since A � Av we have
T (A) � T (Av): Now let x 2 T (A); then xAn � D which means x(An)v � D:
But (An)v = ((Av)

n)v and this forces x(Av)n � D forcing x 2 T (Av):) Next
T (Av) = fx 2 Kjx(Av)n � Dg implies that T (Av) � DP for any prime t-ideal
P not containing A. Thus T (Av) � \P2FDP : Finally let y 2 \P2FDP : Then
y = u

vwhere v does not belong to Q. So (v) : (u) is not contained in Q. So A is
contained in

p
((v) : (u)). Since A is �nitely generated we have An � (v) : (u). for

some n. But then (u=v)An � (u=v)((v) : (u)) � D, forcing y 2 T (A). �

Note that if� � t-Spec(D), for an arbitrary domainD, then R = \P2�DP was
called a subintersection in Section 5 of [23] and it was shown that a subintersection
of a PVMD is a PVMD . This was in analogy with " Every subintersection of a
Krull domain is a Krull domain", [15].

Lemma 3. Let D be a PVMD with quotient �eld K and let x 2 K: Then
T (D : x) is a PVMD.

Proof. Let x = b=a: Then, since D is a PVMD, (D : x) = (a) :D (b) = Av
where A is a �nitely generated ideal. But then by Lemma 2 T (D : x) = T ((a) :D
(b)) = T (Av) = T (A) = \DP� where P� ranges over prime t-ideals not containing
A: By Proposition 5.1 of [23], T (A) = T (Av) is a PVMD. �

Lemma 4. (Proposition 2.16 of [10]) Let D be a PVMD, let A 2 F (D) be
�nitely generated and let H be a subintersection of D. Then (AvH)vH = (AH)vH ,
where vH denotes the v-operation on the fractional ideals of H.

The following result was stated in [11], with a proof that seems a little hard to
me.

Proposition 1. An integral domain D is a t-qr domain if and only if D is
a PVMD such that for each nonzero �nitely generated ideal A of D there is an
element a 2 Av such that An � (a) for some positive integer n:

Proof. Suppose that D has t-qr. Let P be an associated prime of a principal
ideal of D and consider DP : Since DP is t-local, every overring R of DP is t-linked
over DP and hence over D: Since D has t-qr, R is a quotient ring of D and hence
of DP : But then DP has the qr property and so must be a valuation domain. This
makes D an essential domain with the t-qr property. So every t-linked overring of
D is integrally closed and this forces D to be a PVMD, Theorem 2. Next let A
be a nonzero �nitely generated ideal of D: Set T = T (A) = T (Av): By Lemma 2
T is t-linked over D and so T = \DP� ; where P� ranges over prime t-ideals not
containing A: By the condition, T has to be a quotient ring and hence there is a
multiplicative set S of D such that T = DS : On the other hand as T = T (Av) we
must have AvT = T: But that means AvDS = DS ; which in turn means Av\S 6= �:
Let a 2 Av \S; then 1=a 2 T = T (Av) = T (A): So (1=a)An � D: Or An � (a) and
thus An � (a) � Av:
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Conversely, let D be a PVMD satisfying the given condition, let H be a t-linked
overring of D and put S = U(H)\D where U(H) denotes the set of units of H:We
need to show thatH = DS :We note that x 2 T (D : x): BecauseD is a PVMD, there
is a nonzero �nitely generated integral ideal A such that (D : x) = Av; Theorem
3.3 of [23]. On the other hand since D is a PVMD, H is t-linked over D if H is a
subintersection and by Lemma 4 ((D : x)H)vH = H, giving ((D : x)nH)vH = H; for
all natural numbers n: Since An � (a) � Av we have ((D : x)nH)t � aH; forcing
H � aH and making a a unit of H: But then a 2 S: Also since An � (a) � Av; by
Proposition 1 of [17] we have T (A) � T (a) � T (Av); forcing T (A) = T (a) = T (Av);
because T (A) = T (Av): Next x 2 T (A) = D[1=a] forces x = r=an, where r 2 D:
Hence x 2 T (D : x) implies that x 2 DS : Thus for each x 2 H we have x 2 DS ; so
H � DS : Finally D � H and S being a set of units of H; we have DS � H: �

Corollary 3. If D has the t-qr property, then D has the f-qr property. The
reason is that a �at overring is t-linked. So if every t-linked overring is a quotient
ring, then so is every �at overring.

Corollary 4. Every t-linked overring of a GCD domain D is a quotient ring
of D and hence a GCD domain. The reason is (d1; :::; dn) � (d) = (d1; :::; dn)v:
Consequently, every �at overring of a GCD domain D is a quotient ring of D and
hence a GCD domain.

Call an element a 2 Dnf0g primal if for all b; c 2 Dnf0g ajbc implies that
a = rs where rjb and sjc: A domain all of whose nonzero elements are primal
is called a pre-Schreier domain and an integrally closed pre-Schreier domain was
called a Schreier domain in [8]. Note that if D is pre-Schreier then Clt(D) is trivial,
[5]. Call a nonzero element p of D completely primal if every factor of p is again
primal. A prime element is an example of a primal element. According to Cohn
[8], if S is a set multiplicatively generated by completely primal elements of an
integrally closed domain D such that DS is a Schreier domain, then D is a Schreier
domain. This Theorem is usually referred to as: Cohn�s Nagata type Theorem for
Schreier domains.

Corollary 5. Let D be a pre-Schreier domain. Then D has the t-qr property
if and only if D is a GCD domain.

Proof. Let D be pre-Schreier. The t-qr property makes D a PVMD and
a pre-Schreier PVMD is a GCD domain, [5]. Corollary 4 may be used for the
converse. �

Call D an AGCD domain if for each pair a; b of nonzero elements there is a
positive integer n such that (an; bn)v is principal. It was shown in [2] that D is
an AGCD domain if and only if for each �nite set of nonzero elements a1; a2; :::; ar
there is a positive integer n such that (an1 ; a

n
2 ; :::; a

n
r )v is principal. It had already

been shown in [30, Theorem 3.9] that an integrally closed domain D is an AGCD
domain if and only if for each �nite set of nonzero elements a1; a2; :::; ar there is a
positive integer n such that ((a1; a2; :::; ar)n)v is principal. Let T (D) denote the set
of t-invertible t-ideals of D and let P (D) be the set of nonzero principal fractional
ideals of D: Then T (D) is a group under t-multiplication and P (D) a subgroup of
T (D): The quotient group Clt(D) = T (D)=P (D) is called the (t-) class group. It
was shown in [30], that if D is an integrally closed AGCD domain then Clt(D) is a
torsion group. This result was later generalized in [2] to: If D is an AGCD domain
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then Clt(D) is torsion. It was also shown in [30] that if D is an integrally closed
AGCD domain, then every �at overring of D is a quotient ring of D and hence an
integrally closed AGCD domain. This result too was generalized in Theorem 3.5 of
[2] to: If D is an AGCD domain, then every �at overring of D is a localization.

Corollary 6. Let D be an AGCD domain. Then D has the t-qr property if
and only if D is an integrally closed AGCD domain.

Proof. Let D be an AGCD domain. Suppose that D has the t-qr property.
Then D is a PVMD by Proposition 1 and a PVMD is integrally closed, being an
intersection of valuation domains. Conversely an integrally closed AGCD domain is
a PVMD with torsion t-class group, see, e.g., [30] and that translates to (An)v = aD
for each �nitely generated nonzero ideal A: �

Corollary 6 seems to indicate the di¤erence between the t-linked overring ap-
proach and the �at overring approach. For, given an AGCD domain that is not,
even, integrally closed every �at overring is a quotient ring [2, Theorem 3.5]. On
the other hand for every t-linked overring to be a quotient ring, the domain has to
be a PVMD satisfying a certain condition, detailed in Proposition 1. However, if D
satis�es Proposition 1, there seems to be no guarantee that D is an AGCD domain.

In [18, Corollary 2.6], Gilmer and Ohm show that a Noetherian domain D has
the qr (every overring is a quotient ring) property if and only if D is a Dedekind
domain such that every ideal of D has a power that is principal. We prepare to
give below a �t-analogue�of this result. Recall that D is called a Mori domain if
D satis�es ACC on its integral divisorial ideals. Indeed as a Mori domain can be
regarded as one each of whose t-ideals is t-�nitely generated we can regard a Mori
domain as a t-analogue of a Noetherian domain.

Corollary 7. If D is a Mori domain that has the t-qr property, then D is a
Krull domain such that for every nonzero ideal A of D there is a positive integer n
making the ideal (An)t principal. Conversely if a domain D has the property that
for every nonzero ideal A of D there is a positive integer n making the ideal (An)t
principal, then D is a Mori (actually Krull) domain with the t-qr property.

Remark 2. The analogy �ts as the Krull domains are often called t-Dedekind
domains.

Proof. If D is Mori with t-qr property then D is a Krull domain with the t-qr
property, because being a t-qr domain, D is a PVMD and a PVMD Mori is Krull.
That means D is a Krull domain such that for each �nitely generated nonzero ideal
I there is a positive integer n and an a 2 Iv such that In � (a): Take I to be such
that Iv is a height one prime ideal P . (In a Krull domain, every nonzero ideal of D
is t-invertible, [24, Theorem 2.5] and so a v-ideal of �nite type.) Then In � (a) � P
leads to (Pn)v � (a) � P: Since D is Krull P is t-invertible. Being a t-invertible
prime t-ideal, P is a maximal t-ideal. Finally because t = v in a Krull domain we
can write the previous inequality as (Pn�1)v � (aP�1) � D and if n > 1; we must
have (Pn�1)v � (aP�1) � P as P is a maximal t-ideal. Indeed for every r < n
we have (Pn�r)v � (aP�r)v � P: This forces (Pn)v = (a): Thus if D is a Mori
domain with the t-qr property, then D is a Krull domain for each of whose height
one primes P there is a number n such that (Pn)t is principal. Now it is well known
that for every nonzero ideal A of a Krull domain D we have At = (P

n1
1 Pn22 :::Pnrr )t

where Pi are height one prime ideals of D; [3, Theorem 8]. When, as in this case,
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the Krull domain D has the t-qr property, (P r)t is principal for some r which may
be called the order of P: Now if n is a positive integer divisible by all the orders
si of Pi; then (An)t = ((At)

n)t = (((Pn11 Pn22 :::Pnrr )t)
n)t = (Pnn11 Pnn22 :::Pnrr )t

= ((P s11 )t)
nn1=s1 :::(P srr )t)

nnr=sr )t. So (An)t is principal for all nonzero �nitely
generated ideals A of D:

Conversely if D is a domain that has the property that for each nonzero ideal
A of D there is a positive integer n such that (An)t is principal then D is Krull [20]
and Krull is Mori. Because An � (An)t � (A)t and because over a Krull domain
t = v it becomes true that a domain some t-powers of whose nonzero ideals are
principal also has the property that for each nonzero �nitely generated ideal I there
is an n such that for some a 2 Iv we have In � (a) and by Proposition 1, D has
t-qr. �

It may be noted that for a Krull domain D a t-linked overring is the same as
a subintersection. Thus Theorem 1 of [27] (or Theorem 6.7 of Fossum [15]) is a
special case of Corollary 7.

With these results in the bag, hopes are up for my wild claims at the end of
[30] being true. Now there is no hope that if every �at overring of D is a quotient
ring, D should be anything close to being a PVMD. For, say, if D has only �nitely
many nonzero prime ideals then every �at overring of D is a quotient ring of D
and there is no guarantee of such a domain being a PVMD. (That �at overrings
of domains with �nitely many primes are quotient rings follows from the following
statement from Wajnryb and Zaks [27]: For any family fPg [ fP�g�2I of prime
ideals of D, if P � [P� , then P is contained in some P�. ) So we must restrict to
PVMDs.

3. When "�at" and "t-linked" coincide

Let�s call D a Special PVMD (SPVMD) if every t-linked overring of D is �at.
According to Theorem 2.17 of [10], D is an SPVMD if and only if for every �nitely
generated nonzero ideal A of D; AvR is divisorial for each t-linked overring R of D:

Thus as a corollary to Proposition 1 we can state and prove the following result.

Proposition 2. Let D be an SPVMD. Then D being an f-qr domain implies
that for each nonzero �nitely generated ideal A of D there is a natural number n
such that An � (a) for some a 2 Av: Conversely if D is a PVMD that satis�es �:
for each �nitely generated nonzero ideal A there is x 2 Av and a positive integer n
such that An � (x) � Av; then D is a t-qr domain and hence an f-qr domain.

Proof. Because in an SPVMD t-linked is �at we have f -qr = t-qr over an
SPVMD. So if D is an SPVMD we have, by Proposition 1, for every nonzero
�nitely generated ideal A there exist a natural number n and an element a such
that An � (a) � Av: Conversely suppose the given condition holds. Let R be a
�at overring of D and let S be the set of those elements of D that are units in R:
Then obviously DS � R: We show that for any a; b 2 D ((a) : (b))R = R implies
((a) : (b))DS = DS :

Let ((a) : (b))R = R or b=a 2 R; because R is �at. Because D is a PVMD
((a) : (b)) is a v-ideal of �nite type. Let A be a �nitely generated ideal such that
((a) : (b)) = Av. By the condition � on D we have a positive integer n such that
An � (x) � ((a) : (b)) and this leads to ((a) : (b))n � (x) � ((a) : (b)): Extending to
R we have ((a) : (b))nR � (x)R � ((a) : (b))R forcing xR = R and the conclusion
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that x is an element of D and a unit in R that lies also in ((a) : (b)): But then
((a) : (b))DS = DS forcing b=a 2 DS : �

The characterization of SPVMDs does not seem to separate them visibly from
general PVMDs. So, in the absence of a proof that each PVMD is an SPVMD we
are reduced to using special cases. The easier to use special case that presents itself
is the one of locally GCD PVMDs, also known as the generalized GCD domains.
Recall from [1] that D is a G-GCD domain if for all a; b 2 Dnf0g the ideal aD\ bD
is invertible. Indeed if D is a G-GCD domain, then for all a; b 2 Dnf0g we have
(a) : (b) invertible. That a G-GCD domain is an SPVMD can be established as
follows.

Proposition 3. (cf Theorem 5 of [1]) Let D be a G-GCD domain. Then the
following are equivalent for an overring R of D:

(1) R is a �at overring,
(2) R is t-linked,
(3) R is a generalized transform,
(4) R is an invertible ideal transform,
Moreover a generalized transform of a G-GCD domain is a G-GCD domain and

a G-GCD domain is an SPVMD.

Proof. The equivalence of (1) (3) and (4) has been established in [1]. We
show that (1) , (2).

(1) ) (2). This follows from Proposition 2.2 (c) of [10].
(2) ) (1). R being t-linked over D implies that R = \RDnP , where P ranges

over prime t-ideals of D; [10, Propoisition 2.13]. Since RDnP � DDnP = DP which
is a valuation ring, because D is a PVMD, we conclude that R is a subintersection
of D: Now as D is a G-GCD domain, Av is invertible for each nonzero �nitely
generated ideal of D. But then AvR is invertible and hence divisorial. Now by
Theorem 2.17 of [10] we have the conclusion that R is �at. �

Corollary 8. Let D be a G-GCD domain. Then D is an f-qr domain if and
only if for each nonzero �nitely generated ideal A of D there is an element a 2 Av
such that An � (a) � Av for some positive integer n:

Proof. The fact that a G-GCD domain is an SPVMD will su¢ ce as a proof,
via Proposition 2. �

For those who may want a full blown proof in action here�s an ab-initio proof
in the style of Theorem 5 of Pendleton�s [28].)

Proposition 4. Let D be a G-GCD domain. Then D is an f-qr domain if
and only if for each nonzero �nitely generated ideal A of D there is an element
a 2 Av such that An � (a) � Av for some positive integer n:

Proof. Let D be an f -qr domain. Following Theorem 2.5 (g) of [18], let
A = (c1; :::; cn)v: Then, as D is a G-GCD domain, we have A = (a1; :::; ar): being
invertible and A�1 = (b1; :::; br) with

P
aibi = 1: Let B be the ideal transform of

A: By de�nition B = fx 2 KjxAn � Dg = [(A�1)n = [(An)�1 = D[b1; :::; br]:
Next, B is a ring of quotients of D with some multiplicative set S: Then there is
a 2 S such that bi = ci=a; 1 � i � r: Then a = a(

P
aibi) =

P
aici 2 A: Moreover
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a 2 S implies 1=a 2 B: So, (1=a)An � D for some n: But this means An � (a) for
some n:

Conversely suppose D satis�es the condition stated in the theorem for �nitely
generated nonzero ideals A: An � (a) � Av for some n and some a 2 D: Now let
H be a �at overring of D. We shall show that H = DS where S = U(H) \D: Let
y = u=v 2 H: Since H is �at, for B = (v) : (u) = Av where A is �nitely generated,
we have ((v) : (u))H = H: That means ((v) : (u))nH = H for all natural numbers
n: By the condition An � (a) and so (An)v � (a): Or ((v) : (u))n � (a); Thus
H = ((v) : (u))nH � aH; making a a unit in H: Next, again, for y 2 H we have
y = u=v and B = (v) : (u) = Av we have T (A) = T (a) = D[1=a] and so every
element in T (A) = T (Av) is of the form r=an where a is a unit in H: Also as
a 2 Av we have a 2 D and so a 2 S: But y = u=v 2 T (A) = T (Av) because
(u=v)((u : (v)) � D: This gives y = r=s where s 2 S: Thus for each y 2 H we have
y = r=s 2 DS : Thus H � DS : On the other hand, as D;S � H we have DS : �

Now still restricting to PVMDs we note that if D is a PVMD with torsion t-
class group then every �at overring of D is a quotient ring as shown in [30]. Recall
that when D is Krull Clt(D) is the same as Cl(D) the divisor class group of D:
Thus when the divisor class group of the Krull domain D is torsion, D has the f -qr
according to [2] and [27] and that leaves open the question: If a Krull domain D
has f -qr, must D have torsion divisor class group?

So the next question is: If a PVMD D has the f -qr property, must D satisfy
�?

I must stress that I would be very surprised if the answers to both turn out to
be positive.

Here�s a possible reason for my new position.
Let me �rst note the following auxiliary result.

Proposition 5. Let R be a �at overring of D: Then R is a quotient ring of
D if and only if for each pair a; b 2 D; ((a) : (b))R = R implies that ((a) :D (b))
contains an element of D that is a unit in R:

Proof. Let R be a quotient ring of D. Then R = DS where S is a multiplica-
tive set of D: Then ((a) : (b))R = R implies ((a) : (b))DS = DS which means that
((a) : (b))\S 6= �: Conversely let S be the set of elements of D that are units in R
and let y=x 2 R: Then ((x) : (y))R = R and by the condition there is a unit s such
that sy = lx: Or y=x = l=s 2 DS ; forcing R � DS : But already DS � R: �

Call D a v-coherent domain if for each nonzero �nitely generated ideal I of D
we have that I�1 is of �nite type, i.e., there is a nonzero �nitely generated ideal B
such that I�1 = Bv. Obviously in a v-coherent domain (a) : (b) is of �nite type
too.

Lemma 5. Let D be a v-coherent domain. If R is a �at overring of D; then
for every nonzero �nitely generated ideal A of D we have (AR)v = AvR:

Proof. Mimick the proof of (c) of Proposition 2.2 of [10], use Proposition .06
of [13] or proceed as follows. Let A be a nonzero �nitely generated ideal. Since
D is v-coherent A�1 = Bv = (b1; :::; br)v: But then Av = \(1=bi): Since R is �at
we have AvR = (\(1=bi))R = \(1=bi)R a divisorial ideal, Theorem 1 if [21]. It
is well known that if R is D-�at and A �nitely generated, then (AR)v = (AvR)v
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(Proposition .06 of [13]). Now using the fact that AvR is divisorial, we get the
result. �

Proposition 6. Let D be a v-coherent domain. If for each nonzero �nitely
generated ideal A of D there is a natural number n and an element a 2 Av such
that An � (a) � Av; then every �at overring of D is a quotient ring.

Proof. Suppose that for each nonzero �nitely generated ideal A of D there
is a natural number n and an element a 2 Av such that An � (a) � Av and let
R be a �at overring of D: If x = u=v 2 R; then ((v) : (u))R = R: Consequently
((v) : (u))mR = R for every natural number m: Let�s note that An � (a) � Av
implies Anv � (a) � Av: Thus taking ((v) : (u)) = Av for �nitely generated A and
applying Lemma 5we have R = AnvR � (a)R � AvR: Or R � aR; which makes
a 2 D a unit of R: Now a 2 ((v) : (u)) gives au = rv or u=v = r=a: Thus u=v 2 DS
forcing R � DS : But already DS � R: �

Corollary 9. Let D be a Mori domain. If for each �nitely generated ideal A
of D we have a 2 D and a positive integer n such that An � (a) � Av; then every
�at overring of D is a quotient ring.

The following result is a kind of a stand-alone result that can also be proved
as a corollary to Proposition 4.

Proposition 7. Let D be a locally factorial Krull domain. If every �at over-
ring of D is a quotient ring of D then the ideal class group of D is torsion. Con-
versely if the ideal class group of D is torsion then every �at overring of D is a
quotient ring.

Proof. Let P be a height one prime ideal of D: Then P is invertible because D
is locally factorial. Also P = (a) : (b) = (a) :D (b); because P is a maximal t-ideal.
The transform R = T (P ) is �at over D because P is invertible. So, ((a) : (b))R =
R = PR: But as R is a quotient ring there is x 2 (a) : (b) such that x; 1=x 2 R:
Since 1=x 2 R there is a positive integer n such that Pn(1=x) � D: But then
Pn � (x) 2 P: This forces x to be P primary and so (x) = P (m) = (Pm)v = Pm

because P is invertible. But this forces the divisor class group to be torsion and the
divisor class group in this case is the ideal class group. The converse follows from
the fact that a locally factorial Krull domain with torsion class group is a PVMD
with a torsion (t-)class group and so every �at overring is a quotient ring [30]. �

Now the trouble is that each t-linked overring being �at does not make a domain
a G-GCD domain, as for every AGCD domain we have �at overrings all quotient
rings. We also know that a domain in which every t-linked overring is �at is a
PVMD such that each t-linked overring has the same property. But is there a
PVMD with a t-linked overring that is not �at? Is there a Krull domain with
a non-�at subintersection? Yes, look up Remark 2.19 of [10]. But of course the
existence of such an example would not stop every �at overring being a quotient
ring from making the class group torsion, in the Krull case. So the problem stays
in the balance, for now. However, one may surmise that I would have been safe if
instead of jumping the gun all the way to general Krull domains, I had landed on
locally factorial Krull domains. Finally, let me end this reportage with an intersting
indirect example.
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Example 1. Let D be an AGCD domain that is not integrally closed. Then D
has at least one t-linked overring that is not �at.

Proof. If every t-linked overring of D were �at then every t-linked overring
would be a quotient ring, because over an AGCD domain, a �at overring is a
quotient ring. But then D would be a PVMD a contradiction. �

-
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