Iournal of Pure and Applied Algebra 63 (1990} 231-245 ) 231
North-Holland

ON THE KRULL AND VALUATIVE DIMENSION OF
D+ XD:IX1 DOMAINS

Marco FONTANA

Dipartimento di Matematica, Universitd di Roma ““La Sapfeh‘za‘"’, 00185 Rome, Ftoly

Saiah KEABBAJ

Département de Moathématiques, Université de Lyon I, ““Claude Bernard’’, 69622 Villeurbanne,
France '

Communicated by M.F. Coste-Roy
Received 1 November 1988
Revised 2 May 1989

In this paper, we deal with the integral domain DS = D (X Koy oo s K DsIX 1 X - XD
where D is an integral domain and S is 2 multiplicative set of D. The purpose is. to pursue the
study, initiated by Costa-Mott—-Zafruliah in 1978, concerning the prime ideal structure of such
domains. We characterize when D7) is a strong S-domain, a siably strong $-domain, a
cateparian domain and a universally catenarian domain. As a consequence, we obtain a new cjass
of non-Noetherian universaily catenarian domains. Moreover, we give an explicit formula for
the Krull dimension of D" (depending on S and on the Krull dimensions of [ and
DsiX. X -, X}y and we compute its vaiuative dimension.

£. Imtrodmetion

In [7] the integral domains D+ XDslX 1, where D is an integral domain, Sis 2
multiplicative set of D and X is an indeterminate, were introduced and studied.
Particular emphasis was placed on the transfer, from D to T®: =D+ XDsiX]1, of
the properties of being either Priifer, Bézout, GCD, or coherent domains. The
prime ideal structure of T®) was also studied, and some useful bounds on the
(Krull) dimension of T were given. However, the problem of the determination
of this dirnension in the general situation, as a function of § and of the dimensions
of D and D{X], remained open.

in the present paper, we deal with a more general situation: we consider the
domain

PEY= D+ (X, Ko, s X) DXy, Xop oo, K} = D+ XDs X

where 2 is an integral domain, S a multiplicative set of D and X ={X, X2 ---» %}
is a finite set of indeterminates over Dg.
We notice that, as in the case of one indeterminate, the domain DS may be
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described in various ways: it is the direct limit of the direct sysiem of domains
DIX,/5,%,/5,...,X,/5), where s€§ (and s;=<s, when 5; | 5,); D®7 is the puliback
of the canonical homomorphism ¢ : DX, Xy, .., X1 > D5, X;= 0, 1=i=7, and
of the embedding o : D < Dg:

D7 =7 (@(D)) —— D

(0) o’ o
M ¢
vDS[XhX% '”7Xr} —‘*—‘—"»DS -
Therefore, we can claim that many properties hold in D7 because these proper-
ties are preserved by taking polynomial ring extensions and direct limits or by
pullbacks of the special type ().

Similarly, as remarked in {71, it is possible to describe DS a5 the symmetric
algebra of the D-module D?’ (asing [2, Chapitre 111, p. 73, Proposiiion %]}, but we
will not use this last property in this paper.

The purpose of this work is to pursue the study, initiated by {7] when r= 1, of
the prime ideal structure of the domain DS, The main results of Section 2 (cf.
Proposition 2.3 and Theorem 2.5) characterize when D7 is a strong §-domain, a
stably strong S-domain, a catenarian domain, or 2 universally catenarian domain.
In pasrticular, the domains of the type D" give rise to 2 new class of non-
Noetherian universally catenarian domains (cf. [4]). Moreover, we give an explicit
formula for the Kruil dimension of D7) (depending on S and oxn the Krull dimen-
sions of P and D5IX;, X5, ..., X;]) and we compute its Jaffard valuative dimension
(cf. Theorem 3.2 and Proposition 3.4).

All rings considered below are (commutative integral) domains.

We recall that in [13] 20 integral domain R is called an S(eidenberg)-domairn if
for every height 1 prime ideal P of R, the height of PR{Y], in the polynomial ring
in one indeterminate R[Y1, is also 1. A strong S-domain is 2 domain K such that,
for every prime ideal P of R, R/Pis an S-domain. In [6], it is shown that there exists
a strong S-domain for which R[Y] is not a strong S-domain. In {15}, a2 domain R
is called a stably strong 8-domain if R(¥y, ¥o,-... ¥,] is @ strong S-domain for
every finite family of indeterminates {¥3, ¥3,---, Y,}. A ring R is said 10 be
catenarian in case for each pair PC Q of prime ideals of R, ali saturated chains of
primes from P to Q have a commoen finite length. Note that cach caienarian ring
R must be locally finite-dimensional. In [3, Lemma 2.3], it is shown that if the
potynomial ring R{Y] is a catenarian domain, then R is a strong 8-domain. We say
that a (not necessarily Noetherian) ring is universally caternarion if the polynomial
rings R1Yy, ..., ¥,,] are catenarian for each positive integer 7.

Foliowing Jaffard (cf. [14, Chapitre IV]), we define the valuative dimension of
an integral domain R as

dim, (R)=sup{dim(V): V valuation overring 0i R}.
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A Jaffard domain is a finite-dimensional integral domain R such that dim{R)}=
gim., (R} (see [11).

We recall that a spectral space %'=Spec(A) (i.e. the set of all the prime ideals of
a ring A equipped with the Zariski topology) is an ordeyed set under the set-
theoretical inclusion. Following EGA’s terminology [2,0.2.1.1], we say that a subset
% of a spectral space & is stable for generalizations (resp., specializations) fye®
and y'<y (resp., y=<»"} imply that y'e % (zesp., ¥y" € ¥).

1. Prime ideal structure
We start coilecting some basic facts concerning the prime ideal structure of
1 g . - -/

DS =D (X, ., X)X, o, X, 1=D+ XDs[X]. Most of these are comse-

guences of the general properties of pullback diagrams studied in i8].
We dencte by

a,

u;:%’g: g::SpeC{Ds) — = SpeC(DsiXh son aXrDr
vi=C0: F > = Spec({D),
it=%" %::Spec{ﬂ(&r}) — Fr= Spec(D{Xp ey X 1

Lo

the continuous maps (of spectral spaces) canonically associated to the natural
ring homomorphisms ¢:DsIXy, ..., X~ Ds, X;=0 1=i=7, a:Dcs Dy, and
A:PIX;, e X1 DT, respectively.

Theorem 1.1. With the previous notation, the spectral space % is canonically
homeomorphic to the topological amalgamated sum XUz %. More precisely,

(1) XD3(X] is g prime ideal of DS gnd DS/ XDSIX] is canonically isomor-
phic to D. From a topological point of view, the continuous map u':="“¢': X — %,
associated to the surjective ring homomorphism ¢’ DS > D, is a closed em-
bedding, and estabiishes an order isomorphism X —— X':= {Qew: ODXDs[X1}.
P P+ XDs1X1. In porticular, X' is a subspace of P stable under specializations.

Q) (DS N is canonically isomorphic {0 DXy, ... X}, From @ topological
point of view, the continuous map v =% % — W gssociated to the natural ring
homomorphism o' DS = DelXy, ..., X/, is injective and establishes an order
isomorphismm ¥ % :={QecW: Q0 S=0}, Pw PNDSD, where %' is a sub-
space of P¢ stable under generalizations.

() (DS /XDsIX]) is canonically isomorphic to Ds. A topological inier-
pretation of this foct is that v'ou:F— ¥ establishes an order isomorphism
T F = NNH, P (PO DY+ XDsiX]), where 3" is a closed subspoce of %’
(but not, in general, of ).

(4) The topological amaigamated sur KUz ¥ is canonically homeomorphic
(via the continuous map ¢ defined by o | g=u"and o | g=v") to P In particular,
these two topological spaces are order isomorphic.
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(5) The canonical continuous map i: W — & is injective but, in general, it is not
a topological embedding. As a matter of fact, it is not an order isomorphism with
its imoge. But, if Me &'C % is a closed point of %, then i(M} is still « closed point
of &. Moreover, i( %"} is a subspace of & stable under generalizations.

Proof. The proof of the statements (1), (2) and (3) is straightforward. For the first
claim of (5), we shall give a counterexample (see the following Remark 1.4). The
second claim follows from the fact that, if A is a maximal ideal of D7 con-
taining XDs[X], then M N D[X] is a maximal ideal of DX} (contaiming XDIX1).
The third claim follows by noticing that DIX1 and D) have the same localization
at their multiplicative set 5. For statement (4), it is easy to see that ¢ is a continuocus
bijection. Moreover, o is also a closed map as a consequence of Corollary 1.3, which
follows from: '

Proposition 1.2. Consider the following puliback of ring-homiomorphisms:

’

R s B

5[ 5
Lo,
A—>C,

where w is surjective, I=Kex(y), and J is injective. Suppose that R is guasi-local
with maximal ideal M. Then

(a) ICJ(A) (=Jacobson radical of A);

(0) Max(A4)="yMax(C)}

{c) For every PeSpec(R), with P=¢""1P") for some P’'eSpec{A), there exisis
Q eSpec(R) with PCQ and O=(wod"Y KQ") for some Q'eSpec(C).

Proof. For ease of notation, we identify R and B with their images in 4 and C. it
is straightforward to see that I also coincides with Ker(w") and R/ is isomorphic
to B. Therefore, B is also a quasi-local ring.

(2) Clearly 1+7C1+MCU(R) (=units of R) since R is quasi-local. Thus
1+7=1+I4CU(A), and the previous inclusion fmplies that FCJ{A4). '

(b) Obviously “y(Max(C)) CMax(4), because %y is a closed embedding. By (a)
and by the isomorphism A/f=C, we deduce statement (b).

(c) is an easy comseguence of (b). ‘I ‘

Corollary 1.3. With the notation of Proposition 1.2, without supposing R quasi-
local. if we teke P;,P,eSpec(R) with PyCP, and P;=9 =YpPy for some
P} e Spec(4) and P, =y " (P;) for some P; € Spec(B), then there exists O e Spec(R)
with P,C QCP, and Q=(y 28') Q") for some Qe Spec(C)-

Proof. After tensorizing by ®gRp,, we are in the situation of Proposition 1.2
{cf. also [5, Lemma 2]). Using the statement (c) of the previous proposition, the con-
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clusion follows from the properties of the correspondence between the prime ideals
of R and those of Rp,. U

Remark 1.4. If we consider D=7y, S=Z»\{0}, and r=1, then it is casy to
verify that 7:Spec(Zg,+ XQIXT) — Spec{Z» [ X1} is neither open nor closed (even
though, in this particular case, the canenical map Spec(Q{X1) — Spec(Zp, [ XD s
open, in fact universally open [9,1.7.3.10], and not, simply, stable for general-
izations). Moreover, the continuous injective map 7 is not an order isomorphism
with its image, because, for instance, Pi=2+X)QIX]IN{Zy + XQLXD and M:=
2Z o+ XD[X] are both maximal ideals of Zg,+ XQIX], but HPY=Q2+X ) ZpiXiC
M) =2Z ) + XL 5[ X]. We slso notice that Q:=XQ[X] and P are co-maximal in
Zpy+ XQLX], but i(P) and i(Q) are both contained in (M), as prime ideals of
ZpIX].

Another interesting property of the domains of the type D& is described in the
following:

Proposition 1.5. Lef 13, Yz,...; Y, be a finite set of indeterminates over a given
domain D'SD. Then, the polynomial ring DY Y,,...,Y,] is caronically
isomorphic to (D[Y:, ..., Y,

Proof. By flatness, the following diagram, obtained from the diagram () by
tensorizing with ®p DY, Y25 .--0 ¥i)s

DEDY;, Yoy ey Yl — > DY, a0 Yol

| |

DsiX;, "'?Xl"; Yl’ annsy Yn} "—‘»DSEY;, Yz, nans Yn]

is still a pullback diagram (cf. {5, Lemma 2]). The conclusion is now straight-
forward, after noticing that Ds[Y}, ..., ¥,] coincides with D[Y, Y., Yls U

2. Tramsfer of some properties concerning prime chains

In this section, we will study the transfer of the properties of being an 8-domain,
a sirong S-domain, or a catenarian domain to the integral domains of the type
DS =p+(X,,..., X, ) DslX;, ..., X, ] and to the polynomial rings with coefficients
in a DG,

In order to study the problem of the transfer of the S-property to D7), we need
to know better the behaviour of this property in passing to polynomial rings. This
problem was surprisingly disregarded in the literature and only briefly studied in
{15, Theorems 3.1, 3.3 and Corollary 3.4}, where in particular the authors showed
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that if B is a Priifer domain, then R[Y}, ¥3,..., Y] is an S-domain. M. Zafrullah,
in a private communication, proved the following general result that improves
dramatically the previous statement of [15] and some results of a first draft of this

paper:

Proposition 2.1. Let R be on integral domain end Y, Yy, onny ¥y, @ finite family of
indeterminates over R, where n=1. Then R(Yy, ¥y, ..., ¥,1 is an S-domain.

Proof. It is enough to show that the statement holds when = 1. Let ¥:=Y,. Itis
easy to see that an imtegral domain A4 is an S-domain if and only if 4, is an 5-
domain for every beight 1 prime ideal p of 4. In order to prove the statement, it
is enough to show that R[¥]p is an S-domain, for every height 1 prime ideal P of
R{Y]. Two cases are possible for p:=PNR. If p=(0), then p is an height 1 prime
ideal of R and P=p[¥1. Thus R[¥]p=R,1¥ ],y and PR{Y1p=pR, ¥y, hence
PR,IY] is 2 height 1 prime ideal of R,[Y]. We recall that in [3, Corollary 6.31 it
is shown that for one-dimensional domains, the notions of (strong) $-domain and
stable strong S-domain are equivalent. By applying this resuit to R,, we deduce
that in R,[¥,Z] (where Z is another indeterminate) pR,[Y,Z] is still a height 1
prime ideal. Thus p{¥, Z] = P[Z] is alsc a height 1 prime ideal. If p=(0), then there
exists 2 unique height 1 prime ideal Q of K[Y], where K denotes the field of
guotients of R, such that QN R[Y]=P. Since K{Y1]is an S-domain, so is K{¥]g,
this fact implies that also R[Y]p is an S-domain. The proof is complete. UJ

From the preceding proposition we deduce immediately the following:

Coroliary 2.2. We keep the notation introduced in Section 0. Then DS s an §-
domain for every 5 and r=1.

Proof. By Proposition 2.1, we know that DX, Xps -, Xohy with r2 1, is an 8-
domain. For every height 1 prime ideal P of D7), we can consider two cases. if
PAS=6, then (DN p=(DSN)s)p=Ds(X}, X3 .-, X,}p and hence it is an §-
domain. If PN S#7, then necessarily =1 and P=XDs[X 1, hence this second case
is impossible, because XDsIX1NS=2. U

in order to build-up a new class of examples of universally catenarian domains
which is different from 2all the classes already known, we deepen the study of the
domains 27, '

[

Proposition 2.3. We keep the notation introduced in Section 0. Let r=1. Th
Foliowing statements are eguivalens:

() DN is a strong S-domain (resp., a catenarian domainy;

() D and DsiX;, X, ..., X} are both strong S-domains (resp., catenarian
domains). :
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Proof. It is clear that (i) = (ii), because the notion of strong S-domain {resp.
catenarian domain) is stable under localization and under the passage to quotient-
domains. '

(i) = (). We start with the case of strong S-domains. Let P and P, be two
prime ideals of DS with P, C P, and ht(P,/P)=1. Three cases are theoretically
possible. )

Case 1. Pye &' (with the notation of Theorem 1.1}. Thus aiso P 2. In this
case, ht{P,[Y1/P;{Y] =1 because &= X =Spec(D) and D is a strong S-domain.

Case 2. Pye %' (with the notation of Theorem 1.1). Thus aiso Pye %'. Also
in this case bt(P,[Y1/P;[¥D=1 because #¥'=%= Spec{Dsl X, ..., X1} and
DX, ... X, ] is a strong S-domain.

Case 3. P e % and Poe 2"\ %’. This case is impossible when bt(P,/P;)=1 by
Coroliary 1.3. .

Finally, we notice that the implication (ii) = (i) holds in the case of a catenarian
domain. As a matter of fact, we can apply {5, Lemma 1], after remarking that the
glueing condition (¥) is verified by Corollary 1.3. O

As an easy consequence of Proposition 2.3, we have

Corollary 2.4. If DX X,, ..., %] is a strong S-domain {resp., o catenarian
domain), then D'S7 is a sirong S-domain (resp.. a catenarian domair). O

We will show (Exawmple 2.7) that the converse of Corollary 2.4 does not hold
in genexal, however it is possible to prove 2 “universal’ converse of the previous
corollary.

Theorem 2.5. With the notation of Section 0, and r=1, the following statements
are eguivalent:
{y D% is a stably strong S-domain (resp., a universaily catenarian domain);
(ii) D is a stably strong S-domain (resp.. @ universafly catenarian domain).

Proof. (i) = (i). As a matter of fact, if for every n= i, DYy, .... ¥,1 is a strong B-

domain (resp., 2 catenarian domain), then the conclusion foliows from Corollary

2.4, after recailing that (DY), ..., ;D& N=pDSNY,, ..., Y,l (cf. Proposition 1.5).
(i) = (). For every n=1, we know that

DEDT e, Yol K oer XY D Xy Ko Yo oo T =DV s Yo

thus the claim is a consequence of the fact that the notion of strong S-domain (resp.,
catenarian domain) is stable under passage to quotient-domains. [

The previous theorem Jeads to a further non-standard class of umiversally
catenarian domains (besides those considered in [4]). In particular, it is possible now
to exhibit a universally catenarian domain which is neither Noetherian nor a GD
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strong S-domain (thus not a Priifer domain) with global dimension bigger than 2.
As a matter of fact, when D is a universally catenarian domain and the multi-
plicative set S is non-trivial (.e. %D\ {0} and SCU(D)) and r=1, then P®N s
a universally catenarian domain of the announced kind, even if D is a universally
cotenarian domain of ome of the ‘classical’ classes (i.e. CM, locally finite-

dimensional Priifer domain, or a domain of global dimension=2). For instance,
Z+(X;,X2,.».,X,-)Z(Z}[X;,...,Xr}, FZi,
C[(j, VE(U, V}’f‘ (XI?XZ,‘ ..-,Xr)C[{/; V}(U)EXIJ s ,Xr}, r=1

are new examples of universally catenarian domains which are not Noetherian, not
Priifer, and have global dimension> 2.

Example 2.6. We give an example of a domain S which is not a strong 8-
domain (still is an 8-domainy. .
Let k& be a field and X and ¥ two indeterminates over k and let

Ay =k + TR Y Iy M= Y)Y vy
AMy:= Ykiy}(y}%‘Pﬂ

A, is a 1-dimensional pseudo-valuation domain, which is not an 8-domain [10,
Theorem 2.5], and ¥, is a 2-dimensional valuation domain. Set D=4, NV,. Itis
not difficult to see that Spec(D)={(0), p=PND, m=M; D, m, =M, D} and
that

Dm|=A1= DmZZVi:

with m7; height 1 prime (maximal) ideal of D. Thus, D is not an 8-domain. Thus
D+(X1,XZ,...,Xr)Bp{X;,XZ,..,,Xr] is pot a strong S-domain, but it is am 3-
domain (cf. Coroflary 2.2 and Proposition 2.3).

Example 2.7. There exists an integral domain D and a multiplicative set 5 of D such
that D and DS are catenarian and strong S-domains, for every r=1l, but
DX, ..., X} is not a strong S-domain for every r=1 (hence, it is not & catenarion
domain for r=1).

By [6, Example 3] (cf. aiso [1, Example 3.8]), we know that it is possible Lo give
an example of a quasi-local 2-dimensional catenarian and strong 8-domain & with
2 unique height 1 prime ideal P such that Dp is a (discrete) valuation domain, but
DX, ..., X1 is not a strong 8-domain for 7=1 (hence, it is not cateparian for
r>72, cf. {3, Lemuma 2.3]). in this case, since a finite-dimensional valuation domain
is a universally catenarian domain [5] (in particular, a stably strong 8-domain),
then, by the previous Proposition 2.3, D+ (X3 oor s Xy DplXs -o-n X is catenarian
and z strong S-domain for every r=1.
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3. Kruil dimension and valuative dimension

In order to study the Krull dimension of D7, we begin by giving some new
definitions, related to the S-dimension introduced in [7], with the purpose of ob-
taining some useful bounds on the Krull dimension of 7®:=p&D,

Recalling the notation of Section 1, we identify for simplicity &, % and 2’ with
their canonical images (respectively, &', %’ and Z') in % (cf. Theorem 1.1).

We define the S-coheight of a prime Pe % by

S-coht(P):=sup{t=0: P=P,CP C - CPF,, where P,e &\ 5 for i=1},
and we set
S-dim(D}: =sup{S-coht{(P): Pe &°}.

Cbviously, S-coht(P)=<coht(P) for every Pe & moreover for r=1, the previously
defined S-dimensior coincides with that introduced in [7].
Finally, we define:

Zdim(DLX, ..., X,]): = sup{ S-coht(P) + ht(P): Pc 3}

where ht{P) is the height of P as a prime ideal of D<{X},.... X/} or, equivalently,
of DIX, ..., X1

Before producing a formula which gives the Kruil dimension of 27 as a
function of the Krull dimension of Dg[X. ..., X, ] and of the Z-dimension of
DIX,, ..., X1, we give some bounds for dim(D%"?) analogous to those proved in
{71 when r=1.

Proposition 3.1. With the notation of Section 0. we have:
max{dim(Dg[X]), dm(D)+ r} =dim(PS")
< min{dim(DLXD), dmDX])+ S-dimi{D)}.

Proef. It is clear that dim(DsX])=dim(D®7) =dim(D{X]) because of Theorem
1.1 and Ds[X]=(DSM)s. Moreover, in D7 there always exists a chain of prime
ideals of length=dim(D) +r. As a matter of fact, we can choose a maximal ideal
M of D7) such that MD XD[X] and M/XDs[X] corresponds to a maximal ideal
of D which realizes the dimension of 23. Then, M contains a chain of prime ideals
of length ht(M/XDs[ XD + ht{XD3[X]) = dim(D) + r. Finally, let Q be a prime ideal
of D7) corresponding to a closed point of 2. By Coroilary 1.3, to avoid the trivial
cases we can consider a chain of prime ideals of D®7 passing through Q. This
chain necessarily has length < dim{(Ds[X]) + S-coht(Q) = dim(Ds[X ) + S-dim(D).

]
Theorem 3.2. With the notation of Section 0,

dim(DS ) = max{dimDs Xy, .-, XD, F-GmDIXy, -, KDY

Preof. Let MeMax(D®"). By Theorem 1.1, two cases are possible:
Case 1. Me % (with the notation of the beginning of this section). In this case,
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ht(M)=dim(Ds[X1) and there exists a maximal ideal M e Max(D®) with Me %
such that ht{3) = din(Ds[X 7).

Case 2. Me % (with the notation of the beginning of this section), that is,
MDXDIX]. In such a case, we know that every chain of prime ideals of D&
contained in M contains a prime ideal Q€% {(Corollary 1.3}. Therefore, the
supremum of the length of the chains of prime ideals ending at 2 maximal ideal
M e 2 coincides with: :

sup{S-coht(Q) + ht(Q): Qe T} = F-dim(@D[X]). O

Before giving some important cases for which it is easy to compute ZF-
dim( DX, ..., X,]), we draw some consequences from the previgus theoremt:

Corollary 3.3. With the notation of Section 0, let D be a Jaffard domain. Then for
every r=1
dim(DS M) = dim{D) + 7. ;

In particular, F-dim(D1X, ..., X ) =dm(DIX;, ..., X 1) =dim(D)+r.
Procf. We notice that when dim(DIX, ..., XD =dim{D) +r, then

max{dim(D) +r, dm(DsiX}, ..., X} =dim(D) + 7.
Moreover,
min{dim(DLX,, ..., X 1), dmDg[ Xy, ... XD+ S-dim{D)}

=dim(DIX:, ... XD
QOtherwise, we would have v A
dim(D) + r = dim(DS ) = dim(Ds X, ... , X, 1) + S-dim(D)
= dm(PIX s e 0 K1)

and thus dim(Ds Xy, .-, X ) + S-dim(D) = dim(DIX, ..., XD = dim{D) +r.
Moreover, when D is Jaffard, dim(D[X, ..., X D) =dim (D} +r= d&m(D) +r. Thus,
by Proposition 3.1, dim(D®") = dim(D)+r. The second statement follows easily,
noticing that in general

Gm(D) + r= Z-Am(DLX,, .., XD = dm@IX, -, XD O

in order to study the transfer to DS of the Jaffard property, we need to
compute the valuative dimension of D7,

Proposition 3.4, With the notation of Section 0,

im (DS =dim (D) + 1.

Proof. it is clear (using [14, Théoréme 2, p. 60) that

| Gim(D)+r=dim(PS M) =dim (DN = dim (DX, -, X Dy =dim (D) +7.
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Conversely, let V be a valuation overring of D realizing the valuative dimension of
D and let X be the quotient field of 2. We consider

R:—‘— V+ (Xi’ ""‘?Xr)KEXI?"’er:Q’
It is easy to see that R is am overring of DS7 with
dim, {(R)=dim{R)=dim(¥ )+ r=dim, (D} +7.

The conclusion is now straightforward. O

Theorem 3.5. With the notation of Section 0,
(a} The following siatements are equivalent:
() D is a Jafferd domain;
Gy DS is a Jafford domain and dim(DS") = dim(D)+r, for every r=1.
(b} The following statements are equivalent:
() DS is g Jaffard domain;
Giy PIXs .-, X, is g Jaffard domain ond

dir(DE ) =dimDLX), ..., X)) (= F-dmDX,, ..., X))

Froof. (2) () « (11). By Corollary 3.3 and Proposition 3.4.
(b) (3) = (j)- By Propositions 3.1 and 3.4, we know that

dm(DLX, ..., X, D= dim(DS ") = dim, (D7) = dira (D) + 7.

Moreaver, it is well known that dim, (DX, ..., X 1) =dim, (D) +r ({l4,
Théorzme 2, p. 60]). The conclusion follows from the fact that, in general, the
valuative dimension is larger than the Krull dimension.:

(3i) = (§) is a consequence of Proposition 3.4, since

dim (D) + r=dim, (P[X, ..., XD, O

We note that D7 could be a Jaffard domain, even though 22 is not Jaffard, as
the following example will show:

Exampie 3.6. Let A;:=k+ Yk{(X)[¥]y, be the 1-dimensional pseudo-vajuation
domain comsidered in Bxample 2.6. We note that 4; is not a Jaffard domain
because dim,{(4;)=2 [1, Proposition 2.5] and that the polynomial ring 4;iZ}is a
3-dimensional Jaffard domain {1, 0.1(v)]. Let A=Y} X, and set
D:=A4;0A,. It is not difficuit to see that D is 2 i-dimensional quasi-semilocal do-
main with Max(D)={M:= Yk Y] r,N D, N:=XA,ND}, Dy=A4,, and
Dy=A,. Hence dim, (D) =max{dim,(4,), dim,(4,)} =2. Set S=D\M and r=1,
and consider DSV =D+ Z4,1Z]. Since D[Z] (iike 4;IZ]) is a 3-dimensional Jai-
fard domain {1, Section 0}, from Proposition 3.1 we deduce that dim(D®V)=3.
From Proposition 3.4 we easily compute dim,(D®V); thus we can conclude that
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DO is a 3-dimensional Jaffard domain, but D is not a Jaffard domain. Accor-
dingly with Theorem 3.5, we have

din(DS My = Aim(DIZ]) =33 dim(D) + 1.

Example 3.7. From Theorem 3.5(a), we deduce that

Ry:=Z{¥;, > Y 1+(X, “'9Xr)z(2)[Xlz s Xy Yis e Yk
and
R2:=@EZJ; V](u F/)E;V;, aeesy }"n] ’

+ {Xla aen 9Xr)Ci.a V](U)Exls sae )}{ra Yla EERE} yn}
are both non-Moetherian, non-Prifer Jaffard domains for every r=1 and n=0 with

dim{R;)=n+1+r, dimfRy)=n+2+7.

We end the paper with a result which aliows ome to compute the -
dim(BLX;, ..., X,]) in an important case.
Propesition 3.8. With the nofation of the beginning of this section, i
DIX, ..., X,] is a catenarian domain, then

2-dim(DLX, ..., X1} =dim(D)+r.

Proof. Let
M=P,DP,_;D--DPy=0=P;DF, D DPD{0

be a prime chain of DLX], realizing Z-dim(D[X]), where Qe 3, Pre\Fforiz=l
and ,Fj,-’e % for 1=j=h. Since P,=0QDXDs{X] (because Q€ F), two cases are
possible:

Case 1. Pj=0=XDs[X1. In this case, i=r since the height of Qin DgiX] (or,
equivalently, in D{X]) is . Moreover, S-coht(Q) = dim(D). Thus F-AmDIX])=
dim{D)+r and, since the opposite inequality always holds, then necessarily
F-dimd{ DX ) = dim{D)} + 1.

Case 2. P,=02XDs{X]. We have the following diagram of inclusion of prime
ideais:
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where d {(resp., {} is the maximal length of the saturated chains between A4 and
XDg[X] (resp., O and XDg[X)) inside D37, Since # is stable for generalizations
and DsiX] is catenarian, [+r=h. Moreover, d=dim(D) and & is stable for
specializations, thus d=r+/.

In conclusion, d+ =1+ i+ r=1+h; thus d+ 7=+ & since the opposite inclusion
always holds (cf. Proposition 3.1). O

From Corollary 3.3 and Proposition 3.8, we immediately deduce the following:

Corollary 3.2. With the notation of Section 0, if Dg is a universolly cgtenarmn do-
main, then dim(D") =dim(D) +r, for every r=1. O

The last exampie that we give is to show that it is possible to have

max{dim{D) + r, dim{Ds X}, ..., X, D}
< dim(PEN) = FdimDIX, ..., XD
< dim{DLXy, ..., X, 1.

Example 3.3¢. Let &k be 2 field and Z,, Z,, Z;, Z; indeterminates. We con-
sider Di=k+ Z k(Z Nz, + Zak(Z1, Z5, Z33)[Z4)(zy- We kmow from [1] that
dim(D) =2, dim,(D)=4. Moreover, a direct verification shows that the poly-
neomial ring DLX] is a 5-dimensional Jaffard domain (see also below). Let P:=
ZiK(Zy, Ly, Z3)Z4)(z,) be the height 1 prime ideal of D and Jet S:=D\ P. Clearly
Dp is a 1-dimensionai pseudo-valuation domain with dim,(Dp)=2 and thus
dim(DpIX1) =3 (cf. [1] and [10]). Let D V:= D+ XDp[X]. Clearly

max{dim(D)+ 1, dim{Dp[ X} =3
and
min{dim D{X], 5-dim(D)+ dim(Dp[X} =5

because 5-dim(D) =2 [7, Definition 2.8]. More precisely, the prime spectrum of
D+ XDpiX], as partially ordered set, has the following form:

I

M+ XDplX]

P+XDplX]

p*
XDpIK1 |
E

Fr
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where M is the maximal ideal of D, P*:=PDIX1ND®Y, F(X) is an irreducible
polynomial with coefficients in K:=k(Z,, Z,, Z,, Z,) (which is the quotient field of
D), (Fy:=FKIX1ND®Y and G(X)=Z,X - Z:Z,€ KLX]. In DSV there are two
kinds of prime ideals upper to (0): the height 1 maximal ideals and those contained
in P* (since ht(P*)=2). From Theorem 1.1 and Theorem 3.2, it follows that
dim(D® ) = F-dim(D{X 1) =4.

Finally, we point out that the following question arises naturally from the theory
devgloped in the present paper: Is DS a strong S-domain for every r=1, when
P& 52 By our Proposition 2.3, this problem can be reduced to the following: Is
RIX, Y] a strong S-domain when R{X] is? The questidn of the transfer of the strong
S-property to polynomial rings is discussed in two recent papers by S. Kabba]
[11,12]. Although several partial affirmative results were obtained, the general
guesiion remains open.
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