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1. Introduction

Let R be a (commutative integral) domain, with integral closure R’,
complete integral closure R*, and quotient field K. As in [DHLZ], we say
that an overring (R-subalgebra of K) T is t-linked (over R) if I'1 = R for a
nonzero finitely generated ideal I of R implies (IT)"! = T. The t-linked
concept was used in [DHLZ, Theorem 2.10 and Corollary 2.18] to find
characterizations of certain classes of PVMD’s analogous to

characterizations of Priifer domains due to Davis and Richman. According
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to [DHLZ, Corollary 2.3], R* is t-linked over R for each domain R. It was
shown in [DHLZ, Corollary 2.14(a)] that R’ is t-linked over R if R is a
Noetherian (or, more generally, a quasicoherent) domain, but [DHLZ] left
open the question whether R’ is t-linked over R for each domain R. The
first major result of the present paper, Theorem 2.4, implies, i.a., that R’ is
t-linked over R if R’ is a Priifer domain (see Corollary 2.5). (The condition
that R’ be Priifer has often been characterized, and many sufficient
conditions for it are known. Just a few of these are cited in Section 2.) A
number of related results (Theorem 2.4, Proposition 2.7) give new
characterizations of R’ being Priifer. Another major result, Example 4.1,
settles the open question from [DHLZ], by presenting a seminormal domain
R such that R’ is not t-linked over R. (Recall that a domain R is
seminormal if R contains each element x in its quotient field with x2 and

x3 in R. For seminormality see, e.g., [S].)

The work in Section 2 depends crucially on the class of domains R
for which R C T is t-linked for each overring T of R. We shall call these
rings t-linkative. The class of t-linkative domains was introduced (but not
named) in [DHLZ, Theorem 2.6], and Lemma 2.1 recalls several
characterizations. Natural examples include arbitrary treed domains (in the
sense of [D{]), in particular, arbitrary Priifer domains or domains of (Krull)
dimension at most 1. It will be convenient to say that a domain R is
super-t-linkative in case each overring of R is t-linkative. Corollary 2. 5

estabhshes that R is super- t- hnkatlve in case R’ is a Priifer domain. We

g

characterize the supertlmkatxve domams in the class of Noethenan

domains (Proposition 3.13), in the class of one-dimensional domains
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(Proposition 3.12) and in the class of pseudo-valuation domains (PVD’s), in
the sense of [HH] (Corollary 3.6).

Additional examples of t-linkative and super-t-linkative domains are
found in Section 3, where the behavior of these properties is studied under
certain pullback constructions. The major result of this section, Theorem

3.5, includes, in particular, the D + M construction, in the sense of [BR).

All the rings in this paper are commutative with identity and all the
ideals are supposed to be nonzero. An ideal I of a domain R is called
unitary if Iy =R, equivalently if (R:I) =R. In addition to the notation
introduced above, for any domain R with quotient field K and a
polynomial f in K[X], we let c(f) denote the content of f over R, and we let
dimy(R) denote the valuative dimension of R. If R C T are domains, we
denote by th(T) the transcendence degree of the quotient field of T over
that of R; we say that T is an algebraic extension of R if tdg(T) = 0. As
for background, we assume familiarity with [DHLZ] and associated

t-theoretic notions. Unreferenced material is standard, typically as in [G].

2. Priifer integral closure and super-t-linkative domains

It is convenient to begin by recalling some characterizations of

t-linkative domains.

LEMMA 2.1. ([DHLZ, Theorem 2.6]) For a domain R, the following six

conditions are equivalent:

(1) Each overring of R is t-linked over R;
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(2) Each valuation overring of R is t-linked over R;

(3) Each nonzero maximal ideal of R is a t-ideal;

(4) Each proper nonzero ideal I of R satisfies L, #R;

(5) Each proper nonzero finitely generated ideal I of R satisfies L #R;
(6) Each t-invertible ideal of R is invertible.

Note that a domain R is t-linkative if and only if eve:y faf;_gg_r rivz/lgw_of
R by a principal ideal has the property that each proper finitely generated
ideal is annihilated by a nonzero element (see, e.g., [CR]).

It is apparent that t-linkative domains are ubiquitous. Indeed, if P is
an associated prime of a principal ideal of a domain R (as in the sense of
(BH]), then Rp is t-linkative. As every domain is an intersection of such
localizations, every domain is an intersection of t-linkative ones (see [BH],
especially Proposition 4). Moreover, if R is any domain and X is a set of
indeterminates over R, then the domain R[)_(]Nv, as defined in [K], is t-
linkative by [K, Proposition 2.1 (2) and Corollary 2.3 (3)]. In particular, if
R is a t-linkative domain, then the Nagata ring R(X) is also t-linkative.

As promised in the introduction, we now consider the condition on a
domain R that R’ be a Priifer domain. Numerous characterizations of this
property have been given (cf. [GH, Theorem 5] (see also [D,, Corollary 5]),
[ES, Theorem 2], [P, Proposition 2.26], [ADF, Theorem 2.7]); and several
sufficient conditions for this property are known (cf. [G2, Corollary 3],
[AADH, Theorem 2.1]). We next give another useful characterization, by

removing the irreducibility condition in [ADF, Theorem 2.7].
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LEMMA 2.2. Let X be an indeterminate over a domain R. Let K be the
quotient field of R. Then the following conditions are equivalent:

(1) For each nonzero fe€R[X], there exists g€ fK[X]NR[X] with
c(g) =R;

(2) R' is a Priifer domain.

Proof. According to [ADF, Theorem 2.7], R’ is a Priifer domain if

and only if, for each maximal ideal M of R, no upper to zero in R[X] is
contained in M[X]. By [G;, Proposition 33.1 (1)], this last condition is
equivalent to requiring that each upper to zero in R[X] contain a
polynomial g such that c(g) = R. Now, the uppers to zero are the ideals
fK[X]NR[X] arising from irreducible f€ K[X]. Accordingly, (1) = (2)
follows trivially. Conversely, assume (2) and consider nonzero f € R[X].
Factor = []f;, with each f, irreducible in K[X]. Let Q = £K[X] NR[X].
Since Q; is an upper to zero, (2) produces g € Q; with c(g;) =R. Put
g = [lg;- Since the set of polynomials of unit content is multiplicatively
closed, we obtain that c(g) =R. Moreover, g€ fK[X]NR[X], yielding
(1). O

Another characterization of Priifer integral closure is given in Theorem
2.4 below. We first prove a proposition which is well known but is

included here for lack of a convenient reference.

PROPOSITION 2.3. Let R be a domain with quotient field K and f a
nonzero polynomial in R[X]. Then c(f)y = R & fK[X]NR[X] = fR[X] .
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Proof. (=) Consider h € K[X] such that fh € R[X]. By the content
formula [Gy, Corollary 28.3), there is an integer m>1 such that
c(f)m+lc(h) = c(f)™c(fh) CR, the inclusion holding since f, th € R[X].
Applying the v-operation and observing that (c(f)!)y = R for all i > 1, we
have c(h)y = c(fh)y CR. In particular, c(h) CR; that is, h € R[X]. We
conclude that fK[X] N R[X] = fR[X] .

(¢) Assume that fK[X]NR[X] =fR[X] . We show that c(f)’! = R.
Accordingly, let u € K with uc(f) C R. Then uf € fK[X] N R[X] = fR[X]; so

u € R, as desired. O

The statement of the next theorem depends on the following definition
from [HZ]. A domain R is called a UMT-domain in case each upper to

zero in R[X] is a maximal t-ideal.

THEQREM 2.4. For a domain R, the following conditions are equivalent:
(1) R is a t-linkative UMT-domain;

(2) R' is a Priifer domain.

Proof. In view of Lemma 2.1, an appeal to (HZ, Theorem 3.5 yiel(%s
both the implication (1) = (2) and the fact that (2) implies R is é
UMT-domain. It remains only to show that (2) implies R is t-linkative.
To this end, we consider a finitely generated unitary ideal I of R. Pick
f€ R[X] such that ¢(f) = 1. Assuming (2), we infer from Lemma 2.2 that
c(g) =R for some gefK[X]NR[X]. Since (c(f))v =R, we have by
Proposition 2.3 that fK[X]NR[X]=fR[X]. Hence g=1fh for some
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polynomial h in R[X]. Thus R=c(g) Cc(f)=ICR, so I=R. We

conclude by Lemma 2.1 that R is t-linkative. O

COROLLARY 2.5. Let R be a domain such that R’ is a Priifer domain.

Then R is super-t-linkative. In particular, R’ is t-linked over R.

Proof. Each overring S of R inherits the property of having Priifer
integral closure (cf. [G;, Theorem 26.1 (1)]). Thus S is t-linkative by

Theorem 2.4, and so R is super-t-linkative. O

REMARK 2.6. (a) The converse of Corollary 2.5 is false. Indeed, an
integrally closed super-t-linkative domain is not necessarily Priifer. To see
this, let X be an indeterminate over a field F, and consider a nontrivial
valuation domain (V, M) of the form V=F(X)+ M. Then R=F+M is
integrally closed, and by Theorem 3.5 (5) or Corollary 3.6 below, R is
super-t-linkative.  Nevertheless, R is not a Prifer domain by [BG,

Theorem 2.1 (1)]).

(b) In Corollary 2.5 we cannot replace “Priifer” by “PVMD?” since

a PVMD 1s tlmkatlve‘ if and onmly if it is Priifer: if R is a t-linkative

PVMD then by Lemma 2.1, each maximal ideal of R is a t-ideal; since R
is a PVMD, we obtain that RM is a valuation domain for each maximal
(t-)ideal M, and so R is Priifer.

On the other hand we do not know whether R’ being a PVMD implies

that R’ is t-linked over R.

(c) The quasilocal case of Theorem 2.4 is worth mentioning. Thus

let R be a quasilocal domain, not a field, whose maximal ideal is a t-ideal
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(so that R is t-linkative). Then R’ is Priifer if and only if R is a
UMT-domain.

By [HH], a domain R is a pseudo-valuation domain (for short, PVD) in
case Spec(R) = Spec(V) as sets for some (canonically associated) valuation
overring V of R. According to [ADI’ Proposition 2.6, PVD’s may be
characterized as the pullbacks of the form V x LF’ where V is a valuation
domain with residue field L and F is a subfield of L. In [AADH, Theorem
2.1], the property of having Priifer integral closure was characterized using

the PVD concept. A companion result is given next.

PROPOSITION 2.7. For a domain R, the following conditions are
equivalent:
(1) Each integrally closed PVD overring of R is a valuation domain;

(2) R' is a Priifer domain.

Proof. (2) = (1): Assume (2). Then each integrally closed PVD
overring S of R is a quasilocal overring of the Priifer domain R/, and so S is

a valuation domain.

(1) = (2): Without loss of gen;ara.lity, R =R’ is integrally closed
and quasilocal, say with maximal ideal M. If the assertion fails, there is a
valuation overring V of R with prime ideals Q CN of V such that
QNR =M (=NNR) ( cf. [G}, Theorem 19.15 (1)@?7)]). Put L = VQ/Q,
the quotient field of V/Q; and let F denote the algebraic closure of R/M in
L. By the above comments, the pullback T = VQ xpF is a PVD.
Moreover, by a direct calculation or an appeal to [F, Corollary 1.5(5)], T is

integrally closed. Notice also that VQ is a dominating overring of T,
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indeed, they have the same maximal ideal. Hence, to show that T is not a
valuation domain (and thus complete the proof), it suffices to prove that
F # L, that is, that L is not an algebraic extension of R/M. This follows
from the fact that the domain V/Q is not a field and lies between R/M

and L (alternatively, cf. Lemma 3.10 below). O

Proposition 2.8 (b) below is a generalization of Corollary 2.5.

PROPOSITION 2.8. Let R be a domain such that S’ is a Priifer domain
for each proper overring S of R. Then:

(a) If R is integrally closed, then either R is a PVD or R is a Priifer
domain.

(b) R is super-t-linkative.

Proof. (a) Without loss of generality, R is not a Priifer domain.
Hence R is quasilocal. (Otherwise, for each maximal ideal M of R, Rypisa
quasilocal integrally closed proper overring, hence a valuation domain by
the hypothesis; this would contradict R not being a Priifer domain.) By
Proposition 2.7, R has an integrally closed PVD overring S which is not a
valuation domain. Being quasilocal, S is not a Priifer domain. Thus, by

the hypothesis, S is not a proper overring of R; that is, R =S is a PVD.

(b) If R is not integrally closed, the hypothesis yields that R’ = (R’)’
1s a Prifer domain, whence R is super-t-linkative by Corollary 2.5. If R is
integrally closed, then, by (a), R is treed and so it is t-linkative by [DHLZ,
Corollary 2.7]. Moreover, Corollary 2.5 yields that each proper overring of
R is t-linkative. Thus R is super-t-linkative. [
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REMARK 2.9. (a) In view of Proposition 2.8(a), it seems important to
note that not every PVD is a super-t-linkative domain. To see this, let X,
Y be independent indeterminates over a field F, and consider a nontrivial
valuation domain (V, M) of the form V = F(X,Y)+M. Then R=F+ M is
a PVD since R=VXF(X,Y) F. However, by direct calculation or an
appeal to Corollary 3.6 below, one sees readily that R is not super-t-
linkative.

(b) The converse of Proposition 2.8(b) is false even for PVD’s. To see
this, let k CF be fields such that F is an algebraic extension of k. Let
(V,M) be a nontrivial valuation domain of the form V = F(X) + M. Then
A=k+M is a PVD which is super-t-linkative (by Corollary 3.6 below,
since td; (F(X)) = 1), but F + M is a proper integrally closed overring of A

which is not a Priifer domain.

3. Pullbacks and super-t-linkative domains

In view of the last two results of the previous section, it is natural to
seek to characterize the PVD’s that are also super-t-linkative. We do so in
Corollary 3.6, after first studying the question for the more general context

of pullbacks (Theorem 3.5 below). We begin with a useful lemma.

LEMMA 3.1. For a domain R, the following conditions are equivalent:
(1) R is super-t-linkative;
(2) Ry is super-t-linkative for each maximal ideal M of R;

(3) Each quasilocal overring of R is t-linkative.
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Proof. (1) = (2) is trivial, and it is easy to show (2) = (3). To
prove (3) = (1), assume (3), and consider any overring T of R. If Nis a
maximal ideal of T, then NTy; is a t-ideal of Ty, by (3). It is well known
(and easy to show) that t-ideals of Ty contract to t-ideals of T, whence N

is a t-ideal of T. Thus T is t-linkative, yielding (1). O

REMARK 3.2. Although super-t-linkativity is a local property, the same
cannot be said for t-linkativity. While it is true that a domain which is
locally t-linkative is itself t-linkative, the converse is false. To see this,
consider the ring D in [MZ;, Example 2.1]. Using the description of the
maximal ideals of D given there, it is easy to show that this ring is a
t-linkative domain having a maximal ideal M such that Dy is not

t-linkative.

PROPOSITION 3.3. Let D C E be domains.

(a) Let D be a field. Then every domain between D and E is
t-linkative ¢ tdp(E) < 1.

(b) If D is not a field and every domain between D and E is

t-linkative, then E is an algebraic extension of D.

Proof. If D is not a field and if x € E is transcendental over D, then

D[x] is not t-linkative (since for any nonzero nonunit a € D, (a,x) is a
proper unitary ideal of D[x]), proving (b).

Suppose D is a field. If trp(E) > 2, let x and y be two D-algebraically

independent elements in E. Then (as in the above argument), the domain
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D[x,y] = D[y][x] is not t-linkative. This proves the direction (=) of (a). To
prove (<=) , note that in case tdp(E) < 1, the Krull-Akizuki theorem yields
that any ring between D and E is one-dimensional, and is therefore t-

linkative by [DHLZ, Corollary 2.7]. O

LEMMA 34. (cf. [BG, Theorem 3.1]). Let T be a domain, M a maximal
ideal of T such that Ty is a valuation domain, and R a subring of T
containing M. Then every quasilocal overring of R either contains T or lies

between R + MTM and TM'

Proof. Let (S,N) be a quasilocal overring of R. If MS =S, then S is

an overring of T because TCTS=TMS=MS=S. If MS #S, then
MSCN, and each element of 1+ M is a unit in S. Since TM is the
quotient ring of T with respect to the multiplicative subset 1+M, it
follows that MTM CS, and so S is an overring of R+MTM. If Sis not
contained in TM’ then, since TM is a valuation domain, there exists a
nonzero element m in M such that 1/m € S. Thus Ty = (l/m)mTM C
(I/m)MTy\CS. O

THEQREM 3.5. Let T be a domain, M a maximal ideal of T and R a
subring of T containing M. Set D =R/M and L = T/M. Let K and F be
the quotient fields of R and D respectively. Then:

1) If R is t-linkative, then so is D.

3

(
(2) If R is t-linkative and M is a t-ideal of T, then T is t-linkative.
(3) If D and T are t-linkative domains, then so is R.

(

)
)
)
)

4) Assume that T is t-linkative. Then each domain between R and T
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is t-linkative < each domain between D and L is t-linkative. If,
furthermore, D is a field, then this property is equivalent to tdp(L) < 1.

(5) Assume that T is super-t-linkative and that Ty is a valuation
domain. Then R is super-t-linkative <> each domain between D and L is t-
linkative. If, furthermore, D is a field, then this condition is equivalent to
the condition tdp(L) < 1.

(6) Assume that D is not a field and tdp (L) 2 1. Then R is not super-

t-linkative.

Proof. (1) Let J be a proper finitely generated ideal of D. Thus
J = (I+M)/M for some finitely generated ideal I of R. As I¢_M, we have
IT+M =T. Hence, there is an element m in M such that IT + Tm = T.
Let Iy =1+ Rm. Then IO is a finitely generated ideal of R, [,7T=T, and
since (I + M)/M = J, Iy is a proper ideal of R. Since R is t-linkative, there
is an element x in K \ R such that xIg CR. We have xT = xIpT C T; so
x€T. Thus x+M is an element of L=T/M, and x+M e J 1\ D. It
follows that D is t-linkative.

(2) Let J be a finitely generated proper ideal of T; we shall show that
JL#T. HJCM, then J1 #T since M is a t-ideal. We may therefore
assume J ¢_ M. Thus J+ M =T, and so J contains an element of the form
14+ m, where m € M. Let {tl,...,tk} be a set of generators for J. Let
S={1+m, mt,...,mt; }. Since mt, = —t,mod(T(1 + m)) for all i, we
see that S is a set of generators for J contained in R. Since R is t-linkative,
there exists an element x in K\ R such that xXSCR. If x€ T, then

xm € M, so x =x(1+m)~xm €R, a contradiction. It follows that x ¢ T.

Hence T is t-linkative.
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(3) Let I be a proper finitely generated ideal of R. If I+ M # R, then
(I+M)/M is a proper ideal of D=R/M. Since FCT/M and D is
t-linkative, there exists an element t in T \ R such that tI CR. Thus
11 4R,

Now assume that I+ M =R. The assumption IT =T leads to the
contradiction M CI. Thus IT # T. Since T is t-linkative, there exists an
element x in L\ T such that xICT. If xMCT, we obtain that
x € x(I+M) C T, a contradiction. Hence xM ¢ T. Pick an element m in M
such that xm ¢ R. Thus (xm)I = (xI)m C Tm C M CR, and so xm e I'l,
We conclude that R is t-linkative.

(4) The equivalence <« in (4) follows from (1) and (3). For the second
part, use Proposition 3.3 (a).

(5) We have D=R/M = (R + MTy)/MT); and L = Tyg/MTyy; so,
by (4), each domain between D and L is t-linkative if and only if each
domain between R +MTy and Tpp is t-linkative. This condition clearly
holds if R is super-t-linkative. For the converse, we obtain by Lemma 3.4
that any quasilocal overring of R is t-linkative; so by Lemma 3.1 we
conclude that R is super-t-linkative. In case D is a field, we use Proposition
3.3 (a) for the final assertion.

(6) By Proposition 3.3 (b), there exists a domain E between D and L
which is not t-linkative. Let E = S/M, where S is a ring between R and T.

By (1), S is not t-linkative, and so R is not super-t-linkative. O

As a particular case of Theorem 3.5 (5) we obtain
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COROLLARY 3.6. Let R be a PVD, not a field, with maximal ideal M
and canonically associated valuation overring V. Put F=R/M and

L = V/M. Then R is super-t-linkative if and only if tdp(L) <1. O

COROLLARY 3.7. Let R be a super-t-linkative domain, T an overring of
R and Q a prime ideal of T. Then th/QnR(T/Q) <1. If QNR is not
maximal in R, then T/Q is algebraic over R/QNR.

Proof. We have that R/QNR = (R+QTQ)/QTQ is contained in
TQ/QTQ' In order to conclude the proof, apply Theorem 3.5 (4) and (6)
with R and T replaced by R + QTQ and TQ’ respectively. [0

Obviously, an overring of a super-t-linkative domain is super-t-
linkative. A less obvious closure property of the class of super-t-linkative

domains is given by the next corollary.

COROLLARY 3.8. If P is a prime ideal of a super-t-linkative domain R,

then R/P is super-t-linkative.

Proof. Since the quotient field of R/P is Rp/PRp, any overring E
of R/P is of the form E =S/PRp, where S is an overring of R+PRp
contained in RP' Since S is a t-linkative domain, we may apply Theorem
3.5 (1) for R, T, M and D replaced by S, Rp, PRp and E, respectively to

obtain that E is t-linkative. Thus R/P is super-t-linkative. O

REMARK 3.9. (a) The assumption that Ty, is a valuation domain used in

Theorem 3.5 (5) holds in the classical D+M construction (as in [G4],
[BG])).



1478 DOBBS ET AL.

(b) The analysis of the super-t-linkative property given in the
previous theorem is less satisfactory than that of the t-linkative property
because we lack an answer to the following question: If domains D C D, are
nonfields such that D, is algebraic over D and D is super-t-linkative, must
D, also be super-t-linkative? (cf. Proposition 3.3 above).

(c) In the statement of Theorem 3.5 (2), the hypothesis that M be a
t-ideal of T cannot be inferred from the fact that R is t-linkative even if D
is a field. To see this, let T = L[X’Y](X,Y) =L +M, where M = (X,Y)T;
and put R = K+ M, where K is a proper subfield of the field L. Then R is
a quasilocal domain whose maximal ideal M is divisorial (hence a t-ideal),
whence R is t-linkative. However, T is not t-linkative, since M is not a
t-ideal of T.

(d) Combining Theorem 3.5 with the results of [MZ,] produces
several interesting examples of “unruly” Hilbert domains. For instance, we
see via [MZ,, Corollary 7] and Theorem 3.5 that if D is a PID with infinite
prime spectrum and L is the quotient field of D, then D + XL[X] is a two-
dimensional, non-Noetherian, Bézout, Hilbert super-t-linkative domain in
which each maximal ideal is principal.

(e) In case R and T are domains, nonfields, with the same prime
spectrum and such that T ¢ R, then R is t-linkative. Indeed, in this case,
by [AD2, Proposition 2.1], R and T are quasilocal with a common maximal
ideal, say M. Thus for t in T \ R, we have t€(R:M), and so M is a

divisorial ideal of R and R is t-linkative.

LEMMA 3.100 Let RCT be domains, P a prime ideal of R and

QO C Ql C---CQp a strictly ascending chain of prime ideals in T lying
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over P. Then n < th/P(T/QO).

Proof. Let S=R\P. Replacing R by Rp/PRp, T by Tq/Q(Tg
and Q; by QiTS/QOTS for 0 <i < n, we reduce to the case that R is a field
and P = (0). Now we easily reduce to the case that T is a finitely generated
R-algebra and in this case the lemma is well known (cf. [N, Theorem

14.5)). O

THEOREM 3.11. If R is a finite-dimensional super-t-linkative domain,
then dimy(R) <1 + dim(R).

Proof. Set d=dim(R). Let T be an overring of R and
QpC Qq C - C Qq be a strictly ascending chain of prime ideals in T. Put
P = Qi NR for all i. If P, is not maximal in R for some i < n, then T/Qi is

algebraic over R/Pi by Corollary 3.7, and so Pi cP by Lemma 3.10. In

1+1
particular, if Pp is not maximal in R, then we have Py CP, C---C Py,

7177
whence n < d.

Now assume that Pp is maximal in R, and choose r minimal such
that Py = Pp. Since the n —r+1 ideals QJ for r <j <n lie over P; and
since by Corollary 3.7, th/P (T/Qg) <1, we obtain that n —r <1 using

T
Lemma 3.10. For i <r, P, is not maximal in R, and so we have a strictly

ascending chain PO 7Cé Pl ; ---;Pr; thus r <d and so n < 14d. We
conclude by [G{,Theorem 30.9] that dimy(R) <1+dim(R). O

Referring to Theorem 3.11, recall that for any 1 < m < n, there exists
a domain R with dim(R)=m and dimy(R)=n (cf. [Gl, Proposition
30.16]).
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For the next proposition, we recall that the pseudo-radical of a domain

R is the intersection of all its nonzero prime ideals.

PROPOSITION 3.12. Let R be a one-dimensional domain. Then R is

super-t-linkative & dimy(R) < 2.

Proof (=) is the case dim(R) =1 of Theorem 3.11.

(«<) Let T be an overring of R which is different from its quotient
field. It is enough to show that TQ is t-linkative for a given maximal ideal
Q of T. Replacing T by TQ and R by RQ A R> We may assume that both T
and R are quasilocal. Let N be the maximal ideal of T and M the maximal
ideal of R. Clearly M is contained in the pseudo-radical of T; in particular
M C N. Let I be a proper finitely generated ideal of T, and let {tl,...,tn}
be a set of generators for L Let S=
R[tl""’tﬂ]N ARy, to)’ S =S/MS, k=R/M = (R +MS)/MS, and
5 =5+ MS for each element s€S. The ring S is a localization of the
Noetherian ring k[t;,...,t] and so is Noetherian. Moreover, dim(S) <2,
and so dim(S) < 1. Since S is Noetherian, quasilocal and of dimension at
most 1, it follows that m =St for some nonzero element t
in T. As M is contained in the pseudo-radical of S, we have t, € \St for
1<i<n. Since SCT, we get IC\Tt. Let P be a prime t-ideal of T
containing the principal ideal Tt. Then I C P, whence I, #T. It follows
that T is t-linkative, and so R is super-t-linkative. 0O

The previous proposition implies that a one-dimensional Noetherian
domain is super-t-linkative. This yields half of the the next result. We also

include a brief alternate proof.
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PROPOSITION 3.13. A Noetherian domain R is super-t-linkative if and
only if dim(R) < 1.

Proof. If dim(R) <1 and S is an overring of R, then the Krull-
Akizuki Theorem yields dim(S) <1, whence S is t-linkative by [DHLZ,

Corollary 2.7], and so R is super-t-linkative.

If the converse fails, there exists a Noetherian super-t-linkative
domain such that dim(R) > 2. By the Mori-Nagata Theorem, R’ is a Krull
domain. Thus each t-prime of R’ has height 1. Since dim(R')=
dim(R) > 1, R’ has a maximal ideal of height > 1 which fails to be a t-

ideal. This contradicts the fact that R’ is t-linkative. O
The next result is also related to low-dimensional domains.

PROPOSITION 3.14. Let (R,M) be a quasilocal domain such that
dim(R) = 2 = dimy(R) and R is not t-linkative. Then:

(a) R* is a completely integrally closed PVMD.

(b) R’ is t-linked over R if and only if R’ = R*.

Proof. (a) If P €&Spec(R) has height 1, then, by [ABDFK,
Proposition 1.11], we have dim(Rp[X]) =2. By [G;, Proposition 30.14],
(Rp)' = R'R \P is a Prifer domain.

Since M is not a t-ideal and each height 1 prime is a t-ideal, the set
of t-primes of R is just {P € Spec(R): ht(P) =1}. By [DHLZ, Proposition
2.13(b)], T = ”R'R\P is the smallest integrally closed t-linked overring of

R. Since R*, the complete integral closure of R, is t-linked over R [DHLZ,
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Corollary 2.3], T C R*. We claim that T = R*. Indeed, we have seen that
each R,R\P is a one-dimensional Priiffer domain, and so T is an
intersection of completely integrally closed domains, whence T is
completely integrally closed. Hence R*CT* =T, and so T =R*, as
claimed.

It remains only to observe that R* is a PVMD, namely that
A= (R*)Q is a valuation domain for each t-prime Q of R*. Put P=QnNR
and B =Rp. Since R* is t-linked over R, [DHLZ, Proposition 2.1] yields
P, #R. Hence P#M and so, by the above comments, B’ is a Priifer
domain. As an overring of a Priifer domain, A’ is also a Priifer domain.
But A is integrally closed (since R* is), and so A = A’ is a quasilocal

Priifer (that is, valuation) domain.

(b) By [DHLZ, Corollary 2.3], we need only attend to the “only if”
assertion. If R’ is t-linked over R, then [DHLZ, Proposition 2.13(a)] yields
R' = ﬂ{R'R\P: P a t-prime of R}; as shown in the proof of (a), this

intersection is R*, as desired. O

Referring to Proposition 3.14 (b) above, we do not know an example of
a two-dimensional domain R for which R’ is not t-linked over R (see

Remark 4.4 below).

REMARK 3.15. So far our examples of super-t-linkative domains have
been treed. However, not every super-t-linkative domain is treed. Indeed,
R’ being a Priifer domain does not imply that R is treed: see, for instance,

[P, Example 2.28].
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Note that a quasilocal domain R with all its overrings treed is
super-t-linkative (since any treed domain is t-linkative by [DHLZ],
Corollary 2.7 (d)]). Nevertheless, by [D3, Examples 2.3], R need not be a
PVD (or even a going-down domain, in the sense of [D;]). Moreover, in
[D3] similar constructions lead to two super-t-linkative treed domains, one
of them with all its overrings being treed and the other one having a

nontreed overring.

4. An integral closure that is not t-linked

We have seen that R’ is t-linked over R if R is a Noetherian (or,
more generally, a quasicoherent) domain [DHLZ, Corollary 2.14(a)] or if R/
is a Prifer domain (in Corollary 2.5). There are many other natural
reasons why one might ask whether R’ is t-linked over R for each domain
R (cf. [DHLZ, Proposition 2.13(b) and comments on page 2850]). The next

result answers this question in the negative.

EXAMPLE 4.1. There exists a domain R such that R’ is not t-linked over
R.

Proof. Let D be a domain of characteristic # 2. Let Yy, Y2, X be
algebraically independent indeterminates over D. Put A = D[YI’YZ] and
let I be the ideal of A[X] generated by the elements Y, and XY, -2.
Then R = A + XI has the asserted property. Indeed, we shall show that if
J=Y;R+Y,R, then J'1 =R but (JR')1 £R".
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To show J'1 = R, we consider f € J'! and seek to show f € R. Since
(A[X]:J) = A[X], we get f € A[X]. Write f = fo + Xf;, with fj in A and f; in
A[X]. Since f; Yy €1, it suffices to prove that I is a prime ideal of A[X]
which does not contain Y,. This, in turn, follows from the D[Y,)]-algebra
isomorphisms A[X]/I = D[Y,, X])/(XYy—-2) = DYy, 2/Y,]. Thus f, el
fER, and J'1 =R.

Next, we claim that X € (JR')'1\R’. Let g=XYy —1. We have
g € R because g” = XY4(XYy —2) +1€ XYyl + A C R. Hence XY, € R,
Of course, XY; € R C R, and so X € (JR')'l. To complete the proof of the
claim, suppose, on the contrary, that X € R'. Putting Y, =0and Yo =2/X
in the integral equation over R satisfied by X, we obtain the contradiction
that X € D[2/X]'. Thus X ¢ R/, the claim is established and, in particular,
JRYL£R. O

Note that we may localize the ring R at the prime ideal Q=
XI+Y1R+Y2R in order to obtain a quasilocal domain RQ such that

' "
(RQ) is not t-linked over RQ‘

REMARK 4.2. In the previous example, if D is seminormal, then R is
seminormal. Indeed, since I is a prime ideal of A, we may invoke the

following lemma (with B = A).

LEMMA 4.3. Let A C B be seminormal domains and I a radical ideal of
B[X] such that X is not a zero-divisor mod I. Then the domain

D = A + XI is seminormal.
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Proof. Let f be an element in the quotient field of D such that 2 and £3
are in D. We shall show that f € D. Since the domain B([X] is seminormal
by [BCM, Proposition 1 (a)], f € B[X]. Write f=fj+f X, where fy€ B
and f; € B[X]. Set X =0 to obtain that f02 and f03 are in A, whence
fy € A. We may assume that f) #0. Let J =1If; ~1AB[X]; then J is an
ideal of B[X]. Since f2=f;%+2ff;X +£,2X2, we have 26y} +1,2X €,
and so 2fy +{;X € J; that is, fiX= — 2fy(modJ). By a similar calculation,
using the fact that f3 € D, we obtain that 3fy2 + 3fof, X +f;2X% € J. Since
f)X = —2f) (modJ), we obtain that 3f;% + 3f( — 2fy) + 4f,% = £,2 € J, and
so f12X2 € J, that is, f13X2 € 1. Since X is not a zero-divisor mod I and I is
radical, we obtain that f,€l. We conclude that feD and D is

seminormal. 0

REMARK 4.4. If D is a Noetherian domain of finite Krull dimension d,
then in Example 4.1 we have dim(R)=d+3. Indeed, DCRC
D[Y,, Yy, X], whence dim(R)<d+3. (It is enough to show that
dim(Rg) <d+3 for any ring R between D and D[Y;,Yy, X] which is
finitely generated over D. But this follows because tdp(Ry) £d +3.) On
the other hand, if M is a maximal ideal of D, then we have
MR +XIC MR +XI+Y;RCMR +XI+ Y, R+YoR, a strictly ascen-
ding chain of 3 prime ideaafs in R. Thus dim(R) > dim(D) + 3, and so
dim(R) = d + 3 as claimed.

Arguing as above, we see that if D is of infinite Krull dimension, then
R is also infinite dimensional.

The integral closure of a one-dimensional domain is t-linked over it by

[DHLZ, Corollary 2.7); and we have just seen that this conclusion does not
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hold in general for domains of any finite dimension > 3. Thus just the two-

dimensional case remains open.

REMARK 4.5. In Example 4.1, R = R[A/, XY,). Indeed, as shown in the
proof of Example 4.1, we have R[A!, XY,] CR'. It is easy to show that
A'X] =R[A",XY,] +D'[X]. Since D'CR'CA[X], we obtain that, if
R’ # R[A’, XY,), then some polynomial f in D'[X] of positive degree
belongs to R'. Let F be the quotient field of D. Denote by T the domain
constructed in Example 4.1 with D replaced by F; thus R C T. It follows
that f € T and so X € T’, contradicting the proof of Example 4.1.

Since R’ =R[A’, XYy~ 1] and (XYy—1)2€R, we see that if D is
integrally closed, then R’ equals the total root closure of R (in the sense of
[ADR]). Thus the total root closure of R is not necessarily t-linked over R.
Nevertheless, we do not know whether the seminormalization of a domain

S is necessarily t-linked over S.
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