A question/Answer session on v-domains

Muhsmmad Zafrullah

Let D be an integral domain, K the quotient field of D, F(D) the set of non-
zero fractional ideals of D and let f(D) = {4 € F(D)|A is finitely generated}.
D is called a v-domain if for all A € f(D), (AA~")! = D. The v-domains are
an interesting study because (a) they have appeared, often naturally, in several
guises and contexts (b) even though they are simple to define they have some
hard to see special properties and (c) while they seem to be everywhere they
have received very little coverage in the literature. Most of the peculiarities
mentioned in (b) above are either known or easy to prove but they are either
hidden in some old books/journals or require some special treatment to provide
an easy proof. The aim of these notes is to perform a brief survey of v-domains
asking some questions that are either questions that may be asked about any
domain of interest in multiplicative ideal theory or they are questions arising
from the answers. The study of v-domains involves the use of the so called
star operations. A reader who is not familiar with star operations may need
to read the introduction to star operations at least from sections 32 and 34 of
Gilmer’s book [21], and/or from Halter-Koch’s book [24], before entering the
Q/ A session.

Question 0. Give us a gist of what star operations are
and how the »-domains are related to them.

Answer:

0.1. A star operation % on an integral domain D is a map * : F(D) — F(D),
given by I — I*, such that the following conditions hold foreach 0 # ¢ € K
and for all I, J € F(R):

(i) D* =D and (al)* = al™;
@ ICHandICJ=I"CJY
(i) I = I

For standard material about star operations, see Sections 32 and 34 of [21],
as mentioned above. For our purposes we note the following.

0.2. Given two ideais I,J € F(D) we have (IJ)* = (I"J)" = (F*J*y*
(s-multiplication) and we have (I +J)* = (I* + J)* = (I* + J*)" (*-sum).

0.3. A nonzero fractional ideal I is a #-ideal if I = I* and it is +-finite if
I* = J* for some finitely generated ideal J € F(D). A star operation  is of
finite type if I* = | J{J* : J C I and J is finitely generated}, for each e F(D).
To each star operation #, we can associate a star operation of finite type =,
defined by I*7 = | J{J* : J C I and J is finitely generated}, for each I € F(D).
If 7 is a finitely generated ideal then I™ = I*/.

0.4. Several star operations can be defined on D. The trivial example of a
star operation is the identity operation, called the d-operation, I = I for each




I € F(D). Two nontrivial star operations which have been intensively studied
in the literature are the v-operation and the t -operation. Recall that the v-
closure of an ideal I € F(D) is I, = (I71)7?, where for any J € F(D) we set
J~1=(D: J)={z € K : zJ C D}. Note that for any star operation x we have
(7)~1 = I-T = (I1)*. A v-ideal is also called a divisorial ideal. it is easy to
show that for each I € F(D) we have I, = NzD where z € K such that f C zD.
The % -operation is the star operation of finite type associated to v. Thus I = I;
if and only if, for every finite set z1,...,Zn € I we have (zi,...,%n)t < 1.
If {D,} is a family of overrings of D (rings such that D € Do © K ) and
D = ND,, then, for all I € F(D), the association I — I* = NID, is a star
operation “induced" by {Da}.

0.5. TIf %; and = are two star operations defined on D we say that %g is coarser
than #; (notation #; < o) if for all [ € F(D) we have I™* C I"2. Tf %3 < %
then for each I € F(D) we have (I*1)*2 = (I*2)** = I"*. The v-operation is
the coarsest of all star operations on R and the t-operation is coarsest among
star operations of finite type. Using Zorns Lemma it is easy to show that if = is
a star operation of finite type and if I € F(D) is an integral *-ideal then there
is an integral s-ideal M containing I such that M is a maximal ideal among
integral x-ideals. We call such an ideal M a maximal *-ideal and it is easy to
see that M is a prime ideal. It can also be shown that if % is of finite character
then D = NDjs where M ranges over maximal s-ideals of D.

0.6. For any star operation *, the set of fractional #-ideals is a semigroup
under the s-multiplication (I,J) — (IJ)*, with unity D. Anideal I € F(D)
is called *-invertible if I* is invertible with respect to the s-multiplication, i.e.,
(IT71)* = D. Clearly, as the v-operation is the coarsest every s-invertible ideal
is v-invertible. If % is & star operation of finite type, then a s-invertible ideal is
x-finite. For concepts related to star invertibility the readers may consult my
paper [49] and if need arises references there. For our purposes we note that D is
s v-domain if every nonzero finitely generated ideal of D is v-invertible. Now we
leawve it to the reader to reconcile this definition with the one in the introduction
above. As this is going to be mentioned later an integral domain D is a Prufer
+-multiplication domain (P+*MD), for a finite type star operation x, if every
nonzero finitely generated fractional ideal of D is s-invertible. The P*MD’s
were introduced and studied by Houston, Malik and Mott in [27]. A P¢MD is
often called a PVMD, becuse that was the name given to it by Gilmer in [21].
Following [27] one can call D, for a general star operation x, a *-multiplication
domain if every nonzero finitely generated ideal of D is s-invertible. These
domeins were first studied in a paper by Anderson, Mott and Zafrullah in [8],
where they were characterized in Corollary 4.3. From the comments above it
follows that these #-multiplication domains for a general star operation * are
v-domains.

Question 00. In the introduction you mentioned Halter-Koch’s
book which is about idesal systems. What is an ideal system and
how is it related to s-operations and v-domains? Also what is mul-
tiplicative ideal theory?

Answer:




00.1. The *-operations were initially introduced for commutative rings, then
they were adapted for commutative semigroups. The semigroup-theorists and
partially ordered-group-theorists established that star operations have essen-
tially to do with the multiplicative structure of an integral domain. So, suitable
ideal systems were established and their study was named Multiplicative Ideal
Theory. The theory of ideal systems is a deep theory, we shall delve into it only
as much as is related to our topic. By a semigroup we shall mean a commutative
semigroup.

00.2. A nonempty set S is called a semigroup if there is a binary operation
o defined on S such that (a) § is closed under o and (b) c is associative {and
for our puposes commutative). If § contains an identity e we call S a monoid.
If there is an element O in S such that for all z € S we have oz =200 =0
we say that S has a zero element. Finally if for all g,z,y in S with a #
0, aox = aoy implies that z = y we say that S is cancellative. In what
follows we shall be working with commutative and cancellative monoids with
or without zero. Have you noticed what is behind ail this prepazation? If D
is an integral domain then considered as a semigroup under multiplication D is
precisely a commutative, cancellative monoid with 0. In Halter-Koch’s book {24]
+hese monoids are considered. From now on when we say monoid, in the context
of ideal systems, we mean a commutative cancellative monoid (with zero). There
are many advantages in adopting this (ideal systems’) approach, for example we
can, deal with the divisibility, form the monoids of fractions and the groupoid of
teactions of S in the same manner, avoiding 0 in the denominator, as the rings
of fractions and the field of fractions of an integral domain D. We denote the
groupoid of § by ¢(S) = {% : a,b € § where b # 0}. We can also define ideals
and fractional ideals as follows.

00.3. Let a be an element of the monoid S. By 0.5 we mean the set {aos: s €
S}. We call a nonempty subset A of S an ideal if for all o € A we have aS C A.
By a fractional ideal of S we mean a nonempty subset B of ¢(S) such that B
is an ideal of § for some z € S\{0}. The book [24] does not consider ideals
directly and deals with fractional subsets ®(S) of ¢(5). A fractional subset is a
subset F of ¢(8) such that zF is a subset of S for some z € S\{0} ([24, page
121] and see the note in [24, Proposition 11.1, page 122]) An ideal system on
S is a function 7 : ®(S) — @(S), taking A to A, such that for ali z € a(S),
A, B € ®(5) we have

(i) AU{0} C A,

(i) A C B, implies A, C Br

(iif) =S C {2},

(iv) (zA)r = zA,

00.4. Let z € A, then {z} C A, and so by (ii) {z}r € Ap. Now by (iif)
28 C A,. That is A, is a fractional ideal of S. Next if vou look up Proposition
2.1 on page 16 of [24] you will see that (4,)r = Ar = (A\{0})r = (AU{0})r and
that if A C B then A, C B,. Also note that if A is a fractional ideal of S then
(i) gives A C A,. Also by Proposition 2.1 (xiii) of [24] we have {1}, =185 =S
and so 9, = 5. So if we were to restrict to fractional ideals an idéal system r is
like 2 star operation r. On the other hand, as we have observed, A, delivers an
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ideal (of the monoid) anyway, there is no harm in using the ideal systems for
integral domains, as long as the ideal systems deliver ideals of the domains. Now
a fractional subset A of S is said to be an r-ideal if A, = A. Note that if 7 and
J are any two fractional subsets of ¢(S) (or fractional ideals) I.J = {ab:a €
and b € J}. Now just like the star operations (ID)r = (Ipd)r = (IrJr)r, and
you can call it the r-multiplication. There is an r-equivalent for s-sum too and
thet is (JUJ)p = (I, UJ)r = (I, UJr)r. A fractional r-ideal I of 5 is said to be
r-finitely generated if I = E, where E is a finite (nonempty) subset of S. Given
an ideal system r we can define an ideal system r, fin by Ar,fin = U{E,. where
E varies over finite subsets of A}. Now you see that r, fin is essentially like
a star operation of finite type. Similarly you can define r-invertible by saying
that A € ®(S) is rinvertible if (AA~1), = S. The upshot of this discussion is
that with some imagination one can restate nearly every result or definition for
star operations as a result or definition for ideal systems. For example given
two idesl systems o and b on a monoid M we can say that b is coarser than a
(a < b) if for all X € @(8) we have X, C Xp.

Question 000. You said that there is no harm in using the ideal
systems for integral domains as long as they deliver fractional ideals
for domains (see 00.4), but (a) are there any ideals systems for
domains that deliver fractional ideals for domains? (b) the ideal
system allows the empty set ¢, (c) in [24] at page 16 it is shown that
{0}, = (0) = ¢,, the product of ideals in a semigroup is different from
the product of ideals in a ring and the only equivalent of =-sum that
you show is r-sum, which may not be an ideal in a domain. Could
you explain?

Answer: A lot of good questions. There are indeed ideal systems definable
on & domain as a monoid that deliver fractional ideals. These are called ideal
systems induced by star operations. For this let me prepare a little. Let me
introduce the d-system on an integral domain D. The d-system, as the usual r-
system is defined d : ®(D) — &(D) by X — Xy = XDie. the (fractional) ideal
of the domain D generated by X. It is easy to check that the d-system is an ideal
system. Now let * be a star operation on D and define r() : @(D) — (D),
by X — (Xa)* and verify that () is an ideal system of the domain D that
delivers fractional ideals for fractional subsets. This ideal system r(x) is called
an ideal system induced by the star operation *. This is part (i) of Exercise 1
at page 33 in [24]. In the same exercise you will find the part that wants you to
establish that * is of finite character if and only if r(x) is finitary. Now note that
X being empty does not cause a problem because, as you point out ¢4 = (0),
and since in defining -operations we throw out the ideal (0) we can always put
(0)* = (0). There is of course the situation that you do not care about getting
an ideal of the domain on applying an ideal system. In that case too there
is no harm in using the language of ideal systems while dealing with integral
domains. Now with all this let me bring in the following comment. In Chapter
17 of [24] Halter-Koch calls a monoid M an r-Prufer monoid, for a general ideal
system 7, if every r-finitely generated nonzero ideal of M is r-invertible. Note




that if M is an integral domain then M being an r-Prufer monoid is the same
as the domain in which every nonzero finitely generated ideal is x-invertible as
studied in {8, Corollary 4.3]. In recognition of Halter-Koch’s definition let us
call an integral domain D a x-Prufer domain, for a general star operation x,
if every nonzero finitely generated ideal of D is s-invertible. It is only fair to
mention that most of the resuits in [24] on r-Prufer monoids are for finitary 7.
That makes the study of r-Prufer monoids in [24] or elsewhere, to-date, as good
as the study of Prufer »-multiplication domains of [27].

Question 0000. Are there any ideal systems for general monoids
that deliver (ring) ideals when used for an integral domain without
the use of the d-system?

Answer: Certainly there are. I would mention two, the v-system and the
t-system. It has been shown in Halter-Koch’s [24, Theorem 11.4, page 125] that
the function v : &(§) — ®(S) defined by X — X, = ﬂ xS is an ideal

z€q(5)\{0}
XCas

system. Later, on the same page, this system is called the v-system. Now if
S were an integral domain X, is an idesl of the domain S, becuse X, is an
intersection of fractional ideals of D. The t-system being the v, fin system gives
2 directed union of (ring) ideals and hence (ring) ideals.

Now recall that in 0.4 we mentioned that if I € F(D) we have I, =

ﬂ £D. The above remarks tell us that say for z,y € K\{0} (¢D+yD), =
zeK\{0} .

IC2D

{z,y}». Let us call this property of the v- (and hence ¢-) operations the multi-
role property. About the v-systems one must however be careful, in ring theory
(0), does not have a place nor does ¢,. S0 we can say that for a "fractional
subset X of K7, X, = (X)» if X # ¢, {0}.

Indeed, in general if an ideal system r is such that when used for a domain,
r is coarser than the d-system, 7 has the multi-role property.

Question 1. Where and in what context did the v-domains first
appear?

Answer: The v-domains are precisely the integral domains for which the v-
operation is aritrithmetisch brauchbar (a. b. for short). Recall that Krull [32]
called a star operation * an a. b. operation iffor all A € f (D) and B,C € F(D),
(AB)* C (AC)* implies that B* C C™. I asked Robert Gilmer and Joe Mott
about the origins of v-domains. They had the following to say:

We believe that Prufer’s 1932 (in J. reine angew. Math. vol. 168, p. 1-36)

paper is the first to discuss the concept in complete generality. In van

der Waerden. paragraph 105 of volume 2 Modern Algebra, copyright 1950,
there is

the general abstract definition of v-ideal function and completely

integrally closed rings. There is the notion of quasi-equality of ideals,

and the observation that the classes of quasi-equal ideals form a group.




The original copyright of modern algebra was 1931 so van der Waerden. (or
Artin

or Noether from whose lecture notes the book was derived) were before

Prufer.

Krull’s Idealtheorie (p. 121) says that van der Waerden treated special cases

of v-ideals in "Zur produktzerlegung der ideale in ganz abgeschlossenen

ringen" (on the product decomposition of ideals in integrally ciosed rings)

Math. Ann. 101 (1929), p. 293-308. I. Arnold, "Ideale in

kommutativen Halbgruppen" (ideals in commutative

semigroups) Rec. Math. Soc. Math. Moscou vol. 36 (1929), p. 401-407,

treats v-ideals in semigroups.

1 don’t have jaffard’s book anymore but I would check that to see if there

is an earlier reference.

we don’t know who first used the words v-domain. [Joe Mott, personal
e-madil]

From Joe Mott and Robert Gilmer we learn that the notion of a v-ideal was
possibly known to Emil Artin and to Emmy Noether, before Prufer who dealt
with the concept in complete generality in 1932, though we still do not know
who came up with the name "v-domain". Recently Franz Halter-Koch reminded
e of Lorenzen’s work [33], who introduced v-idesls nearly ten years later than
1. Arnold cited in the e-mail above. Evan Houston has also sent me a reference
to a paper of Dieudonné [17]. The paper provides a clue to where v-domains
came out as a separate class of rings, though they were not called v-domains
there. I note that [17] has also been mentioned in Halter-Koch’s bock [24, page
216], where it is mentioned that [17] gives an example of a v-domain that is
not a PVMD. So, to this date, we know that v-domains first showed up as &
separate entity in [17]. (If any of the readers can add to this information they
may write to me at the address given below, Muhammad.)

Question 2. What are the contexts in which »-domains show up?

Answer:

(2.1) As a generalization of Prufer domains: An integral domain D is a
Prufer domain if every A € f(D) is invertible. Now an invertible ideal is a -
invertible #-ideal for any star operation * and in fact, it is easy to establish
that, if 1 and =gare two star operations such that for all A € F(D) A* C A
any =1-invertible ideal is also xg-invertible. So a Prufer domain is & Prufer v-
multiplication domain (PVMD)(every A € f(D) is t-invertible) which is in turn
a v-domain. The picture can be refined if we recall another property of Prufer
domains. An integral domain D is Prufer iff Dy is a valuation domain for
each maximal ideal M of D. Griffin [22] showed that D is a PVMD iff Dy is &
valuation domain for each maximal t-ideal M of D. Calling a valuation overring
V of D essential if V = Dp for some prime ideal P (which is invariably the
center of V over D ) and calling D essential if D is expressible as an intersection
of its essential valuation overrings we note that a Prufer domain is essential and
g0 is a PVMD (because D = NDys where M varies over maximal t-ideals of D
(see 0.5)). In fact it is easy to see that every integral domain D that is locally

5




essentisl is essential. Now add to this information the following well known
result. '

Proposition 1 An essential domain is a v-domain.

Proof. Let D = (\,e; Dp, where each Dp, is a valuation domain with
center P, and let A be a monzero finitely generated ideal of D and let w be the
star operation induced by {Dp,} on D. Then (AA™N)® = N,/ (AA"H)Dp,
= ﬂaeI(ADP,,)(A—lDPQ) = ﬂaeI(ADpa)(ADpa)_l (because A is fg) =

wer D, (because A is finitely generated and because each Dp, is a valuation
domain. This gives (AA™1)" = D and hence (AA™), = D. ®

For an alternate proof of Proposition 1, and much more, the reader may
consult [47, Corollary 3.2]. Halter-Koch has informed me that Proposition 1
follows from [24, Exercise 21.6 (page 244)(i)]. Indeed essential monoids can
be and have been defined, in [24], and Proposition 1 does follow from Halter-
Koch’s exercise, but the result was already known for essential domains, see
for instance, [48, Lemma 4.5]. If we closely look at [24, Exercise 21.6 {page
244)], we note that part (i) of Exercise 21.6 of [24] follows from Lemma 8 of
[45], one of the papers that set the ball rolling for multiplicative ideal theory,
in tecent days. On the other hand part (iii) of the same exercise was known to
the authors of [27] for domains in the statement that a P+MD is a PVMD. It
is indeed remarkable that all those results known for integral domains can be
interpreted for monoids.

With this proposition at hand we have the following picture.

Prufer =; PVMD =sLocally PVMD =3 Essential such that every quotient
ring is essential (such a domain is called a P-domain in [38]) =>4 Essential
=5 v-domain. (The P-domains were characterised in a somewhat special way
by Papick in {42].)

(2.2) As a generalization of Bezout domains: D is Bezout iff every finitely
generated ideal of D is principal, D is a GCD domain if and only if for every
A € f(D) A; = A, is principal, a Generalized GCD domain iff for each A € f(D)
A, is invertible Dan and David Anderson [2] and indeed D is a v-domain iff for
each A € f(D), At is v-invertible. If we keep in mind the fact that & GCD
domain is a PVMD we have the following addition to the existing picture:

Bezout =¢ GCD domain =7 GGCD domain =>g locally GCD domain =g
locally PVMD ...

(2.3) As a link between completely integrally closed (CIC) domains and
integrally closed integral domains: Recall that D is CIC « for all A € F(D)
[A :x Al = D & for all divisorial A € F(D) [4 :x A] < for all A € F(D)
(AA™1), = D, Gilmer [21, Section 34]. In Bourbaki {12] an integral domain D
is called regularly integrally closed iff for all A € f(D) [Ay :x Av] = D. It is
easy to establish that a regularly integrally closed integral domain is 2 v-domain
ie. forall A € f(D) (AA™1)~! = D see, for instance {21, Section 34]. Regularly
integrally closed integral domains make their appearance in the study of pseudo
integrality, by Anderson, Houston and Zafrullah [9] where an element ¢ € K
is called pseudo integral over D if z € [A, :x Ao for some A € f (D). The




terms pseudo integral closure (D = U (I, : L)) and pseudo integrally closed
_ Ief(D)
(D = D) are coined in the obvious fashion and it is clear that D is pseudo
integrally closed iff for all A € f(D), [Ay :x As] = [Ay :x A] = D. Finally it
is well known that D is integrally closed iff [A :x A] = D for all A € f(D).
From these observations, it follows that D is CIC =19 D is a v-domain =11 D
is integrally closed. (Note that Okabe and Matsuda [41] generalized pseudo
integral closure to *-integral closure D* = U (I* : I*) and later Halter-Koch
Ief(D) .

(a) denoted D* by cl*(D) in [23], along with other results. In view of this
notation, D = cl,(D).)

Of these all except =>zare known to be irreversible. We leave the case of
irreversibility of =3 as an open question and proceed to give examples to show
that all the other implications are irreversible.

Irreversibility of =>1: For =>ilet D be a Prufer domain that is not a field.
Then, as D[X] is a PVMD iff D is {7, Corollary 3.3], we conclude that D[X] is
a PVMD that is not Prufer.

Irreversibility of =>¢: For =3 we know that every ring of fractions of a PVMD
is again & PVMD. (The easiest proof of this fact can be given by noting that
if T is tinvertible then so is IRg where S is a multiplicative set of R {13,
Lemma 2.6] for an alternative proof see Heinzer and Ohm [28]. That =3 is not
reversible has been shown by producing examples of locally PVMD’s that are
not PVMD’s at several places: In [38] an example of a non PVMD essential
domain due to Heinzer and Ohm [28] was shown to have the property that it
was locally PVMD and hence a P-domain. Later {48] contained a method of
constructing such examples. (Recently Fontana and Kabbaj [18] have studied
essential domains and considered P-domains.)

Trreversibility of =3: Open.

Trreversibility of =4: The example to show that =>4 is not reversible was
constructed by Heinzer in [26].

Irreversibility of =5: To show that =5 is not reversible let us note that by
=102 CIC domein is a v-domain and Nagata [39] and [40] hes produced an
example of a one dimensional quasilocal CIC domain that is not 2 valuation
ring. This proves that a v-domain may not be essential. (It may be useful
to have an example of a nonessential v-domain that is simpler than Nagata’s
example.)

Irreversibility of =>¢: The case of =>gcan be handled in the same manner as
that of =

Trreversibility of =7: For =-ywe note that a Prufer domain is a generalized
GCD domain [2] and that a Prufer domain D is a Bezout domain iff D is
GCD. In fact according to Cohn [14] a Prufer domain D is Bezout iff D is a
generalization of GCD domains called a Schrejer domain. Briefiy an integrally
closed integral domain whose group of divisibility is a Riesz group is a Schreier
domain [14].

Trreversibility of =g: For the irreversibility of =>gnote that I is GGCD




domain iff D is a PVMD that is a locally GCD domain [2] and as noted above
there are examples in [48] of locally GCD domains that are not PVMD’s.

Irreversibility of =>g: That =>gis irreversible is well known in that there do
exist examples of Krull domains that are not locally factorial.

Irreversibility of =>10: By Theorem 4.42 of [15] T = D + XK[X] is a v-
domain if D is, here K is the quotient field of D. If D is not equal to K
then obviously 7 is an example of a v-domain that is not completely integrally
closed. This establishes that =>19is not reversible. Recently, bringing to, a sort
of, a close a lot of efforts to restate results of [15] in terms of general pullbacks
Houston and Taylor [29] use some remarkable techniques to prove results related
to v-domains, PVMD’s, GCD domains and Bezout domains.

Irreversibility of =>11: With some introductory remarks we now establish
the irreversibility of =>1; . An integral domain D is called a Mori domain if D
satisfies ACC on its nonzero integral divisorial ideals. According to Querre {43]
D is 2 Mori domain iff for every nonzero integral ideal A of D there is a finitely
generated ideal B C A such that A, = B,. Thus if D is a Mori domain then
D is CIC iff D is a v-domain. But a completely integrally closed Mori domain
is a Krull domain, see for example Fossum [19, Theorem 3.6]. Now it can be
shown that if X C I is an extension of fields and if X is an indeterminate
then K + XL[X] is a Mori domain see, for example, Theorem 4.18 of Gabelli
and Houston’s [20] and references there. It is easy to see that the complete
integral closure of K + XL{X]| is L{X]. Thus if K G L then K + XL[X] is
not completely integrally closed. So, there do exist Mori domains that are not
Krull. Now consider @ + X R[X], where R is the field of real numbers and @
the algebraic closure of @ in R. That Q+X R[X] is integrally closed is easy to
see using first principles (i.e. the definition of integrality). So Q + XR[X] can
serve as an example of an integrally closed domain that is not a v-domain.

Question 3. You have told us that if D is a PVMD then every
quotient ring of D is a PVMD. Is it true that if D is & v-domain and
S a multiplicative set in D then Dg is a v-domain?

Answer: No. If D and S are as given then Dg is not necessarily a v-
domain. Heinzer [26] constructs an example of an essential domain D with a
prime ideal P such that Dp is not essential. What is interesting is that an
essential domain is a v-domain by Proposition 1 above and that Dp is a ring
of the type K + XL[X|x) = (K + XL{X])xrxjwhere L is a field and K its
subfield that is algebraically closed in L. Now K + XL[X](x) is an integrally
closed Mori domain and in the irreversibility of =>13we have seen that if the
Mori domain Dp is a v-domain it must be a Krull domain and hence essential.
(Note: Likewise if D is CIC then it may be that for some multiplicative set S
Dg is not completely integrally closed. A well known example in this connection
is the ring F of entire functions. For E is a completely integrally closed Bezout
domain that is infinite dimensional (see the reference mentioned in Ex 20 page
148 of [21]) . Localizing £ at one of the prime ideals of dimension greater than
one would give a valuation domain of rank greater than one which is obviously
not completely integrally closed. Now the well known examples of CIC domains




with some quotient rings not CIC are all such that their quotient rings are at
least v-domains and it would be instructive to see if we can find an example of
a CIC domain whose quotient rings are not all v-domains.)

Question 4. It is well known that if {Ds}ee; is a family of overrings
of D with D =(,; Do and if each D, is a CIC domain then so is D
see e.g. [21, Ex. 11, p 145]. If in the above statement “CIC domain”
is replaced by “v-domain” is the statement still true?

Answer: The answer in general is no, because every integraily closed integral
domain is expressible as an intersection of a family of its valuation overrings (see
e.g. [21, Theorem 19.8]) and of course a valuation ring is a v-domain. If however
each of D, is a ring of fractions of D then the answer is yes. To establish this
we need to prepare a little.

In [1] Dan Anderson shows that if {Do} is a defining family of overrings of
D and if * is a star operation on D then the operation ’ induced on F(D) by
A = N(ADy)* is a star operation.

Proposition 2 Let {Do}acr be a family of quotient rings of D such that D =
N Do. If each of Do, is a v-domain then so is D.

Proof. Let o be the star operation on D defined by A +— A7 = N(ADg)»-
To show that D is a v-domain it is sufficient to show that every nonzero f-
nitely generated ideal is o-invertible, for if A € f(D) and (AA™)° = D then
applying the v-operation to both sides we get (AA-1), = D. Now (AA71)7 =
N((A4™)Ds)y = N((AD5)(A™ Dq))w = N((AD5)(AD5)")s ( because Do
are quotient rings and A is £g.) = (D, (because each D, is a v-domain)
=D ®

Corollary 3 Let {P,} be a family of prime ideals of D such that D = (}Dp,
. If Dpq, for each ais a v-domain then so is D.

This in turn leads to an interesting conclusion.

Corollary 4 Let S be a multz'plicatz've set in D. If for all prime ideals P of D
such that P is maximal w.r.t. being disjoint from S, Dp is ¢ v-domain then Dg
is a v-domain.

Question 5. Is it then enough to say, in view of Corollary 3, that
if D is locally a v-domain then D is a v-domain?

Answer: Depends on what you mean by “locally a v-domain”. If by “D
is locally a v-domain” you mean that for every maximal ideal M of D, Dy is
s v-domain then you are just right, by Proposition 2, yet if by “D is locally a
v-domain” you mean that for every prime ideal P of D Dp is a v-domain you
get much more in return. To indicate this we need to prove a statement and
for that we need to recall that a prime ideal that is minimal over an ideal of
the type 0 # (a) :p (b) # D is called an associated prime of a principal ideal.
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According to Brewer and Heinzer [11] if § is a multiplicative set of D then
Ds = ({Dp| where P ranges over associated primes of principal ideals with
PNS=¢}. Indeed if we let S = {1} then we have D = () Dp where P ranges
over all associated primes of principal ideals of D. Using this terminology and
the information at hand it is easy to prove the following result.

Proposition 5 Let D be an integral domain. Then the following are equivalent:
(1) D is a v-domain such that for every multiplicative set S, Dg s @ v-domain,
(8) For every nonzero prime ideal P of D, Dp is a v-domain, (8) For every
associated prime @ of D, Dg is a v-domain.

In the same spirit we can make the following statement for CIC domains.

Proposition 6 . Let D be an integral domain. Then the following are equiva-~
lent: (1) D is a CIC domain such that for
every multiplicative set S, Dg is CIC, (2) For every nonzero prime ideal P of
D, Dp is CIC, (8) For every associated prime Q of D, Dq is CIC.

Question 6. You have told us, in the proof of irreversibility of =1
, that D[X] is a PVMD if and only if D is. Can we make a similar
statement about v-domains?

Answer: Yes. Part (4) of Corollary 3.3 of [7] can be restated as: The following
holds for D[X] if and only if it holds for D : For every finitely generated nonzerce
fractional ideal A, A, is v-invertible. Using the definition of v-invertibility and
using the definition of *-multiplication one can easily show that for A € F(D),
A is v-invertible if and only if A, is v-invertible. So the above cited result
 says that every A € f(D) is v-invertible if and only if every J € F(D[X]) is
v-invertible. That is D is a v-domain if and only if D[X] is. There is of course
2 much more interesting result in [9] in terms of pseudo integral closures.

Question 7. Is there some new material of interest on v-domains?

Answer: Certainly there is material of interest.

(1) Let Mty denote the set of v-ideals of finite type of a domain D with
quotient field K. Dieudonné in [17] says that Lorenzen [33] showed that the
following two statements are equivalent: (a) for any three v-ideals 4, B, C e My,
(AB), = (AC), implies B = C (and in Dieudonné’s own words: autrement dit,
tout élément de My est régulier pour la multiplication.) So the "regular” here
is totally diffenerent from what we mean by a regular element of a ring or of 2
semigroup. However the word “regular” is used in [12, VIL1.Ex. 30, page 554]
without any explanation. '

(b) Each A € My, has the property that for each = € K, zA C A implies
that z € D. '

Dieudonné again cites Lorenzen [33] who had shown that for a divisorial
ideal A to be v-invertible it is necessary and sufficient that for all z € K,
zA C A implies that z € D. So, (a) and (b) above are equivalent to "every
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v-ideal of finite type is v-invertibie". This we now know to be the definiticn of
s v-domain. And of course Dieudonné gave in [17] an example of a domain D
every element of whose 917 is invertible yet whose 90y is not a group under
v-multiplication. That is an example of a v-domain that is not a PVMD. When
I came visiting the US, in early 1987, I did not know anything about the history
of v-domains but I was curious about them. I gave talks at several universities
and after each talk what I wanted to talk to my hosts about was v-domains.
As a result of all those "consultations" we got the "A to Z" paper [3]. In this
paper we gave some new characterizations for v-domains and for completely
integrally closed (CIC) domains. These characterizations were then made into
two schemata of characterizations in [8]. In the A to Z paper we also showed
that D is a v-domain if D is integrally closed and for all 41, Ag, ..., 4n € f(D)
we have (A1 N A2 N...N An)w = (A1) N ... N (Ap)y, i.e. v-distributes over finite -
intersections of elements of f(D). The converse of this result was proved by
Matsuda and Okabe in [36] and recently Andersen and Clarke have continued
the study of %-operations that distribute over finite intersections in [5] and in
[6] the study of domains in which the v-operation distributes over intersections.
In [6] the authors asked several questions. One of the questions (Question 3.22)
can be stated as: Is it true that if D is a v-domain then (ANB), = 4, N B,, for
all A, B € F(D). Mimouni [37] has recently constructed a Prufer domain with
two ideals A, B such that (AN B), # 4, N B,.

(IT) Section 2 of [35] contains some characterizations of v-domains in terms
of polynomials. The following results may be of interest.

Theorem 7 ([35, Theorem 2.5]) Suppose that D is an integrally closed domain
and let Vp = {f € D[X] : Ay is v-invertible. Then the following are equivalent:
(1) D is a v-domain; (2) Vp = DIX]\{0}; (8) DiXlv, is a field; (4) Each
nonzero element o € K satisfies a polynomial f € D[X] such that Ag is v-
invertibie.

(A denotes the (fractional) ideal generated by the coefficients of f € K (X1,
Ay is also denoted by c(f).)
In the course of proving Theorem 7 we needed the following lemnma.

Proposition 8 (/95, Lemma 2.6]). An integral domain D is ¢ v-domain if and
only if every nonzero fractional ideal with two generators is v-invertible.

(I%) In [10, page 171] a domain D is said to have a divisor theory if there
is a factorial semigroup D and a semigroup homomorphism (.) : D\{0} — D
given by a — (a) such that

(D1) (o) | (B) in D if and only if & | B in D for o, § € D\{0}.

(D2) g | (o) and g | (8) = g | (o £ ) for a, f € D\{0} with a& 5 # 0 and
geD. '

(D3) @ = & if and only if a = b for a,b €D with @ = {p € D\{0} : a |(1)} U
{0}
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Taking the above definition as a starting point and noting that (D2) is
unnecessary ([44]) Lucius [34] called D a domain with GCD-theory if there
is a GCD-monoid G and a semigroup homomorphism (.) : D\{0} — G given by
o — (o) such that the following conditions hold:

(G1) (@) | (B) in G if and only if & | B in D for o, 8 € D\{0}.

(G2)e=bifandonlyif a=b for a,b €G with@ = {u € D\{0} : a |()} U

{0}

The GCD-monoid G is called the divisor semigroup and g¢(G) the divisor
group of the GCD-theory (.). The elements of G (of ¢(G)) are called integral
(resp. fractional) divisors, elements of the form (@), for a € D\{0}, are called
principal divisors. It is shown in Note 2.2 of {34] that the extension a GCD-
theory (.} : D\{0} — G %o a group homomorphism (.)’ : K\{0} — ¢(G) has the
following properties: :

(1) (&) | (B) with respect to G if and only if o | 8 with respect to D for
o, 8 € K\{0}. '

(2) @ =16 if and only if a = b for a,b €¢(G) with @ = {u € K\{0} : o |[()'} U
{0} , (the division is w.r.t. G). To clarify the role of @ we have the following
theorem. :

Theorem @ ([34, Theorem 2.5]) Let D be a domain with GCD-theory (.) :
D\{0} — G, o any divisor and {¢;}ic1 @ family of principal divisors with a =
GCD({oi}icr). Then @ = ({os}icr)v = (8).

As a part consequence of Theorem 9 we have the characterization of a v-
domasin as the domain with GCD-theory.

Theorem 10 (/34, Theorem and Definition 2.9]) For a domain D the following
conditions are equivalent: (1) D is a ring with GCD-theory, (2) D is av-domain.

((1) = (2) is a consequence of Theorem 9 (as given in Corollary 2.8 of [34])
and for (2) = (1) 2 GCD-monoid is constructed, via Kronecker function rings,
and a GCD-theory is demonstrated. The other important, related, theorem that
comes from [34] is the following.

Theorem 11 ([34, Theorem 3.1]). Let D be an integrally closed domain with
field of fractions K and let T be the integral closure of D in an algebraic exten-
sion L/ K. Then T is a domain with GCD-theory if and only if D is a ring with
GCD-theory.

The notion of a GCD-theory being more in the domain of monoid theory
the above mentioned results have been given a monoid treatment. In terms of
monoids, a part of Theorem 11 appears as a Corollary to {25, Theorem 3.6].
Theorem 3.6 of [25] being somewhat important we copy it below.

Theorem 12 ([25, Theorem 3.6]). Let D be integraily closed, K = qg(D), L/K
an algebraic field extension and T' the integral closure of D in L. Then cly(T) is
the integral closure of cly(D) in L, and K,(T) is the integral closure of K,(D)
in L(X).
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(Note: Here cl,(D) is the v-integral closure of [41] or D of [9] and, for D inte-
grally closed, K,(D) = {£ : f,g € D[X] and (A7) C (4)v} ). Note that in [25]
Halter-Koch developes the theory of Kronecker function rings axiomatically.)

Theorem 10 and the related theory actually made its way into {24], in the
form of some exercises. Below I describe them in case you are interested.

Let H be a monoid. A monoid homomorphism ¢ : H — D is called a divisor
homomorphism if a, b € H and ¢(a) |p ¢(b) imply that a [z b. The GCD-theory
is outlined in [24, Exercise 18.10, page 206] in terms of divisor homomorphisms
and Exercise 19.6 at page 217 of [24] then wants us to prove that a monoid H
is a v-Prufer monoid if and only if H possesses a GCD-theory.

(IV) There is a paper by Evan Houston and Zafrullah [31]. It talks about

- UMV-domains (uppers to zero are maximal v-ideals). Recall that if X is an
indeterminate over an integral domain D and if P is a prime ideal of D[X] such
that PN D = 0 then P is an upper to zero. Recall also that an integral ideal
maxima] w.r.t. being a v-ideal is a maximal v-ideal. Maximal v-ideals are not
a common sight. There are integral domains, such as a non-discrete rank one
valuation domain, that do not have any maximal v-ideal. However a maximal
v-ideal if it exists can be shown to be a prime. In any case in [31] we prove (in
Theorem 3.3) the following result.

Proposition 13 The following are equivalent for an integral domain D: (1) D
is a v-domain, (2) D is an integrolly closed UMV-domain, (8) D is integrally
closed and every upper to zero in D|X] is v-invertible, (4) D is integrally closed
and every upper to zero P = fK[X] N D[X] with f o linear polynomial is v-
invertible.

Tt would be unfair to leave you with this characterization of v-domains with-
out giving a hint about where the idea came from. Zafrullah [46] proved the
following Theorem.

Theorem 14 ([[46, Proposition 4]). Let D be an integrally closed integral do-
main, let X be an indeterminate over D and let 5 = {f € D[X] : (Af)y = D}
then D is a PVMD if and oniy if for any prime ideal P of DX| with PND = (0)
we have PN S # ¢.

The proof used very basic properties of polynomial rings. In [48] it was also
shown (in Lemma 7) that if D is a PVMD then every upper to zero in D[X] is
a maximal t-ideal. (A maximal t-ideal is an integral ideal maximal w.r.t. being
a #-ideal and it too is necessarily prime, as mentioned in 0.5. Unlike maximal
v-ideals the maximal #-ideals are everywhere, in that every t-ideal is contained
in at least one maximal t-ideal.)

Around the same time Houston, Malik and Mott published [27]. In [27]
the authors came up with a much better result (Proposition 2.8), using the
x-operations much more efficiently. Briefly, this result said thet an integrally
closed integral domain D is a PVMD if and only if every upper to zero in D[X]
is a maximal t-ideal. Tt turned out that integral domains D such that their
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Uppers to zero in D[X] are Maximal "T"-ideals had an independent life. In [30]
Houston and Zafrullah studying t-invertibility proved the following result.

Theorem 15 (30, Theorem 1.4]). Let P be an upper to zero in D[X]. The
following statements are eguivalent: (1) P is a mawimal t-ideal, (2) P is t-
invertible, (3) ¢(P): = D. (In this case it is easy to produce g € P such that
(clg))o =D.)

Based on this result one can see that the following statement was a precursor
to Theorem 3.3 of [31].

Theorem 16 The following are equivalent for an integral domain D: (1) D is
a PVMD, (2) D is an integrally closed UMT-domain, (3) D is integrally closed
and every upper to zero in D[X] is t-invertible, (4) D is integrally closed and
every upper to zero P = fK[X|ND[X] with f a linear polynomial is t-invertible.

(V) Although the paper [29] is not about v-domains in particular, but it does
have g few good results on v-domains. As the paper is essentially about pullbacks
of a special kind we start with a description of that kind of pullbacks. Let I be
a nonzero ideal of a domain T, ¢ : T — E = T'/I the natural projection, and
let D be an integral domain contained in E. Then R = ¢~ *(D) is the integral
domain arising from the following pullback of canonical homomorphisms:

R — D
! L
T — T/I=F

This pullback is termed as the pullback of type . The first result of interest

is the following.

Proposition 17 ([29, Lemma 2.1]) In a pullback of type O, if R is a v-domain,
then T is prime t-ideal of both R and T, ¢f(D) = ¢f(E), R; is a valugtion
domain, and Ry = Tr. Moreover (I:I)=1"1= (I, : L,).

Next for an extension of domains R C T call T v-linked (respectively -
linked) over R if whenever J is a nonzero (respectively finitely generated) ideal
of R with J~! = R we have (JT)~! = T. (The t-linked extensions were used
in [16] by Dobbs, Houston, Lucas and Zafrullah in the study of PVMD’s.) It is
clear that “v-linked" implies “¢-linked". Now we have already seen in the answer
to Question 3 that 2 ring of fractions of a v-domain may not be a v-domain, so
2 t-linked overring of a v-domain may not be a v-domain, but when it comes to
& v-linked overring we get a differen story.

Proposition 18 (/29, Lemma 2.4]) If R is a v -domain and T is a v-linked
overring of R, then T is a v-domain. (Note that by an overring of D we mean
a ring R with D C RC K.)

Using Propositions 17 and 18 along with the fact that if I is & nonzero ideal
of D then the ring (I, : I,) is v-linked over D. Houston and Taylor prove the
following result.
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Proposition 19 (/29, Proposition 2.5]) In a pullback of type U, ¢f T = (I : I)
and R is o v-domain (respectively a PVMD), Then T is o v-domain (respectively
o PVMD).

There are of course a lot of other goodies in [29], but I will let you read them
on your own, as they do not concern v-domains, directly.

(V1) The other important paper is unpublished and I cannot give you much
from it. This paper is written by D.D. Anderson, D.F. Anderson, M. Fontana
and myself [4]. This paper classifies the integral domains that come under the
umbrella, of v-domains. It is shown in the paper for instance that the theory
of #-Prufer domains and hence of v-domains runs along pretty much the same
lines as the theory of Prufer domains. We show for instance that, to keep the
discussion less heavy, D is a »-Prufer domain if and only if the sum of two
w-invertible ideals is again s-invertible and that D is a sPrufer domain if and
only if (AN B)(A+ B))* = (AB)* for all A,B € F(D). The first of these
results is remarkable in that while an invertible (¢-invertible ¢-) ideal is finitely
generated (is of finite type) a v-invertible v-ideal may not be of finite type. For
the second it is interesting to note that for * = d, (AN B)(4A + B))* = (AB)*
for all A, B € F(D) is a (known) characterization of Prufer domains. For *x =,
((ANBYA+ B))* = (AB)* for all A, B € F(D) is a (known) characterization
of PVMD's and for * = v, (ANB)(A+ B))* = (AB)* forall A,B € F(D)isa
new characterization of v-domains. In [4] we also study s-completely integrally
closed domains (*-CICD’s) as the domains D such that each 4 € F(D) is *-
invertible. Let me also refer you to a question left open in {47], on page 1910, at
the conclusion of the proof of Corollary 3.2. with the claim that [4] may answer
(parts of) that question negatively.

Franz Halter-Koch has shown 2 great deal of interest in [4]. He has promised
that he would produce in the language of monoids further work that will contain
the results of [4]. I am thankful to Franz Halter-Koch, Evan Houston, Robert
Gilmer and Joe Mott for taking the time to read and comment on earlier versions
of these notes.

I have handled some questions to this point and I promise to add some more
material as it comes to me. If you disagree with some of the remarks or if you
have an improvement in mind, or if you find an error do please write to me at
zafrullah@lchar.com.

Mubammad
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