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Abstract

Let D be an integral domain with quetient feld K. We define an el-
ement a € K to be pseudo almost integral over [ if there is an infinite
increasing sequence {.5@} of natural numbers and a nonzero ¢ € D with
ca®i € D. We investigate when a pseudo almost integral element is al-
most integral or integral. We also determine the sequences {s;} with the
property that for any domain D and a € K, whenever co® € IJ for some
nonzero ¢ € D, than o is actually almost integral over D).

Let D be an integral domain with integral closure D and quotient field K.
Recall that « € K is almost integral over ID if there exists a nonzero ¢ € D
with ea™ € D for all m > 1. The set D* of all elements of K almost integral
over D is an overring of D called the complete integral closure of . It is easily
checked that o € K is almost integral over D ¢ Dla] is a D-fractional ideal
& Dlo] is contained in a finitely generated D-submodule of K. Hence for D
Noetherian, @ is almost integral over D if and only if o is integral over D. We
define o € K to be pseudo almost integral over D if there exists 2 nonzero ¢ € D
with ca™ € D for infinitely many natural numbers n. Let us denote the set of
elements of K pseudo almost integral over D by D. Thus we have a € K s
integral over 1) => « is almost integral over D = « is pseudo almost integral
over D; so D C D CDrC D. For results on almost integrity and complete
integral closure, the reader is referred to Gilmer [1, Section 13].

Our interest in pseudo almost integral elements began with a query posed
to the second author concerning Huncke’s “definition” {4, Example 1.6.1] that
for D Noetherian and o € K, o is almost integral over D if there is a nonzero
¢ € D with ca™ € D for infinitely many n. Using the fact that this definition of
almost integrality agrees with the notion of integrality in the Noetherian case,
Huneke remarks that for 1 Noetherian (with char D = p > 0), (z)* = zDND
for each z € D, where (z)* is the tight closure of (). Using this it is easy to
see that [ is integrally closed if and only if each principal ideal of D is tightly
closed. We first show that for Noetherian integral domains Huneke’s definition
agrees with the usual definition.

Proposition 1 Let D be a Noetherian integral domain with quotient field K.
If « € K is pseudo almost integral over D, then « is integral over D. Thus
D=D"=D.

Proof. Suppose that « is pseudo almost integral over K. So there is a nonzerc
¢ € D with ca™ € D where {n;} is an infinite increasing sequence of natural



sumbers. Consider the idesl T = {ca™,ca™ ---). Since D is Noetherian,

[ = (ca™,--- ,ca™) for ny <ng < - < 0. So ca™tt = a;ea™ 4 -+
arco™ a; € D, and hence o™+ — g™ — - —gga™ = 0. Thus a'is integral
over 2. &

There is an alternative way of proving Huneke’s statement if you know that
the integral closure of a Noetherian domain is a Krull domain and hence an
intersection of rank-one discrete valuation domains. A demain D with quotient
field K is root closed if for o € K with o™ € D for some n > 1, then @ € D.
Recall that the complete integral closure is integrally closed [1, Theorem 13.1]
and hence is root closed.

Proposition 2 Let D be an integral domain with quotient field K. Suppose
that I is root closed. Then o € K is pseudo almost integral over D if and only
if « 18 almost integral over DD,

Proof. Suppose that o € K is pseudo almost integral over D. So there is 2
nonzero ¢ € I with ca™ € D for infinitely many natural numbers n. Let m be
a natural number. We show that ca™ € D; hence ¢ is almost integral over D.
Choose 2 natural number n > m with ca™ € D. So (ca™)™ = ¢ ™ (ca™)™ € D.
Since D is root closed, ca™ € D. The other implication always holds. &

We note that Proposition 2 in a slightly different form is given in [3, Propo-
sition 1.5].

Coroliary 3 Let D be an integral domain with quotient field K. Suppose that
D is completely integrally closed. Then o € K is pseudo almost integral over D
if and only if o is integral over D. Hence D = D" = D.

Proof. Suppose o € K is pseudo almost integral over D. Then o is pseudo
almost integral over D. But 7 is root closed, so « is almost integral D by
Proposition 2. But by hypothesis D is completely integrally closed; so o € D.
The other implication always holds. &

Suppose that I is Noetherian. Then D is a Krull domain and hence com-
pletely integrally closed. By Corollary 3, « € K is pseudo almost integral over
D if and only if o is integral over D. This provides another proof of Proposition

1.

Coroliary 4 Let D be an integral domain with quotient field K. Then D" C
D C (D*)*. Suppose that D* is completely integrally closed. Then a € K is
pseudo almost integral over DD if and only if o is clmost integral over D.

Proof. Let o € K be pseudo almost integral over D). Then o is pseudo almost
integral over D*. So again by Proposition 2, is almost integral over D*. Thus
D C (D*)*. Suppose D* is completely integrally closed, then a € (D*)" = D".
The other implication always holds. &

It is well known that the complete integral closure of an integral domain
need not be completely integrally closed, see for example [1, Exercise 3, page



i44]. A case where the complete integral closure D* is completely integrally
closed is when D* is an intersection of rank-one valuation domains such as
the Noetherian case. Thus by Corollary 3 (Corollary 4), if the (complete) inte-
gral closure of D is an intersection of rank-one valuation domains, an element
that is pseudo almost integral over D is (almost) integral over D. However, it is
again well known (with an example going back to Nakayama) that a completely
integrally closed domain need not be an intersection of rank-one valuation do-
mains. For an example, which also happens to be Bezout, see [1, Example
19.12].

The following corollary gives an alternative way to show that the complete
integral closure of a domain I is not completely integrally closed.

Corollary 5 Let D be an integral domain with quotient field K. If there 4s an
element o € K that is pseudo aclmost integral over D, bul not almost integral
over D, then D* is not completely integrally closed.

Proof. This follows immediately from Corollary 4. @

We next give an example of a pseudo almost integral element that is not
almost integral. Example 6 appeared in a different context in [2, page 73] and
[3]. There they called an element spolty if it was psendo almost integral but not
almost integral.

-

Example 6 Letk be a field, t,y indeterminates over k, and I = klt, {t7°" }o20)-
Then y is pseudo almost integral over D, buf not almost integral over D. Now
y is in the quotient field of D and by definition y is pseudo almost inlegrol
over D. Suppose that y is almost integral over ). Then there is a nonzero
¢ € D with cy® € D for all m > 1. Since a sum of nonzero monomials
Sagtiy™i ap € k, with distinel (ng,m;) is in D if and only each i™y™
is in D, we can assume that ¢ has the form toyP where toyf € D. Thus
toyPym € D for alin > 0 or 2y € D for allm > B. Bubty € D gives
tPyi € D for 0 < i < f. Hence t%7Py™ € D for alin > 0. So there is a fized
natural number M with tMy™ € D for all n > 0. Now tMy™ € D implies
tMyn = ¢ (ty’l"‘)ml ...(@2"")7"1' — t7+m1+~-+miym12"1+---+’rni2"‘7mi > Q.
Hence M = y +mq + -+ +m; 50 mq + -+ < M. Thus each natural
member n is a sum of at most M not necessarily distinct powers of 2. Bul since
28 +25 = 2°%1 each natural number n is a sum of at most M distinct powers of
9. But this is a contradiction since 2M+Y —1 is not a sum of M dislinct powers
of 2.

Let D be an integral domain with quotient field /. Note that for any finite
set my < mg < --- < ng of natural numbers and a € K, there exists a nonzero
ec D with ca™ € D for i = 1,--- ,8 Indeed, if @ = a/b where a,b € D,
we can take ¢ = b". Thus if @ € K and there exists a nonzero ¢ € D with
cda” e D forn € N\ {ny, -- ,ns}, then o is almost integral over D. Let us call
a nonempty subset S C N almost integral producing, or aip for short, if for each
integral domain D and each « € K with the property that there is a nonzero
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c e D with ca® € D for all s € S, then « is actually almost integral over . An
aip sequence is an incressing sequence {s,}9° ; of natural numbers such that
{snJn € N} is aip. We have just shown that a cofinite subset of N is aip, no
finite subset of N is aip (for ny < --+ < ng, 2™ (3)™ € Z, but 1/2 is not almost
integral over Z), and Example 6 shows that {27}52, is not aip. We would like
to determine all infinite aip subsets of N, or equivalently, all aip sequences.

It is clear that if § € 7" C N and S is aip, then 7T is also aip. Also, let
S C N and let F be a finite subset of N, then S is aip if and only if 5 — F'is
aip. One direction follows from the first sentence of this paragraph. For the
other direction, suppose S is aip. We show that S — F' is aip. Let ) be an
integral domain and let @ € K with the property that there is a nonzero ¢ € D
with co® € D for s € § — F. Since F is finite, there is a nonzero ¢ € D with
cdaf € D for each f € F. Then (cc')o® € D for all s € (S — F)U F = 5. Since
S is aip, « is almost integral over D.

We next give a characterization of aip sequences.

Theorem 7 Lel {s,}32, be an increasing sequence of natural numbers. Then
the following are equivaient.

(1) {sn}2 is an aip sequence.

(2) For D = Zolt,ty,{ty*}oryl, b,y indelerminales over Zs, u is almost
integral over D.

(3) There exists a natural number M so thal any natural number n. can be
written in the form n = j + 8iy &+ -~ + &, where 7 2 0, Siy,000 8y, 07€
not necessarily distinct, and j -+ &k < M.

roof. (1)=>(2) Note that y is in the quotient field of D. Since {sn}or  is
an aip sequence, {1} U {spln > 1} is an aip set. Thus y is almost integral
over D. (2)=>(3) This is similar to Example 6. Since y is almost integral over
D, as in Example 6 there is a natural number M so that tMy™ € D for ail
n > 0. Thus tMy™ = t& (ly)’ (ty) - (ty®ix) = toHTRyImou®F % where
Siy," " 554, are not necessarily distinct. Now M = a+j+k, s0 j4+k <M, and
n=j+s8; 4+ -+, (3)=(1) Let D bean integral domain with quotient field
K. Let @ € K be such that ca® € D for each i and some 0 # c € D. We need to
show that o is almost integral over D. Let n > 1 and write n = FAsi oS0
where 7 + k < M. Choose 0 # ¢’ € D with ot € Dfor 1 <4< M. Then
(M) = daicMFeatn - - caic € D. B

Corollary 8 Let {s,}o; be an increasing sequence of natural numbers such
that {Spy1 — Sn}pey i bounded. Then {sn}oc | is an aip sequence. Thus 1

. . - " o0 . 3
{sn}or, is an arithmetic sequence, then {8n}pry 5 an Gip sequence.

Proof. Let M = max {S,.1 — 8n}. Let n > 1,s0 for some 4, 8 < 1 < Siyq.

r po 0 co .
Then n = (n — 8;) + 8; where (n — 5)+1 < M. By Theorem 7, {sp}y is a0
aip sequence.



The corollary has also been observed in a slightly different form by Jim
Coykendall. The converse of the corollery is false. For let k > 2, then there is
a natural number Mj so that each natural number is a sum of at most Mz kth
powers. Thus by Theorem 7 {nk}:;l is an aip sequence. For a second example,

()
consider {ﬁ-('%j'——ll} , the sequence of triangular numbers. Since each natural

n==l oo

. " 4 N .
number is a sum of at most three triangular numbers, ﬂ%——lz} is an aip
n==1

sequence. We next show that an aip sequence is bounded above by a polynomial.
This gives another proof of Example 6.

Theorem 9 Let {s,}.., be an aip sequence. Then there is a polynomial p (x)
with integer coefficients such that s, < p(n) for alln > 1.

Proof. By Theorem 7, each natural number m < sp41 has the form m =
G485y -+ 8 where § 20, i <n, 8iy,-0 -, 8, are not necesserily distinct
and 7+k < M for some fixed M. Since {s;,,--- ,8i,} C {51, ,sn}, there are
at most M choices for j and 1 +mn +n? +--- +n choices for s, + -+ + 5i,-
Thus there at most M (1 N ) natural numbers less than s,41, so

Spr1 < M(L4n+--4+nM)+1 < M(1+(n+1)+~-+(n+1)M). The
result follows. &

The reader may wish to speculate on the converse of Theorem 9. Note that
the special case of 5, =p(n) = n¥* while true is a rather deep result.
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