INTEGRAL DOMAINS OF FINITE \(t \)-CHARACTER

D.D. ANDERSON, GYU WHAN CHANG, AND MUHAMMAD ZAFRULLAH

Abstract. An integral domain \(D \) is said to be of finite \(t \)-character if each nonzero nonunit of \(D \) is contained in only finitely many maximal \(t \)-ideals of \(D \). For example, Noetherian domains and Krull domains are of finite \(t \)-character. In this paper, we study several properties of integral domains of finite \(t \)-character. We also show when the ring \(D(S) = D + XD_S[X] \) is of finite \(t \)-character, where \(X \) is an indeterminate over \(D \) and \(S \) is a multiplicative subset of \(D \).

Introduction

An integral domain \(D \) is said to be of finite character (resp., finite \(t \)-character) if every nonzero nonunit of \(D \) belongs to at most a finite number of maximal ideals (resp., maximal \(t \)-ideals). It is well known that integral domains in which each \(t \)-ideal is a \(v \)-ideal (e.g., Noetherian, Mori, or Krull domains) are of finite \(t \)-character [26, Theorem 1.3]. Also, if \(D \) is of finite \(t \)-character, then \(D \) is a \(w \)-LPI domain (i.e., each nonzero \(t \)-locally principal ideal is \(t \)-invertible), and hence \(D \) is an LPI domain that is an integral domain in which every nonzero locally principal ideal is invertible. In particular, if \(D \) is a Pr"ufer domain (resp., Pr"ufer \(v \)-multiplication domain (Pr\(v \)MD)), then \(D \) is of finite character (resp., finite \(t \)-character) if and only if \(D \) is an LPI domain (resp., a \(w \)-LPI domain) ([25, Theorem 10], [22, Theorem 6.1], [36, Proposition 5]). The properties of LPI domains (resp., \(w \)-LPI domains) are further studied in [9] (resp., [13]).

Let \(S \) be a multiplicative subset of an integral domain \(D \). It is known that if \(A \) is a \(t \)-ideal of \(D_S \), then \(A \cap D \) is a \(t \)-ideal of \(D \) [29, Lemma 3.17]. However, \(I \) being a \(t \)-ideal of \(D \) does not imply that \(ID_S \) is a \(t \)-ideal of \(D_S \). As in [34], we say that \(D \) is conditionally well behaved if for each maximal \(t \)-ideal \(M \) of \(D \), the prime ideal \(MD_M \) is a \(t \)-ideal. In Section 1 of this paper, we study the finite \(t \)-character property of integral domains. We first show that integral domains of finite \(t \)-character are conditionally well behaved. As a corollary, we have that if \(D \) is of finite \(t \)-character, then \(D \) is \(t \)-locally (resp., locally) a GCD-domain if and only if \(D \) is a Pr\(v \)MD (resp., generalized GCD-domain). We shall also give some examples of situations where the requirements/properties yield the property of being conditionally well behaved. In Section 2, we study when the ring \(D(S) = D + XD_S[X] \) is a Pr\(v \)MD of finite \(t \)-character, where \(X \) is an indeterminate over \(D \). Precisely, we show that \(D(S) \) is a Pr\(v \)MD of finite \(t \)-character if and only if \(D \) is a Pr\(v \)MD of finite \(t \)-character,

\textbf{Date:} May 10, 2013.

\textbf{2000 Mathematics Subject Classification:} 13A15, 13F05, 13F20, 13G05.

\textbf{Key Words and Phrases:} \(t \)-Operation, integral domain of finite \(t \)-character, \(D + XD_S[X] \), Pr\(v \)MD, Nagata-like theorem.
S is a \(t \)-splitting set, and \(|\{ P \in t\text{-Max}(D) | P \cap S \neq \emptyset \}| < \infty \). In particular, if \(D \) is a Krull domain, then \(D^{(S)} \) is of finite \(t \)-character if and only if \(|\{ P \in t\text{-Max}(D) | P \cap S \neq \emptyset \}| < \infty \). Finally, in Section 3, we give a kind of Nagata-like theorem. We then use this result to prove some sufficient conditions for \(D^{(S)} \) to be of finite \(t \)-character when \(D^{(S)} \) is not a PrMD.

It is apparent that this note will be steeped in the so-called star-operations. So let us start with a set of working definitions. Most of the information given below can be found in [35] and [19]. Let \(D \) denote an integral domain with quotient field \(K \) and let \(F(D) \) (resp., \(f(D) \)) be the set of nonzero (resp., nonzero finitely generated) fractional ideals of \(D \). A fractional ideal \(A \) that is contained in \(D \) will be called an integral ideal.

A star operation \(* \) on \(D \) is a function \(* : F(D) \to F(D) \) such that for all \(A, B \in F(D) \) and for all \(0 \neq x \in K \)

(i) \((x)^* = x \) and \((xA)^* = xA^* \),

(ii) \(A \subseteq A^* \) and \(A^* \subseteq B^* \) whenever \(A \subseteq B \),

(iii) \((A^*)^* = A^* \).

A fractional ideal \(A \in F(D) \) is called a \(* \)-ideal if \(A = A^* \) and a \(* \)-ideal of finite type if \(A = B^* \) for some \(B \in f(D) \). A star operation \(* \) is said to be of finite character if \(A^* = \bigcup \{ B^* \mid B \subseteq A \} \) for all \(A \in F(D) \). For \(A \in F(D) \), define \(A^{-1} = \{ x \in K \mid xA \subseteq D \} \) and call \(A \in F(D) \) \(* \)-invertible if \((AA^{-1})^* = D \). Clearly, every invertible ideal is \(* \)-invertible for every star operation \(* \). If \(* \) is of finite character and \(A \) is \(* \)-invertible, then \(A^* \) is of finite type. The most well known examples of star operations are: the \(v \)-operation defined by \(A \mapsto A_v = (A^{-1})^{-1} \), the \(t \)-operation defined by \(A \mapsto A_t = \{ B_v \mid B \in f(D) \text{ and } B \subseteq A \} \), the \(w \)-operation defined by \(A \mapsto A_w = \{ x \in K \mid xJ \subseteq A \text{ for some } J \in f(D) \text{ with } J^{-1} = D \} \), and the \(d \)-operation that is the identity function of \(F(D) \) onto itself. Given two star operations \(*_1 \) and \(*_2 \), we say that \(*_1 \leq *_2 \) if \(A^*_1 \subseteq A^*_2 \) for all \(A \in F(D) \). Note that \(*_1 \leq *_2 \) if and only if \((A^*_1)^* = (A^*_2)^* = A^*_2 \). For any star operation \(* \), we have \(* \leq v \).

For \(A \in F(D) \), \(A^{-1} \) is a \(* \)-ideal. If \(\{ D_\alpha \} \) is a family of overrings of \(D \) such that \(D \cap D_\alpha \) is a \(* \)-ideal for all \(\alpha \), and if \(D = \bigcap D_\alpha \), then the operation \(* \) defined on \(F(D) \) by \(A \mapsto \bigcap AD_\alpha \) is a star operation induced by \(\{ D_\alpha \} \). Thus if \(* \) is a star operation induced by \(\{ D_\alpha \} \), then \(A^{-1} = (A^*_1)^* = \bigcap A^{-1}_\alpha D_\alpha \). By definition \(t \) is of finite character, \(t \leq v \) while \(\rho \leq t \) for every star operation \(\rho \) of finite character. If \(* \) is a star operation of finite character, then using Zorn’s Lemma we can show that an integral ideal maximal among proper integral \(* \)-ideals is a prime ideal and that every integral \(* \)-ideal is contained in a maximal \(* \)-ideal. Let us denote the set of all maximal \(* \)-ideals by \(*\text{-Max}(D) \). It can also be easily established that if \(* \) is a star operation of finite character on \(D \), then \(D = \bigcap_{M \in *\text{-Max}(D)} D_M \), and an \(A \in F(D) \) is \(* \)-invertible if and only if \(AA^{-1} \nsubseteq P \) for any maximal \(* \)-ideal \(P \) of \(D \).

A \(v \)-ideal \(A \) of finite type is \(t \)-invertible if and only if \(A \) is \(t \)-locally principal, i.e., for every \(M \in t\text{-Max}(D) \), we have that \(AD_M \) is principal. We say that an ideal \(A \) is \(t \)-locally \(t \)-invertible if \(AD_M \) is \(t \)-invertible for every maximal \(t \)-ideal \(M \). Recall from [5, Corollary 2.17] that \(t\text{-Max}(D) = w\text{-Max}(D) \). For \(A \in F(D) \) is \(t \)-locally principal (resp., \(t \)-invertible) if and only if \(A \) is \(w \)-locally principal (resp., \(w \)-invertible). Any pair of elements \(a, b \in D \) is said to be \(v \)-coprime if \((a, b)_v = D \). An integral domain
Let D be an integral domain with quotient field K. We first show that integral domains of finite t-character are conditionally well behaved.

Theorem 1.1. Let D be an integral domain.

1. Let P be a maximal t-ideal of D that contains a nonzero finitely generated ideal A which is not contained in any other maximal t-ideal, then P is well behaved.

2. If D is of finite t-character, then D is conditionally well behaved.

Proof. (1) We first show that if A is as described in the statement, then $(AD_P)_v \subseteq PD_P$. Deny. Then $(AD_P)_v = D_P$ which gives $(AD_P)^{-1} = D_P$. Since A is finitely generated we have $A^{-1}D_P = D_P$ [32, Lemma 4]. Next, for any maximal t-ideal Q of D with $Q \neq P$ we have $AD_Q = D_Q$ and so $A^{-1}D_Q = D_Q$. Thus, $A^{-1} = \cap_{M \in \text{Max}(D)} A^{-1}D_M = \cap_{M \in \text{Max}(D)} D_M = D$. But, this means $A_v = D$, a contradiction to the fact that A is contained in P a maximal t-ideal of D. Hence our denial of $(AD_P)_v \subseteq PD_P$ is refuted. Now take any nonzero finitely generated ideal $B \subseteq P$ and note that $B + A$ is contained in P and in no maximal t-ideal other than P, because of A. By the above we conclude that $(B + A)D_P \subseteq PD_P$. But as $BD_P \subseteq (B + A)D_P \subseteq PD_P$, we have $(BD_P)_v \subseteq ((B + A)D_P)_v \subseteq PD_P$. Thus PD_P is a t-ideal of D_P.

(2) To prove this, let x be a nonzero element in a maximal t-ideal P of D. If x belongs to no other maximal t-ideal, we have nothing to prove, in view of (1). So let us assume that x belongs also to other maximal t-ideals. Since D is of finite t-character, there can be only finitely many maximal t-ideals M_1, M_2, \ldots, M_n, in all, besides P. Now construct $A = \langle x, x_1, \ldots, x_n \rangle$ where $x_i \in P \setminus M_i$. Clearly, $A \subseteq P$.
and A is in no other maximal t-ideal. Thus P is well behaved by (1). Now as P was arbitrary we have the result. \hfill \Box

Corollary 1.2. If D is of finite t-character, then the following are equivalent.

1. D is t-locally a GCD-domain.
2. D is t-locally a PeMD.
3. D is a PeMD.
4. D is locally a PeMD.

Proof. (1) \Rightarrow (2) Clear. (2) \Rightarrow (3) Let M be a maximal t-ideal of D. Then D_M is a PeMD, and since MD_M is a t-ideal by Theorem 1.1(2), D_M is a valuation domain. Thus D is a PeMD. (3) \Rightarrow (1) and (4) Clear. (4) \Rightarrow (3) Let P be a maximal t-ideal of D. Then PD_P is a t-ideal of D_P by Theorem 1.1(2), and so if M is a maximal ideal of D containing P, then PD_M is a t-ideal of D_M because $PD_P \cap D_M = PD_M$. Thus, by (4), $D_P = (D_M)_{PD_M}$ is a valuation domain. \hfill \Box

An integral domain D is called a generalized GCD-domain (GGCD-domain) if the intersection of two invertible ideals of D is invertible. It is known that D is a GGCD-domain if and only if I_v is invertible for each nonzero finitely generated ideal I of D, if and only if $aD \cap bD$ is invertible for all $0 \neq a, b \in D$ [2, Theorem 1].

Corollary 1.3. If D is of finite t-character, then D is locally a GCD-domain if and only if D is a GGCD-domain.

Proof. (\Rightarrow) Note that locally a GCD-domain is t-locally a GCD-domain; so D is a PeMD by Corollary 1.2. Hence if $0 \neq a, b \in D$, then $aD \cap bD$ is of finite type because $aD \cap bD$ is t-invertible. Also, $(aD \cap bD)_M = aD_M \cap bD_M$ is principal for all maximal ideals M of D by assumption. Thus $aD \cap bD$ is invertible. (\Leftarrow) This is well known, but we give the proof. Let $0 \neq x, y \in D$. Then $xD \cap yD$ is invertible by assumption, and hence $xD_M \cap yD_M = (xD \cap yD)_M$ is invertible (so principal) for all maximal ideals M of D. \hfill \Box

We next give an example of integral domains of finite t-character that is not well-behaved.

Example 1.4. Let $R = \mathbb{R}[X, Y, Z]$ be the power series ring over the field \mathbb{R} of real numbers, $M = (X, Y, Z)R[X, Y, Z]$, and $D = \mathbb{Q} + M$, where \mathbb{Q} is the field of rational numbers. Then R is a 3-dimensional local Noetherian Krull domain with maximal ideal M, and D is a quasi-local domain with maximal ideal M such that $\text{Spec}(R) = \text{Spec}(D)$ and M is a v-ideal of D. Hence D is conditionally well-behaved. But, if P is a prime ideal of D with $\text{ht}P = 2$, then P is a prime ideal of R such that $D_P = R_P$. Clearly, R_P is a 2-dimensional Krull domain and $\text{ht}PR_P = 2$, and thus $PD_P = PR_P$ is not a t-ideal. Thus D is not well-behaved.

Let’s call a maximal t-ideal P **potent** if it contains a nonzero finitely generated ideal that is not contained in any other maximal t-ideal. If a maximal t-ideal is finitely generated or a v-ideal of finite type, then it is automatically potent. Hence Mori domains and Noetherian domains all have potent maximal t-ideals. Also, the proof of Theorem 1.1(2) shows that if D is of finite t-character, then every maximal
Integral Domains of Finite \(t \)-Character

A \(t \)-ideal of \(D \) is potent. However, if \(D = \mathbb{Z} + X \mathbb{Q}[X] \), then every maximal \(t \)-ideal of \(D \) is potent, but \(D \) is not of finite \(t \)-character. It may be noted that while a domain with potent maximal \(t \)-ideals is conditionally well behaved by Theorem 1.1(1), even a well behaved domain may not have potent maximal \(t \)-ideals.

Example 1.5. Let \(S = \{X^\alpha \mid \alpha \in \mathbb{Q}^+\} \) where \(\mathbb{Q}^+ \) denotes the set of nonnegative rational numbers and let \(K \) be an algebraically closed field with characteristic zero. Also let \(R \) be the semigroup ring \(K[S] = \{ \sum c_i X^{\alpha_i} \mid c_i \in K \text{ and } \alpha_i \in \mathbb{Q}^+\} \).

1. \(R \) is a one-dimensional Bezout domain, and hence a well-behaved domain.
2. No maximal ideal containing \((X - 1)R\) is potent.

Proof. (1) Note that \(R \) can be regarded as an ascending union of the PIDs \(R_{nt} = K[X^{1/n}] \) where \(n! \) denotes the factorial of the natural number \(n \). That is, \(R = \bigcup R_{nt}, \) where obviously \(R_{nt} \subseteq R_{n+1} \) for all natural numbers \(n \). Being an ascending union of PIDs, \(R \) is a one-dimensional Bezout domain.

(2) Note that every finitely generated ideal of \(R \) is principal by (1), and so every nonzero ideal is a \(t \)-ideal. Now by [6, Theorem 1], \(R \) is an antimatter domain, i.e., every nonzero nonunit element of \(R \) is expressible as a product of at least two nonunits. Since \(R \) is a Bezout domain, a maximal ideal \(P \) of \(R \) is potent if and only if there is an element \(r \in P \) such that \(r \) belongs to no other maximal ideal.

Now it is easy to show that in a Bezout domain \(R \) a nonzero element \(r \) belongs to a unique maximal ideal if and only if \(r \) is such that for all \(x, y \mid r \) we have \(x \mid y \) or \(y \mid x \), i.e., \(r \) is rigid. Clearly as no element of \(R \) is a prime, nor a prime power, we have a factorization \(r = xy \) where \(x \) and \(y \) are nonunits. Now as \(r \) is rigid, \(x \mid y \) or \(y \mid x \) and so \(x^2 \mid r \) or \(y^2 \mid r \). Now let \(P \) be a maximal ideal containing \((X - 1)R\) such that \(P \) is potent containing a rigid element \(s \). But then there is a rigid element \(r \) dividing \(X - 1 \) and so there is a nonunit factor \(x \) such that \(x^2 \mid r \) and so \(x^2 \mid (X - 1) \), contradicting the fact that \((X - 1)R\) is a radical ideal as shown in [31, Example 3.6 and Lemma 3.7].

Let’s recall that two elements \(a, b \) in \(D \) are \(v \)-coprime if \((a, b)_v = D \). Obviously two elements \(a, b \) in \(D \) are \(v \)-coprime if and only if \(a, b \) do not share a maximal \(t \)-ideal. We say that \(D \) is of \(t \)-dimension one if every member of \(t \)-Max\((D)\) is of height one. An integral domain of \(t \)-dimension one that is also of finite \(t \)-character is called a weakly Krull domain. (These domains were studied in [7, Theorem 3.1], called weakly Krull domains in [3].) Obviously, integral domains of \(t \)-dimension one are well behaved, and hence conditionally well behaved. But, in case of \(t \)-dimension one, we have an interesting result.

Proposition 1.6. Let \(D \) be of \(t \)-dimension one. If every prime \(t \)-ideal \(P \) of \(D \) contains a nonzero element \(x \) that is not contained in any prime \(t \)-ideal other than \(P \), then \(D \) is of finite \(t \)-character.

Proof. It is clear that if \(P \) is a unique prime \(t \)-ideal of \(D \) containing \(x \), then \(P = \sqrt{xD} \), and since \(P \) is a maximal \(t \)-ideal, \(xD \) is a primary ideal. Hence \(D \) is a weakly Krull domain [10, Corollary 2.3], and thus \(D \) is of finite \(t \)-character.

As already indicated we call an integral domain \(D \) an LPI domain (resp., w-LPI domain) if nonzero locally (resp., \(t \)-locally) principal ideals of \(D \) are invertible
It is now well-established that a Prüfer domain (resp., \(P\)-MD) \(D\) is of finite character (resp., finite \(t\)-character) if and only if \(D\) is an LPI (resp., \(w\)-LPI) domain. Look up [36] for the relevant results and history. As it was shown in [15], most cases where LPI (resp., \(w\)-LPI) implies finite character (resp., finite \(t\)-character) fall under the cases where every finitely generated ideal is contained in at least one ideal of a fixed type, e.g., invertible ideal (resp., \(t\)-invertible \(t\)-ideal). Finocchiaro et al., in [17], took a direction that could avoid using the approach used in [15]. Here we show that there are some situations, all involving conditionally well behaved prime \(t\)-ideals such that LPI (resp., \(w\)-LPI) implies finite character (resp., finite \(t\)-character).

We note from [7, Theorem 3.1] that \(D\) is a weakly Krull domain if and only if every nonzero prime ideal of \(D\) contains a nonzero \(t\)-invertible primary \(t\)-ideal if and only if \(P\) being minimal over a proper principal ideal \((x)\) implies \(xD_P \cap D\) is \(t\)-invertible. This leads to the following result.

Proposition 1.7. Let \(D\) be of \(t\)-dimension one. Then \(D\) is a weakly Krull domain if and only if every nonzero \(t\)-locally principal ideal of \(D\) is \(t\)-invertible.

Proof. Suppose that every nonzero \(t\)-locally principal ideal of \(D\) is \(t\)-invertible. As \(D\) is of \(t\)-dimension one every prime \(t\)-ideal of \(D\) is of height one and so \(D = \cap P\) where \(P\) ranges over height one prime ideals of \(D\). Now let \(x\) be an arbitrary nonzero nonunit of \(D\) and let \(Q\) be a prime ideal minimal over \((x)\) and consider \(xD_Q \cap D\). Being minimal over a principal ideal \(Q\) is a prime \(t\)-ideal and hence of height one. So \(xD_Q \cap D\) is a \(Q\)-primary ideal and hence \((xD_Q \cap D)D_P = D_P\) for all height prime ideals \(P\) different from \(Q\). Also since \((xD_Q \cap D)D_Q = xD_Q\) we conclude that \(xD_Q \cap D\) is \(t\)-locally principal and hence \(t\)-invertible. That is precisely what \(D\) needs to be a weakly Krull domain. Conversely, a weakly Krull domain \(D\) is of finite \(t\)-character and so, as pointed out, in [9] and [7, Lemma 2.2], every nonzero \(t\)-locally principal ideal of \(D\) is \(t\)-invertible. \(\square\)

Note that every height one prime ideal is a \(t\)-ideal, because it is minimal over each of its nonzero principal subideals. Also note that if every maximal ideal is a \(t\)-ideal, then the notions of “\(t\)-invertible” and “invertible” coincide. This gives the following corollary.

Corollary 1.8. Let \(D\) be a one-dimensional integral domain. Then the following are equivalent.

1. \(D\) is of finite character.
2. Every nonzero locally principal ideal is invertible.
3. For every nonzero prime ideal \(P\) of \(D\) and for every nonzero \(x \in P\), \(xD_P \cap D\) is invertible.

Let \(\mathcal{F}\) be a family of prime ideals of \(D\). Then \(\mathcal{F}\) is called a defining family for \(D\) if \(D = \cap_{P \in \mathcal{F}} D_P\). For example, \(t\)-Max\((D)\) and Max\((D)\) are defining families for \(D\), where Max\((D)\) represents the set of maximal ideals of \(D\). We call \(\mathcal{F}\) independent if no two distinct members of \(\mathcal{F}\) contain a nonzero prime ideal. An integral domain \(D\) is called an \(h\)-local domain (resp., weakly Matlis domain or WM-domain) if \(D\) is of finite character (resp., finite \(t\)-character) and Max\((D)\) (resp., \(t\)-Max\((D)\)) is...
We use Proposition 1.10 to give another proof of Theorem 1.1(2) that an integral domain of finite t-character is conditionally well-behaved.

Proof of Theorem 1.1(2): Let M be a maximal t-ideal of D. Then, by Proposition 1.10,

$$M = \cap_{P \in t \text{-Max}(D)} (MD_P)_t,$$

and hence $(MD_P)_t \subseteq D_P$ for some maximal t-ideal P of D. But, note that if $P \neq M$, then $MD_P = D_P$, and so $(MD_P)_t = D_P$. Thus $(MD_M)_t \subseteq D_M$, and since MD_M is a maximal ideal, $(MD_M)_t = MD_M$.

Proposition 1.9. Let D be such that $\text{Max}(D)$ (resp., $t\text{-Max}(D)$) is independent. Then D is of finite character (resp., finite t-character) if and only if D is an LPI-domain (resp., a w-LPI-domain).

Proof. Suppose that D is an LPI (resp., a w-LPI) domain. Let $x \in P \setminus \{0\}$, where $P \in \text{Max}(D)$ (resp., $P \in t\text{-Max}(D)$) and consider $xD_P \cap D$. Then $xD_P \cap D$ is contained in P and no other member of $\text{Max}(D)$ (resp., $t\text{-Max}(D)$) [8, Lemma 2.3]. Now, $(xD_P \cap D)DP = xDP$ and $(xD_P \cap D)DQ = DQ$ for all $Q \in \text{Max}(D)$ (resp., $t\text{-Max}(D)$) with $Q \neq P$. Thus $xD_P \cap D$ is locally (resp., t-locally) principal, and hence invertible (resp., t-invertible) by assumption. But, then D is an h-local domain (resp., WM-domain). The converse follows from the fact that a domain of finite character (resp., finite t-character) is LPI (resp., w-LPI).

Let D be an integral domain and Δ be a set of prime ideals of D such that $D = \cap_{P \in \Delta} DP$. In [17, Proposition 1.8], it was shown that if $D = \cap_{P \in \Delta} DP$ is locally finite, then $I_t = \cap_{P \in \Delta} (ID_P)_t$ for all $I \in F(D)$.

Proposition 1.10. Let $D = \cap_{\alpha} D_{S_{\alpha}}$, where $\{S_{\alpha}\}$ is a nonempty family of multiplicative subsets of D. If the intersection $D = \cap_{\alpha} D_{S_{\alpha}}$ is locally finite, then

$$A_t = \cap_{\alpha} (AD_{S_{\alpha}})_t,$$

for all $A \in F(D)$.

Proof. For each $A \in F(D)$, let $A^* = \cap_{\alpha} (AD_{S_{\alpha}})_t$. It is routine to check that $* \circ$ is a star operation on D (for the property (iii) of star operations, note that $A^* \subseteq (AD_{S_{\alpha}})_t$, and hence $(A^*D_{S_{\alpha}})_t \subseteq ((AD_{S_{\alpha}})_t)_t = (AD_{S_{\alpha}})_t$ for all α). Also, since the intersection is locally finite, $* \circ$ is of finite character on D [1, Theorem 2]. Note that if S is a multiplicative set of D, then $(ID_S)_t = (I_t D_S)_t$ for all $I \in F(D)$ [29, Lemma 3.4]. Hence $I_t \subseteq \cap_{\alpha} (ID_{S_{\alpha}})_t = I^*$. Thus $t \leq *$, and so $* = t$ since $* \leq t$ for any star operation $*'$ of finite character on D. Therefore $A^* = A_t$ for all $A \in F(D)$.

We use Proposition 1.10 to give another proof of Theorem 1.1(2) that an integral domain of finite t-character is conditionally well-behaved.

Proof of Theorem 1.1(2): Let M be a maximal t-ideal of D. Then, by Proposition 1.10,

$$M = \cap_{P \in t \text{-Max}(D)} (MD_P)_t,$$

and hence $(MD_P)_t \subseteq D_P$ for some maximal t-ideal P of D. But, note that if $P \neq M$, then $MD_P = D_P$, and so $(MD_P)_t = D_P$. Thus $(MD_M)_t \subseteq D_M$, and since MD_M is a maximal ideal, $(MD_M)_t = MD_M$.

Independent. Clearly a weakly Matlis domain is a t-operation version of the h-local domains. The h-local domains were introduced and studied by Eben Matlis (see [8]). Recall from Corollary 3.4 (resp., Corollary 4.4) of [8] that D is an h-local domain (resp. WM-domain) if and only if for every maximal ideal (resp., maximal t-ideal) M and for every nonzero $x \in M$ the ideal $xD_M \cap D$ is invertible (resp., t-invertible).
Corollary 1.11. Let $D = \cap_{\alpha} D_{S_{\alpha}}$, where $\{S_{\alpha}\}$ is a nonempty family of multiplicative subsets of D, and suppose that the intersection is locally finite. If P is a maximal t-ideal of D, then $PD_{S_{\alpha}}$ is a maximal t-ideal of $D_{S_{\alpha}}$ for some S_{α}.

Proof. By Proposition 1.10, $P_{1} = \cap_{\alpha} (PD_{S_{\alpha}})$. Hence $PD_{S_{\alpha}} \subseteq (PD_{S_{\alpha}})_{t} \subseteq D_{S_{\alpha}}$ for some S_{α}. Note that if Q is a maximal t-ideal of $D_{S_{\alpha}}$ with $(PD_{S_{\alpha}})_{t} \subseteq Q$, then $Q \cap D$ is a t-ideal of D, and since $P \subseteq Q \cap D$ and P is a maximal t-ideal, we have $P = Q \cap D$. Hence $Q = PD_{S_{\alpha}}$, and thus $PD_{S_{\alpha}}$ is a maximal t-ideal. \hfill \square

Continuing with the theme of conditionally well behaved domains we note the following result.

Proposition 1.12. The following hold for an integral domain D.

1. If D is a quasi-local domain with maximal ideal M, with M a t-ideal, then every t-invertible ideal of D is principal.

2. If D is conditionally well behaved, then “t-locally invertible” is equivalent to “t-locally principal”.

Proof. (1) Let A be a t-invertible ideal of D. Then $(AA^{-1})_{t} = D$ implies that AA^{-1} is in no maximal t-ideals of D. That means that $AA^{-1} = D$. This forces A to be invertible and hence principal.

(2) Note that t-locally principal is t-locally invertible, and hence t-locally t-invertible anyway. For the reverse implication, note that if A is t-locally t-invertible, then AD_{M} is t-invertible for each maximal t-ideal M of D. But as M is well behaved, D_{M} is t-local and so, by (1) above, AD_{M} is principal. \hfill \square

Corollary 1.13. If D is of finite t-character, then every t-locally invertible t-ideal of D is t-invertible.

Proof. Let I be a t-locally invertible t-ideal of D. Then I is t-locally principal by Theorem 1.1(2) and Proposition 1.12, and thus I is t-invertible because integral domains of finite t-character are w-LPI domains [13, Corollary 2.2]. \hfill \square
(⇐) Let 0 ≠ x ∈ K and A, B ∈ F(D). It is easy to check that (i) (xD)z = xD and (xA)z = xA and (ii) A ⊆ A', and A ⊆ B implies A' ⊆ B'. Hence it suffices to show that (iii) (A')z = A'.

To do this, we first show that A' ∈ F(D). Let x, y ∈ A'. Then xJ1 + xJ2 ⊆ A for some J1, J2 ∈ 2-GV(D) and by assumption, there is a J ∈ 2-GV(D) with J ⊆ J1J2. Hence (x + y)J ⊆ xJ + yJ ⊆ xJ1J2 + yJ1J2 ⊆ xJ1 + yJ2 ⊆ A, and thus x + y ∈ A'. Next, let a ∈ D and x ∈ A'. Then axI ⊆ aA ⊆ A, and hence ax ∈ A'. Moreover, if zA ⊆ D for some 0 ≠ z ∈ D, then zA' = (zA)z ⊆ D'. Therefore A' ∈ F(D).

Now, we prove that (A')z ⊆ A', and thus (A')z = A' by (ii) above. Let x ∈ (A')z. Then x(α, β) ⊆ A' for some (α, β) ∈ 2-GV(D) ⇒ xαJ1 + xβJ2 ⊆ A for some J1, J2 ∈ 2-GV(D) because A' ∈ F(D) ⇒ xαJ1 ⊆ xαJ + xβJ ⊆ A, where J ∈ 2-GV(D) with J ⊆ J1J2, ⇒ xJ' ⊆ A, where J' ∈ 2-GV(D) with J' ⊆ (α, β)J, ⇒ x ∈ A'. Thus (A')z ⊆ A'.

We end this section with an example of integral domains D on which t2 = w.

Example 1.15. ([23, Theorem 4.5]) If D = R[y] is a polynomial ring over an integral domain R, then t2 is a star operation on D with t2 = w.

Proof. Let A be a nonzero finitely generated ideal of R[y] such that A−1 = R[y]. Then (i) A ∩ R ≠ (0), (ii) there is a nonzero f ∈ A with c(f)v = R, where c(f) is the ideal of R generated by the coefficients of f, and (iii) (a, f)v = R[y] for all 0 ≠ a ∈ A ∩ R [23, Lemma 4.4]. Therefore, t2 = w on R[y].

2. PrMDs of finite t-character

Let D be an integral domain with quotient field K, S be a multiplicative subset of D, X be an indeterminate over D, and D(S) = D + XD_S[X]. Clearly, D(S) is an integral domain with D[X] ⊆ D(S) ⊆ D_S[X] ⊆ K[X]. As in [21], we say that D is a ring of Krull type if D is a locally finite intersection of essential valuation overrings of D; equivalently, D is a PrMD of finite t-character. In this section, we study when D(S) is a ring of Krull type.

We first recall that D(S) is a PrMD if and only if D is a PrMD and S is a t-splitting set [4, Theorem 2.5]. (The multiplicative set S is a t-splitting set of D if for each nonzero d ∈ D, we have D = (d), for some integral ideals A and B of D with A ∩ sD = sA for all s ∈ S and Bt ∩ S = ∅; equivalently, dD_S ∩ D is t-invertible for all 0 ≠ d ∈ D [4, Proposition 3.1]).

Lemma 2.1. If D(D) = D + XD_S[X] is a PrMD, then

\[t-\text{Max}(D(S)) \subseteq \{A ∩ D(S) | A ∈ t-\text{Max}(D_S[X]) \text{ with } A ∩ D_S = (0) \} \]

\[\cup \{P(D_S[X] ∩ D(S)) | P ∈ t-\text{Max}(D) \text{ with } P ∩ S = \emptyset \} \]

\[\cup \{P(D(S))_D ∩ D(S) | P ∈ t-\text{Max}(D) \text{ with } P ∩ S ≠ \emptyset \} \].

Proof. Let R = D(S) and Q ∈ t-\text{Max}(R). Clearly, R_S = D_S[X] and both R_S and D_S are PrMDs.

Case 1. Q ∩ S = ∅. Then Q_S is a prime t-ideal of R_S because R is a PrMD, and hence either Q_S ∩ D_S = (0) or Q_S = P(D_S[X] for some nonzero prime ideal P of
D. If \(Q_S \cap D_S = \emptyset \), then \(Q_S \cap R = Q \) and \(Q_S \) is a maximal \(t \)-ideal of \(R_S \) because \(D_S \) is a \(PrMD \). Next, assume \(Q_S = PD_S[X] \). We claim that \(P \) is a maximal \(t \)-ideal of \(D \). Since \(Q_S \) is a \(t \)-ideal, both \(PD_S \) and \(P \) are \(t \)-ideals. If \(P \) is not a maximal \(t \)-ideal, then there is a maximal \(t \)-ideal \(P' \) of \(D \) with \(P \subsetneq P' \). Note that, since \(R \) is a \(PrMD \), \(S \) is a \(t \)-splitting set of \(D \), and hence if \(P' \cap S \neq \emptyset \), then \(P \cap S \neq \emptyset \) \cite{4, Theorem 2.5}, a contradiction. Thus \(P' \cap S = \emptyset \), but, in this case, \(Q_S \subseteq P'D_S[X] \) and \(P'D_S[X] \) is a \(t \)-ideal of \(R_S \). So \(Q \subseteq P'D_S[X] \cap R \) and \(P'D_S[X] \cap R \) is a \(t \)-ideal, a contradiction. Thus \(P \) is a maximal \(t \)-ideal.

Case 2. \(Q \cap S \neq \emptyset \). Let \(Q \cap D = P_0 \). Then \(P_0 \) is a prime \(t \)-ideal of \(D \) (see the proof of \cite[Theorem 2.5]{4}), \(P_0 \cap S \neq \emptyset \), and \(Q = P_0 + XD_S[X] \) \cite[Theorem 2.1]{14}. Hence \(Q_{D \setminus P_0} \subseteq R_{D \setminus P_0} = D_{P_0} + XK[X] \) \cite[Theorem 4.3(3)]{4}. Note that \(P_0 D_{P_0} \subseteq Q_{D \setminus P_0} \); hence \(P_0 D_{P_0} + XK[X] \subseteq Q_{D \setminus P_0} \). Also, \(P_0 D_{P_0} + XK[X] \) is a maximal ideal of \(D_{P_0} + XK[X] \) because \((D_{P_0} + XK[X])/XK[X] \cong D_{P_0} \) and \(P_0 D_{P_0} \) is a maximal ideal. Thus \(Q_{D \setminus P_0} = P_0 D_{P_0} + XK[X] \) and \(Q = (P_0 D_{P_0} + XK[X]) \cap R \). If \(P_0 \) is not a maximal \(t \)-ideal of \(D \), then there is a maximal \(t \)-ideal \(P_1 \) of \(D \) with \(P_0 \subseteq P_1 \). Note that \(D_{P_1} + XK[X] = R_{D \setminus P_1} \) and \(D_{P_1} + XK[X] \) is a Bezout domain \cite[Corollary 4.13]{14}; so \(P_1 D_{P_1} + XK[X] \) is a prime \(t \)-ideal. Hence \((P_1 D_{P_1} + XK[X]) \cap R \) is a \(t \)-ideal of \(R \) and \(Q \subseteq (P_1 D_{P_1} + XK[X]) \cap R \), a contradiction. Thus \(P_0 \) is a maximal \(t \)-ideal.

\(\square \)

Lemma 2.2. If \(D^{(S)} = D + XD_S[X] \) is a \(PrMD \), then

\[
\begin{align*}
t-Max(D^{(S)}) & \supseteq \{PD_S[X] \cap D^{(S)} | P \in t-Max(D) \text{ with } P \cap S = \emptyset \} \\
& \cup \{P(D^{(S)}_{D \setminus P}) \cap D^{(S)} | P \in t-Max(D) \text{ with } P \cap S \neq \emptyset \}.
\end{align*}
\]

Proof. Let \(R = D^{(S)} \) and \(P \) be a maximal \(t \)-ideal of \(D \).

Case 1. \(P \cap S = \emptyset \). Note that \(PD_S \) is a maximal \(t \)-ideal of \(D_S \); so \(PD_S[X] \) is a maximal \(t \)-ideal of \(D_S[X] \), and hence \(PD_S[X] \cap R \) is a \(t \)-ideal of \(R \). Thus, by Lemma 2.1, \(PD_S[X] \cap R \) is a maximal \(t \)-ideal of \(R \).

Case 2. \(P \cap S \neq \emptyset \). Let \(Q = (PD_P + XK[X]) \cap R \). Then \(Q \) is a \(t \)-ideal of \(R \). If \(Q' \) is a maximal \(t \)-ideal of \(R \) with \(Q \subseteq Q' \), then \(P \subseteq Q \cap D \subseteq Q' \cap D = P' \) for some maximal \(t \)-ideal \(P' \) of \(D \) by Lemma 2.1. Since \(P \) is a maximal \(t \)-ideal, we have \(P = P' \), and so \(Q'_{D \setminus P} = PD_P + XK[X] \). Thus \(Q' = Q'_{D \setminus P} \cap R = Q \). \(\square \)

Corollary 2.3. Let \(R = D^{(S)} \), i.e., \(R = D + XD_S[X] \). If \(R \) is a \(PrMD \), then

\[
\{Q \in t-Max(R) | Q \cap D \neq \emptyset \} = \{PD_S[X] \cap R | P \in t-Max(D) \text{ with } P \cap S = \emptyset \} \\
\cup \{PR_{D \setminus P} \cap R | P \in t-Max(D) \text{ with } P \cap S \neq \emptyset \}.
\]

Proof. This is an immediate consequence of Lemmas 2.1 and 2.2. \(\square \)

We are now ready to prove the main result of this section.

Theorem 2.4. The following statements are equivalent for \(D^{(S)} = D + XD_S[X] \).

1. \(D^{(S)} \) is a ring of Krull type.
2. \(D \) is a ring of Krull type, \(S \) is a \(t \)-splitting set, and the set of maximal \(t \)-ideals of \(D \) that intersect \(S \) is finite.
Proof. Let $R = D^{(S)}$. Then R is a PrMD, and hence by Corollary 2.3,
\[
\{Q \in t\text{-Max}(R) | Q \cap D \neq (0)\} = \{PD_{S}[X] \cap R | P \in t\text{-Max}(D) \text{ with } P \cap S = \emptyset\} \\
\cup \{PR_{D}\backslash P \cap R | P \in t\text{-Max}(D) \text{ with } P \cap S \neq \emptyset\}.
\]
Note that each nonzero element of R is contained in only finitely many maximal t-ideals Q of R with $Q \cap D = (0)$ because $R_{D\backslash\{0\}} = K[[X]]$ is a principal ideal domain (PID). Note also that $X \in (PD_P + XK[[X]]) \cap R$ for all $P \in t\text{-Max}(D)$ with $P \cap S \neq \emptyset$. Thus, R is a PrMD of finite t-character if and only if D is a PrMD of finite t-character, S is a t-splitting set, and $|\{P \in t\text{-Max}(D) | P \cap S \neq \emptyset\}| < \infty$. □

It is known that every multiplicative subset of D is a t-splitting set if and only if D is a weakly Krull domain [4, page 8]. Thus, every multiplicative subset of a Krull domain is a t-splitting set. Let $X^1(D)$ be the set of height-one prime ideals of D. Obviously, if D is a Krull domain, then $X^1(D) = t\text{-Max}(D)$.

Corollary 2.5. If D is a Krull domain, then $D^{(S)} = D + XD_S[X]$ is a ring of Krull type if and only if $|\{P \in X^1(D) | P \cap S \neq \emptyset\}| < \infty$.

Proof. Note that every multiplicative subset of a Krull domain is t-splitting; hence $D^{(S)}$ is a PrMD. Thus the result follows from Theorem 2.4. □

A ring of Krull type D is called an independent ring of Krull type if $t\text{-Max}(D)$ is independent. Hence D is an independent ring of Krull type if and only if D is a weakly Matlis PrMD. It is obvious that rings of Krull type that are of t-dimension one (e.g., Krull domains) are independent rings of Krull type.

Corollary 2.6. $D^{(S)} = D + XD_S[X]$ is an independent ring of Krull type if and only if D is an independent ring of Krull type, S is a t-splitting set, and $|\{P \in t\text{-Max}(D) | P \cap S \neq \emptyset\}| \leq 1$.

Proof. Let $R = D^{(S)}$.

(\Rightarrow) First, note that $XD_S[X] \subseteq PR_{D\backslash P} \cap R$ for all $P \in t\text{-Max}(D)$ with $P \cap S \neq \emptyset$; so $|\{P \in t\text{-Max}(D) | P \cap S \neq \emptyset\}| \leq 1$. Next, let P_0 be a prime t-ideal of D. If $P_0 \cap S = \emptyset$, then $Q := P_0D_S[X] \cap R$ is a prime t-ideal of R, and hence Q is contained in a unique maximal t-ideal. Hence P_0 is contained in a unique maximal t-ideal of D by Corollary 2.3. Thus the proof is completed by Theorem 2.4.

(\Leftarrow) By Theorem 2.4, R is a ring of Krull type. For the independence, let Q be a prime t-ideal of R. If $Q \cap D = (0)$, then $Q \cap S = \emptyset$, and hence Q_S must be a maximal t-ideal of $D_S[X]$ because D_S is a PrMD. Thus, either Q is a maximal t-ideal of R or Q is contained in a unique maximal t-ideal of the form $PR_{D\backslash P} \cap R$ for some $P \in t\text{-Max}(D)$ with $P \cap S \neq \emptyset$. Next, assume $Q \cap D \neq (0)$. Then $Q \cap D[X]$ is a nonzero prime ideal of $D[X]$ such that $(Q \cap D[X]) \cap D \neq (0)$, and hence there is a unique maximal t-ideal of P of D so that $Q \cap D[X] \subseteq P[X]$. Thus, by Corollary 2.3, Q is contained in a unique maximal t-ideal of R. □

Corollary 2.7. If D is a Krull domain, then $D^{(S)} = D + XD_S[X]$ is an independent ring of Krull type if and only if $|\{P \in X^1(D) | P \cap S \neq \emptyset\}| \leq 1$.

Proof. This follows from Corollaries 2.5 and 2.6. □
Corollary 2.8. D is a ring (resp., an independent ring) of Krull type if and only if \(D[X] \) is a ring (resp., an independent ring) of Krull type.

Proof. Clearly, if \(S \) is the set of units in \(D \), then \(D^{(S)} = D[X] \) and \(S \) is a \(t \)-splitting set. Thus, the proof is completed by Theorem 2.4 and Corollary 2.6. \(\square \)

An integral domain \(D \) is called an almost GCD-domain (AGCD-domain) if, for every pair of nonzero elements \(a, b \in D \), there is an integer \(n = n(a, b) \geq 1 \) such that \(a^n D \cap b^n D \) is principal. We know that \(D \) is an integrally closed AGCD-domain if and only if \(D \) is a PeMD with \(Cl(D) \) torsion [33, Theorem 3.9]. Also, \(D^{(S)} \) is an integrally closed AGCD-domain if and only if \(D \) is an integrally closed AGCD-domain and \(S \) is an almost splitting set [16, Theorem 3.1(a)]. (Recall that \(S \) is said to be almost splitting if for each \(d \in D \setminus \{0\} \), there is an \(m \in \mathbb{N} \) such that \(d^m = rs \) in \(D \) such that \(s \in S \) and \(r \) is \(v \)-coprime to each element of \(S \).) Clearly, almost splitting sets are \(t \)-splitting. It is known that if \(Cl(D) \) is torsion, then \(t \)-splitting sets are almost splitting [11, Corollary 2.4]).

Let \(D \) be an AGCD domain. For a nonzero nonunit \(x \in D \), let \(S(x) = \{ y \mid y \) is a nonunit factor of \(x^n \) for some \(n \in \mathbb{N} \} \). If \(r \) is a nonzero nonunit of \(D \) such that no two members of \(S(r) \) are \(v \)-coprime, we call \(r \) an almost rigid element. Clearly, a nonzero nonunit \(r \in D \) is almost rigid if and only if, whenever \(x \) and \(y \) are two factors of some power of \(r \), then \(x^m \mid y^m \) or \(y^m \mid x^m \) for some \(m \in \mathbb{N} \). The notion of almost rigid element generalizes the notion of a rigid element in a GCD domain. By [16, Corollary 2.1], an AGCD domain \(D \) is of finite \(t \)-character if and only if for each nonzero nonunit \(x \in D \), \(S(x) \) contains at most a finite number of mutually \(v \)-coprime elements. Also, it follows from [16, Theorem 2.2] that in an AGCD domain of finite \(t \)-character, every maximal \(t \)-ideal \(P \) contains an almost rigid element \(r \) such that \(P = \{ x \in D \mid (x, r)_v \neq D \} \); in this case, we say that \(P \) is associated to \(r \). Clearly, if \(P \) is associated to \(r \), then \(P \) is a unique maximal \(t \)-ideal of \(D \) containing \(r \), and thus two distinct maximal \(t \)-ideals of an AGCD domain of finite \(t \)-character are associated to a pair of \(v \)-coprime almost rigid elements.

Lemma 2.9. Let \(D \) be an AGCD domain of finite \(t \)-character and let \(S \) be a saturated multiplicative set of \(D \). Then \(S \) contains a sequence of mutually \(v \)-coprime almost rigid elements of infinite length if and only if \(|\{ P \in t \text{-Max}(D) \mid P \cap S \neq \emptyset \}| = \infty \).

Proof. Let \(T \) be the set of all almost rigid elements of \(D \). Then the relation “is non \(v \)-coprime to” is an equivalence relation in \(T \), and hence for each almost rigid element \(r \), we have the unique equivalence class \([r] \) and correspondingly a unique maximal \(t \)-ideal \(P(r) \). Also, note that as \(D \) is an AGCD domain of finite \(t \)-character, every maximal \(t \)-ideal of \(D \) is of the form \(P(r) = \{ x \in D \mid (x, r)_v \subseteq D \} \) for an almost rigid element \(r \) [16, Corollary 2.1]. Now suppose that a maximal \(t \)-ideal \(P(r) \) intersects \(S \), say, \(x \in P(r) \cap S \). Then we can find \(d \) dividing a power of \(x \) such that \(d \) is an almost rigid element that is non-\(v \)-coprime to \(r \) (see the second last paragraph on p. 167 of [16]). Thus \(P(r) \) intersecting \(S \) implies that there is an almost rigid element \(d \in S \) such that \([r] = [d] \). Next as no two \(v \)-coprime elements can share a \(t \)-ideal, two distinct maximal \(t \)-ideals intersecting \(S \) would result in a
pair of \(v\)-coprime elements in \(S\). Thus, there are infinitely many distinct maximal \(t\)-ideals of \(D\) intersecting \(S\) if and only if there is an infinite set of mutually \(v\)-coprime elements in \(S\).

Corollary 2.10. (cf. [16, Theorem 3.1(b)]) Let \(D\) be an integrally closed AGCD domain of finite \(t\)-character and let \(S\) be an almost splitting set of \(D\). Then \(D^{(S)} = D + XD_S[X]\) is of finite \(t\)-character if and only if there is an infinite set of mutually \(v\)-coprime almost rigid elements of infinite length.

Proof. This is an immediate consequence of Theorem 2.4 and Lemma 2.9, because an integrally closed AGCD-domain is a \(P_v\)MD and almost splitting sets are \(t\)-splitting.

Next, we need to establish that Corollary 2.10 applies directly to the GCD domains case. For this, we start with the following simple lemma.

Lemma 2.11. Let \(r\) be an almost rigid element in an integrally closed AGCD domain \(D\). Then \(r\), and every power of \(r\), is rigid. In particular, every almost rigid element of a GCD domain is rigid.

Proof. Let \(x, y \in D\) be nonzero such that \(x, y \mid r\) (resp., \(x, y \mid r^n\) for any \(n \in \mathbb{N}\)). Then there is an \(m \in \mathbb{N}\) such that \(x^m \mid y^m\) or \(y^m \mid x^m\), but this leads to \(x \mid y\) or \(y \mid x\) because \(D\) is integrally closed. The “in particular” part follows because GCD domains are integrally closed AGCD domains.

Corollary 2.12. Let \(D\) be a GCD domain of finite \(t\)-character and let \(S\) be a saturated multiplicative set of \(D\) such that \(D^{(S)} = D + XD_S[X]\) is a GCD domain. Then \(R\) is of finite \(t\)-character if and only if \(S\) contains no sequence of mutually coprime rigid elements of infinite length.

Proof. This follows directly from Theorem 2.4 and Lemma 2.11, because GCD domains are integrally closed AGCD domains.

3. **Nagata-like Theorems**

As in Section 2, \(D\) denotes an integral domain, \(S\) is a saturated multiplicative set of \(D\), \(X\) is an indeterminate over \(D\), and \(D^{(S)} = D + XD_S[X]\).

Nagata’s theorem states that if \(S\) is generated by prime elements, then \(D_S\) is a factorial domain (if and) only if \(D\) is. In this section, we prove this kind of results for integral domains of finite \(t\)-character. We then use this result to give some sufficient conditions for \(D^{(S)}\) to be of finite character when \(D^{(S)}\) is not a \(P_v\)MD.

Proposition 3.1. Let \(D\) be an integral domain and let \(S\) be a saturated multiplicative set of \(D\). Suppose that \(S\) is such that (i) for each nonzero \(x \in D\), \(x\) belongs to at most a finite set of maximal \(t\)-ideals intersecting \(S\) and (ii) every maximal \(t\)-ideal \(P\) of \(D\) with \(P \cap S = \emptyset\) is contracted from a maximal \(t\)-ideal of \(D_S\). If \(D_S\) is of finite \(t\)-character, then \(D\) is of finite \(t\)-character.

Proof. Let \(x\) be a nonzero nonunit of \(D\). The maximal \(t\)-ideals of \(D\) containing \(x\) are of two types, ones that are disjoint from \(S\) and these are contractions from maximal \(t\)-ideals of \(D_S\) by (ii) and ones that intersect \(S\) and these are finite in number by
(i). Thus, if D_S is of finite t-character, x is contained in a finite number of maximal t-ideals of D. \hfill \Box

Remark 3.2. The proof of Proposition 3.1 may leave one wondering about the maximal t-ideals of D_S that do not contract to maximal t-ideals in D. Let M be such a maximal t-ideal of D_S, then $M \cap D$ is a t-ideal. Suppose that $P = M \cap D$ is not a maximal t-ideal, and let Q be a maximal t-ideal of D containing P. We claim that $Q \cap M \neq \emptyset$. For if not, then $M \subseteq QD_S \subseteq D_S$ and by the condition (ii) of Proposition 3.1, QD_S is a maximal t-ideal of D_S. This is contrary to the assumption that M is a maximal t-ideal of D_S.

An upper to zero in $D[X]$ is a nonzero prime ideal Q of $D[X]$ with $Q \cap D = (0)$. A domain D is called a UMT-domain if each upper to zero in $D[X]$ is a maximal t-ideal. It is known that D is a PrMD if and only if D is an integrally closed UMT-domain [27, Proposition 3.2]. The next result is already known ([28, Proposition 4.2] and [18, Lemma 2.1]), but we include it here to indicate an application of Proposition 3.1.

Corollary 3.3. D is of finite t-character if and only if $D[X]$ is of finite t-character.

Proof. (\Rightarrow) Let $S = D \setminus \{0\}$. Recall that if M is a maximal t-ideal of $D[X]$ such that $M \cap S \neq \emptyset$, i.e., $M \cap D \neq (0)$, then $M = (M \cap D)[X]$ and $M \cap D$ is a maximal t-ideal of D (cf. [27, Proposition 1.1]); hence for any $0 \neq f \in D[X]$, $f \in M$ if and only if $c(f) \subseteq M \cap D$. Also, if Q is a maximal t-ideal of $D[X]$ with $Q \cap S = \emptyset$, then Q_S is a maximal t-ideal of $D[X]_S$ (note that $D[X]_S$ is a PID) and $Q_S \cap D[X] = Q$. So if D is of finite t-character, the conditions (i) and (ii) of Proposition 3.1 are satisfied. Clearly, $D[X]_S$ is of finite t-character. Thus, by Proposition 3.1, $D[X]$ is of finite t-character.

(\Leftarrow) This follows directly from the fact that if P is a maximal t-ideal of D, then $P[X]$ is a maximal t-ideal of $D[X]$. \hfill \Box

Let Γ be a numerical semigroup and $D[\Gamma]$ be the numerical semigroup ring of Γ over D. Then the map $\phi : t\text{-Spec}(D[X]) \rightarrow t\text{-Spec}(D[\Gamma])$, given by $Q \mapsto Q \cap D[\Gamma]$, is an order-preserving bijection, where $t\text{-Spec}(A)$ is the set of prime t-ideals of an integral domain A, [12, Theorem 1.4]. Hence $D[X]$ is of finite t-character (resp., weakly Matlis) if and only if $D[\Gamma]$ is of finite t-character (resp., weakly Matlis). By Corollary 3.3, D is of finite t-character if and only if $D[X]$ is. Also, it is known that $D[X]$ is a weakly Matlis domain if and only if D is weakly Matlis and each upper to zero in $D[X]$ is contained in a unique maximal t-ideal of $D[X]$ [18, Proposition 2.2]. Thus, we have

Corollary 3.4. If Γ is a numerical semigroup, then

1. D is of finite t-character if and only if $D[\Gamma]$ is of finite t-character.
2. D is weakly Matlis and each upper to zero in $D[X]$ is contained in a unique maximal t-ideal of $D[X]$ if and only if $D[\Gamma]$ is weakly Matlis.

Corollary 3.5. If D is a UMT-domain, then D is weakly Matlis if and only if $D[\Gamma]$ is weakly Matlis.
Proof. This follows directly from Corollary 3.4(2) because each upper to zero in $D[X]$ is a maximal t-ideal. □

The other possible use of Proposition 3.1 can be in shortening the proof of Theorem 2.4. However, we left the proof of Theorem 2.4 intact as it includes the structure of maximal t-ideals of the $D + XD_S[X]$ construction when it is a PeMD. The next application is an example of the $D + XD_S[X]$ domain of finite t-character that is not a PeMD.

Example 3.6. Let D be a valuation domain (hence a PeMD) of dimension ≥ 2, Q be a nonzero non-maximal prime ideal of D, and $S = D \setminus Q$. Then $D^{(S)}$ is not a PeMD [34, Propositions 2.5 and 3.3]. However, note that there are only two types of maximal t-ideals: (i) principal rank one prime ideals P generated by discrete primes and (ii) the prime ideal M consisting of all non-discrete elements of $D^{(S)}$ [34, Lemmas 2.3 and 2.4]. (An $f \in D^{(S)}$ is said to be discrete if $f(0)$ is a unit in D.) Note that M is a unique maximal t-ideal of $D^{(S)}$ that intersects S; so the condition (i) of Proposition 3.1 is met and every maximal t-ideal different from M is principal. Now as principal prime ideals disjoint with S extend to principal primes in $D^{(S)} = D_Q[X]$ we conclude the condition (ii) of Proposition 3.1. Next as $D_Q[X]$ is of finite t-character by Corollary 3.3, the requirements of Proposition 3.1 are satisfied, and thus $D^{(S)}$ is of finite t-character.

Lemma 3.7. Let D be an integral domain such that for all $A \in f(D)$, A^{-1} is of finite type, S be a saturated multiplicative set, P be a prime t-ideal of D with $P \cap S \neq \emptyset$, and $P = P + XD_S[X]$. Then

(1) P is a prime t-ideal of $D^{(S)}$.

(2) P is a maximal t-ideal if and only if P is a maximal t-ideal.

Proof. (1) It follows directly from [14, Theorem 2.1] that P is a prime ideal. Now, let $f_1, \ldots, f_n \in P + XD_S[X]$, then $(f_1, \ldots, f_n)D^{(S)} \subseteq (a_1, \ldots, a_n, s) + XD_S[X]$, where a_i is the constant term of f_i and $s \in P \cap S$. Note that $(a_1, \ldots, a_n, s) + XD_S[X] = (a_1, \ldots, a_n, s)D^{(S)}$ because $(a_1, \ldots, a_n, s) \cap S \neq \emptyset$. Also, $(a_1, \ldots, a_n, s)D^{(S)} = (a_1, \ldots, a_n, s)^{-1}D^{(S)} = (a_1, \ldots, a_n, s)^{-1}D^{(S)} [34, Lemma 3.1]$, and since $(a_1, \ldots, a_n, s)^{-1}$ is a P-ideal of finite type, we have $((a_1, \ldots, a_n, s)^{-1}D^{(S)})^{-1} = (a_1, \ldots, a_n, s)_vD^{(S)}$ [34, Lemma 3.2]. Thus $((f_1, \ldots, f_n)D^{(S)})_v \subseteq ((a_1, \ldots, a_n, s)D^{(S)})_v = (a_1, \ldots, a_n, s)_vD^{(S)} = (a_1, \ldots, a_n, s)_v + XD_S[X] \subseteq P + XD_S[X]$ because P is a t-ideal.

(2) Assume that P is a maximal t-ideal, and let M be a maximal t-ideal of $D^{(S)}$ such that $M \supseteq P + XD_S[X]$. But as $M \cap S \neq \emptyset$ we have $M = Q + XD_S[X]$, where $Q = M \cap D$, [14, Theorem 2.1]. We claim that Q is a t-ideal. For if $q_1, \ldots, q_n \in Q$, then by the above argument $((q_1, \ldots, q_n, s) + XD_S[X])_v = (q_1, \ldots, q_n, s)_v + XD_S[X] \subseteq Q + XD_S[X] = M$ which shows that $(q_1, \ldots, q_n, s)_v \subseteq Q$ and so $(q_1, \ldots, q_n, s)_v \subseteq Q$. Now as Q is a prime t-ideal containing the maximal t-ideal P, we conclude that $M = P + XD_S[X]$. A similar argument also shows that P being a maximal t-ideal requires that P is a maximal t-ideal. □

Corollary 3.8. Let D be an integral domain of finite t-character such that for all $A \in f(D)$, A^{-1} is of finite type and let S be a saturated multiplicative set such that

(i) S meets at most a finite number of maximal t-ideals of D and

(ii) D_S is of finite
t-character and every maximal t-ideal of $D(S)$ that is disjoint from S is contracted from a maximal t-ideal of $D_S[X]$. Then $D(S)$ is of finite t-character.

Proof. Recall from Corollary 3.3 that $D_S[X]$ is of finite t-character if and only if D_S is; hence $D(S)$ is of finite t-character because $D_S[X] = D(S)$. Next, by Lemma 3.7, if M is a maximal t-ideal of $D(S)$ such that $M \cap S \neq \emptyset$, then $M = P + XD_S[X]$ where P is a maximal t-ideal with $P \cap S \neq \emptyset$. Also, since every maximal t-ideal of $D(S)$ disjoint from S is contracted from $D(S) = D_S[X]$, we see that the requirements of Proposition 3.1 are satisfied. Thus, $D(S)$ is of finite t-character. □

Corollary 3.9. Let D be a Noetherian domain and let S be a saturated multiplicative set in D such that S meets at most a finite number of maximal t-ideals of D. Then $D(S)$ is of finite t-character.

Proof. All we need to establish is that every maximal t-ideal of $D(S)$ disjoint from S is contracted from a maximal t-ideal of $D(S)$. For this, we note that if D is Noetherian, then $D(S)$ is coherent [14, Theorem 4.32] and hence $D(S)$ is well behaved [34, Proposition 1.4]. Thus, if M is a maximal t-ideal of $D(S)$, then M_S is a maximal t-ideal of $D(S)$ such that $M_S \cap D(S) = M$. □

In general, if D is coherent, then $D(S)$ may not be coherent. In Example 3.6, $D(S)$ is a Schreier domain that is not a GCD domain and it is easy to see that a coherent Schreier domain is a GCD domain.

References

INTEGRAL DOMAINS OF FINITE t-CHARACTER

(Anderson) Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
E-mail address: dan-anderson@uiowa.edu

(Chang) Department of Mathematics, University of Incheon, Incheon 406-772, Republic of Korea
E-mail address: whan@incheon.ac.kr

(Zafrullah) Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA
E-mail address: mzafrullah@usa.net, http://www.lohar.com