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Dedicated o my Father en his SOth birthday

Reveral authors have devefed their interest to investigating lattice-orx-
dered groups, and recently the theory of lattice.ordered groups has made a
great progress. There is a class of partially crdered groups which lies very
clogely to lattice-ordsred groups and whkichk however has pot beep dealt
with systematically, though it deserves great imderest becsuse plenty of
esamples mayx be found for svch greoups iz different fields of mathematics.
This class consists of the directed groups & with the fellowing interpolation
property: if a,,a,,b,,b, € G satisfy
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In his investigations op limear operatorg, F. RiEsz bas called attention o
snch groupe [13] ("), and this is the reason why we sghall call thewm Riesz groups.
He bas introdwveed them by the refinement property : if 0y, vy €m 5 8y e p &
are positive elements of & angd
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™

then there exist positive elements 65 (i==1,..,m:j=1...,n such that

@i == Ciy e Cipn, BDRG b;‘ == O35 sen Opmj

for every i and j. Later Birg=0or¥ [2] bas established sowmne properties of
Riesz groups. ¥or some recent applications we may refer to BAUER [i] and
Namioga [190].

The aim of the present paper is to lay dowm a systematis treatment
of Riesz groups from the algebraic point of view., A large par: of the di-
scussionp runs paraliel to the theory of lattice-ordered groups. In order to
ensure that certain theorems on Riesz groups contain importan.. results on
lattice-ordered groups as special cases, ome bas to copsider Wiesz groups
not simply as partially ordered groups with some special fype «f order, but
rather as partially ordered groups in which for certain pairs of elements
« meet » or « nnion » operation is defined. Thus Riesz groups arve to be re-
garced as algebraic systems with not everywhere defined operations « meet »
and « vrion ». This fact vanses sowme difficulties at several places. Another
difficnlty stems from the fact that while latbice-ordered groups fcrm an equa-
tiopaliv definable class of algebras, and so do those lattice ordered groups
whick are representable as pubdirect products of fully ordered groups, ithe
Riesz groups fail to bave this property. Therefore, special cire must be
taken when subdirect representations are diseussed, ' '

First we lav down the most important mes and notations to
be wvsed throughout the paper (§1). Then we begin with differ¢nt characte-
rizations of Riesz groups (8 2), It iurug out that this class of partiaily or-
dered groups admite several equivalent definitionms, showing that it is not
oply of importance from the point of view of applicatioms, but it is st the
same time a very natural generalizatim of Isttice-ordered
Zroup. Some of the simplest examples of Riesz groups which are Dot lattice-
"ordered may be found im § 3. The mnex: section (§ 4) is devoted to the
notions of orthogopality and carrier; they are useful in Riesz groups as
well, In § 5. the important concept of e-ideal i3 discussed. To Riesz groups
the o-ideals play u similar role as the lideals do in lattice-ordered groups.
The property of being a Iliesz gmumwmo 2.ideals.
The main result on o-ideals states that in Riesz groups they form & cistri-
butive snblattice of the lattice of all normal subgroups.

The mext § 8 deals with extensions of commutative Hiesz groups ana-
logously to the Schreier extension theory of gremps. Ameong tie extensions
of a Riesz group by anotber ome, the Riesz groups can be characterized
easily. The results of this section serve as tools for obisining 5>me theorems
in the subseguent sections.

4
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QOf great importance are the Riesz groups in which two elements may
have ap intersection (or unien) omly if ope is greater tham or equal to the
other. These Riesz groups, called play the same role in the
theory of Riesz groups as the fully ordered groups do in the lattice-ordered
ense. They are ioiroduced im § 7, and in § 9 we geb full deacriptions of
antilattices in the commutative caze. First, it is shown that a commutative
antilattice with isoleted oxder is ap extension of a trivielly ordered group
by a folly ordered group. The other structure uhmrgm states that they they cam
be Te obtained a8 subgroups of cartesian producis of fully ordered groups
where an element of this preduct ia to be considered greater than ¢ only
if each of its cowponents is greater tham e. FExceptional eclements, called
Miities and psexdo-pogitive elements, are discussed im § 8.

In § 10 it is shown that a commufative Riesz group is subdirectly
irreducible if and only if it is an entilattice. By making wuse of this result
it is proved thai to every ecommutative Riesz group there exists a meet
and unien preserving o-isomorphism with a subdirect produet of antilattices,
The next § 11 contfains the discussion of the case when the subdirect pro-
duct representations by means of antilattices are irredundant. Like in case
of Iatiice-ordered groups, they are them unigae up %o o-isomorphisms.

The final § 12 desls with the anslogne of the Conrad radicel of lattice-
ordered groups. Here the underiying group is suppesed to be omnly directed
and to have isclated order, 2nd even in this rather geperal case the existence
and some of the main properties of the Cenrad radical cam be established.
(In gemeral, we do met lar stress on formulating and proving the results
in most general form.)

antilaiiices,

§ 1. Terminology and motation.

By a pariially ordered greup & we meun & group (whose operation will
be written as multiplication) which is at the same time a partially ordered
set nnder a relation =, avd the monoteny law holds: a < b implies ca = cb
apd a¢ << Be for all ¢c€ &, If @ ie a lattice upder =, them it i3 called =
lattice-ordered group. The set of all #€ & with @ = ¢, ¢ the group identity,
is the positivity domain P = GF of G. The symbol P” will be used for P
with ¢ omitted. G+ compleiely determipes the partial order of @, since a = b
if and only if et £ GF, G is rivially ordered if G+ = e. Gt generates the
group & if and only if @ is direcied in the semse that o a, b€ & there ig
always A ¢€ & satisfylng e S e, b= ¢

The partial order =< is a:slm? iselated if a” == ¢ for some positive n
implies & = e. It is called dense if given «<C & there always exisis some

G gﬁﬂew@ 5 &P /h&‘ eoled - ?A&Wfﬁ
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that ¢ < ¢ < b, Thkis amounts fto requiring the same for o =e,

and kence to P™ = P7. (Here and in the sequel multiplication of subsetes

_in @ means complex multivlication.)

C) ) For Gy gom s n € G, T(2; o, 8,) and Lia, , .., a,) will denote the set of
all wpper and lower bourds of a,, .., a, in & The symbols U (e, ,..,a,)
2od L7 (a,, ... ,a,) will be vsed to depofte the sets of elements ia & which
are greater than and less than, respectively, each of @, ,..., a, («guality ex-
cluded). A sulset S of 7 iz an upper (lower) class I a €& implies T{)S §
(L )= 8). We say that N is u-directed ({-directed) if a, 8€ 8 mplies the

'*e‘-usmnae of an r€ Ssuch that e =6, 0 = b{z < o, 2 B). Sis celled convex
fa<2=<hand @, b8 2¢ G jwply x££ 35,

Tet & and &7 be partinlly ordered groups snd ¢ 2 mapping from &
imte @7, If p i a group howomorphism which preserves ordor relation,
then it is called ap ohomoemorphisni, An o-bomomorphism, which ;s surjectize
and under which the preimage of a pesitive element alwags coptsins a

G (}p%itive element is an o-epimorphism. I o is a group isomworpbism preserving

! order relation, we 8ay « 1§ an o-menomerphizm, Finailly, if @ iz a grovp
isomorphism and if @, g preserve order relation, then o will b2 said to be

[ 3 \cian O~i.80¢71ﬂ?"pfrixﬁz, .
\ < ,1\ < {51'\ ;T If 4 is & convex pormal snbgmuu of &, then ﬁée —pur?ml oider < of G
s - induces cne in G/4 : _9 puts b < for the cosets &, ¢ wod 4 if and only
i +if some béb and c€c s x:fv T- ¢. Then the canonical map p-— b4 is an
\ A[ oepxmorphﬁm of (‘ ont _‘Eﬁ . Conversely, if Tﬁzs—bz;n onwmorpmsm of &
Gi " | f’ ‘E > onto some & and H A s ubf helne)‘m r'ﬂ’, then 435 2 convex uormal sub-
/ ) . R 1 group of & snch that the o :som.orpbxsm G x> G4 ?{m}d_s. .
- et G, be a family of partinlly erdered greaps with 4 rruging over
" some mdes set. 4. The cartesian preduct € = [I® @; of the G, 1: made inte
TN g pertially ordeced group by putting g =k bdetween two elemonts of € if
,_",./'t_ g = fy for the compm ents g1,k of ¢, A in each &,. The direct produet
// N o HGA is 8 partially order ubgrcm of €, and g0 is every subdirect preduct of
ftoy il;‘ C / the . If we define g < % in the cartesian produet ¢ to mean thst g; < By for
\ \/ ,/. each 21 then we csll ihe arising partialiv ordered group the m'ld cariesion
\ e product of the Gi. Mild subdivect products will mean subdirect p-oducts with
~ _ this definition of order.
T ‘w D> For the comcepts not menticmed here we refer to [7]
. (\ [l ! ‘ m %g\} \g‘
DR .
2 § 2. Characlerizations of Hieez grovps.
: P ,‘:ﬁﬂ =7 New we turn to cur main objectite, L e. to Riesz groups. _
[ :J‘ }V . ’ A partially ordered group G is called a Hiesz group if it has the folio- |

\f| L
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wing two properties:

(i) it is directed;

(i) it has the interpelation preperty
i=1,2;7=1,2) there exists a ¢ € & such that

>3

W all &, ,8,,8,5€¢G with
a = b s

g, = ¢ (i=13,2;7i=1,2.

fIA

Property (if) may be called the (2,2)-interpolation property, if in geveral

we mean by the (m, n)-interpolation property that given a,,..., o, 20d b, 0, b,
in & such that

e =D for f=l,,m; f=1..,n,

ther there exists a2 ¢€ & zatisflying

G2 b for i=1,..,m3i=1,..,m.
Since property (i) may be viewed as the (2,0)inferpolation propesty, it
follows at omes DY induction :

LeMya 2.3. 4 partially ordered group G iz & Riesz group if end enly
if # enjoys the (m, n)inferpolation properiy for all integers m,n = @.

Note that if, im addition to directedness, the {2, co}interpelation pro-
perty is also assumed (co means ap arbitrary cardinality), then this is
egquivaient to the hypothesis of being lattice-ordersd. It is clear that the
(co, colinterpolation property amonnts to cenditional completeness. Thus,
roughly speuking, Riesz groups sre im the same ratio to lattice-ordered
groups as these to complete lattice-ordered groups.

While lattice-ordered groups are necessarily Riesz groups, there are a
lot of examples for Riesz growps whick feil to be lattice-ordered. See § 3.
The main properties of Riesz groups are summarized in the following

theorsm.

TEROREM 2.2. For a directed growp &, the following conditions are
equivalent (%)
(1) G 42 a Riesz group;
(2) for all @y ,.u,om€ @, the 2t Ula, , ..., G.) 8 ldirected ;
(3) for all @, , ., 00 and b, , ... , 2. € G w8 kave
B

—~

U@ 50y @m) UBy sn, Ba) == T {0, B, ) e s @, By oon s G D)5

(*) Of comxse, even the dmals of (2)-(3) are equmivalent with (1). Poriions of tkis theo-
rem have been punblished in [18], [2], [1]; of. also [15].
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6§ L. Focss: Riese
(4) the intervals je, ] are mulliplicative :

o, a] - [e b} = [¢, ab];

.

(5) if ¢ € G saiisfies

L)
A

&= b, .. 0 2with. h=e

then there exist eclemenis ;€ G such that

G == &, s G where = =< By
1} and (2) are equivalent. Assume (1) and lot &, , B, € T {2y, e, @p)e
Then a; = & for ¢ = 1, ... , m, j = 1, 2 and by the (m, 2)-interpilation pro-

perty some ¢ ¢ & gailefies ¢, <5 ¢ =< §; for all 7 and j. Thos ¢€ I7(g,, ..., 2
ang T (g, , w ; 2,) is [-directed. That (2) implies (1) follows on msing the
reverse argument.

(1) amé (3) are eguivalent. First asenme (1), spd note that in any &

N

Ulagy o @m) Tiby o, ba) T{aybyy ey 6m Ba)

1
a

Thos it saffices to show thet every #€ U (2,8, , .., onb,) belongs to
U(@, yen s @) T (b, , ., bo). Cleariy, a:b; = 2, #2d so 270 o < b7 for all
{ and §. By the (m, n)interpolation property there ig 2 y € ¢ such thst
g7 a; < y < 37 for all i and j. Now 2y £ U(8,, ., 6m) 828 ¥ € L (by, o,y b,
and thus € U (g, , « , @) T {8y, vy Ba), indeed. Coasersply, suppose 3
snd let a; <h for i=1,2; j =1, 2. Then e€ T (a; 57, a;57", az by, 6287)
implies ¢ == ec* with some ¢€ 7 (g, ,4a,) 8nd ¢ ¢ U(b;ﬂ? by . This ¢ sa-
tiafies o; = ¢ = b; for 211 7 and .

{3) implies (4). 1% i esnough to wverify for & Biesz grovp & that if
e =< o= ab for some 2 € & where ¢ < 2, ¢ = b, then thers exist ¢lements
v€[e a], z2€e, B} such that & = yz. Mow any ocne of z~7, ¢ is less than
or equel to sny one of ®, 4, hemee some ¥ € G can Dbe imseried between
them. If we define 2 =yt 2, then e £ 2z = b and (4) foliows. -

(4) implies (5). Property (4) gives by imduction

'->,

—3

8, By vee B = [€, By} v [, Ba]

where & = e. If ¢ belongs to the leff member, then it belongs te the right
member. This is pnething else than (6.



b

groups

Finally, (5) implies (1). dssume (S)and e =%, , 6 =8,, 65 b,,a = by
Then ¢ = b, = % (a1 8,), and (5) implies the existence of a ¢ = ¢ such that
b zeand e Sby, oMb, = a7 b, . This ¢ les between ¢, a 2nd b, by.

This completes the proof

In commuiative groups we have a forther equivalent property :

THEOREM 2.3. 4 commutative directed group F is a Riesz group if and
only if it saligfies
(8) if for positing Gy , .oy By Bpy ey P i &
By was Gp == 8y o By,

H

then ithere exist positive elements c; in @ ({=1,..,m; j=1,..,n) suck that

|

A == C5) onn Cin (i =1,..,m
and
bj T2 615 enn O () = 1, sar g ’Fv).

If @ is & Riesz group and the positive elemenis a;, b; satlisfy
Gy oon Bop == By e b, ., then we have

e T/ J i

A
fIA

Xy

(5) guarantees that there ars elements ¢;; € & sueh that e < ¢;; = b for

. n y - o v - gt
every § and @; ==C)..C;n. NOW €y ==y cl_f gre certainly positive and satisfy

L] Y .
Cogenn Con == By o By @) == G s G
A simple induction on the number of the «; establishes (8). Conversely, if
a gdirected group @ satisfiez (6), then (5) follows st once.

Let us mention here:

ProrosiTion 2.4. The direct (or the cariesian) product of periially ordered
groups is & Ricsz group if and eanly if each factor ie a Riecez group. The mild
eartesian product of dense Riesz groups iz again ¢ Riesz group.

The proofs of the statements are straightforward and mey be lefi to
the reader.

It is known that every abelian group (%) can be embedded in & winimal
divisible group and divisible groups are ewsy to bapdle. We now show that
torsion free abelian Riesz groups can be embedded in divisible Riesz groups:

(%) For the nseded resulis om abelian groups we xefer o, g. 1

g
©
oy

=23
)
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-

- PROPOSITION 2.5, Lei G be a torsion free chelian Riesz grows and D
/ its divigible hull. The ovder of G can be extended in g unique way ‘o a miniweal
. isolated order in D, Then D will aguin be @ Ricaz group.
«é As nswpal, ¢ € P is defined to be positive if for some neturs’ integer
£ ®, 6" € G is positive. This makes [ into a partially ordered group whick is
y obviously again directed. If given a,, a,, b, ,€ D such that & =< b,
. (i==1,2; j=1,%), then cboosing & pesitive integer n such that o, € &,
L we find 8 c€ @ satisfring o] =< ¢ =< ¥ for 2all 4, j. The uniqne nth root of

B ¢ ijes between the /s a2nd B;'s.

In particnlar, we see that the order of a torsion fres zbelian Riesz
group can always be extended to a minimal isclated order uader which it
is again a Riesz group.

P

REMARE. If the definition of Riesz groups i3 formulated in a much
more general way, a2 fawmily of interwediale motions between Riesz greups
and lattice-orderad groups arises. Let w1 and 1 be infimite cardinal osumbers.
By the (M, n)-interpolation vroperty we unndersiand the foliowing property
% - of s pertially ordered gronp &: if givem two svbaels 4 apd B ol & sueh

A

' thet the ecardipelity of 4 iz less then m, that of B ig less than f. and
g=b forall a4 apd BER,
then there exists & ¢ £ ¢ satizsfying

b forall a€4 apd b€ B

9

=c

IIA

In this sepse, Riesz groups are cherscterized by the (¥, M, )-interpelation
preperty, and lattice-ordered grouvps of power < T by the (¥, ; W) interpo-
lation property. Plenty of our results czn ai once be uztendee mutatis
mutandis to the general case.

3[ : § 3. Exampies.

Since lattice-ordered groups are necessarily Riesz groups ard we ar
furnished with a lot of examples for lattice-ordered groups, in whatl foliows
we are going te exhibit onlr exampies for Riesz groups which fail to have

Y & lattice-oxder.

1. Let G be the ac:ﬁ tive group of complex numbers and let the posi-
} : _(x. ¥ real) for which either n =g =0

?

BHY e
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2. The same grovp &, but P now consisis of al]
either z =y =0 or 2> 0, ¥y = 0.

8
}..
’5‘

for which

3. The same group &, now let positivity be defined such that P consists
of 0 and of all = -4y with o > 0 (7 i

4. Let G be an arbitraxy demse fully ordered group and I an arbitrary
gronp with Bo order at all. If @ is a group whick containg [ as & normal
sabgroup such that /I’ @ (group-isemorphism), then B may be ordered
so that its positivily domain consists of the identity amnd of all the elements
which belong to strictly positive cosets {ordering as im @ (%).

Thus a Biesz group mar copiain elements of finite order, and need
not have isolated order.

5. Let & be the additive gronp of all pelyvomials {or rational functions)
with real coefficients, and define f = 0 if and only if f{x) = ¢ for sach
real number z in the elosed interval [0, 1. A o {zfics

8. The same group & Dut let f > 0 mean thet fix) > ¢ for every

z € fe, 1], Anli dalltco -

7. Let G comsist of the additive group of all real-valued fupctions
which are defined and differentiedbie in the imterval {@, 1}. For /€ @ setl
F=0if f@) = 0 for each = € {0, 1} g

8. The same group, but let f > 0 mean that 7 {x) > € everywhere
in [0, 1} Am"n,{i{ O&f& ‘cx

9, Harmonic functions in 2 region of the plane form an additive gromp
in which we put f = 8 if f(&) = 0 for every .

19. Let & be = group with » walustion o, i. e, w it a functicn defined
on & with real valnes suvch thad
1) w0 (ah) = w (8) + »w (B

(1) w(e) = O.

In addition we assume

for all 2, b€ G,

denge subest of the real

(11) the set of values w(s) is an infinile
numbers.

(*) Here & can be replaced b7 2 denss antilaitice.

2

. Z-
z /

Ty = oc 7}
- [
£y = %rt)
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Then putting « ¢ P if and only ifeitber a=c or w(a) >0 & is
made into 2 Riesz group (%).

If, for instance, G is the free grouwp with the free geverators 4,,..,a, ...
and if we define w as the veluation induesd by

% (6,) == (n=1,2,..)

then we get s Riesz group on the couptably generated free group. (The

same can be done im the abelian case.)

!

§ 4. Oribogonelily, carriers.

As asual in lattice-ordered groups, we call the <lements a, b of sny
1

which means nothing eise than L (a, b) = & (¢). Orthogonslity may be de-
noted a8 nsusl Ly the symbol a2 | 5.
v

This definition of orthogouality is equivaleni to the cpe intreduced by
Kurvyev [2]; he has defined orthogonality by the relation Fa—in 1o~ = I
Orthogonality in the gensral sense preserves several properties of ortheo-
gonality in lattice-ordered groups. 1ot us list scme of them bere.
(2) If oAb = 2 and if ¢ = . then
£{a, bo) = L (g, o).

We bave clearly
Eia, ) = L{g,{aad)c)= L ia, ac A bc) = L (g, ao, be) = L (4, bc).

BYIfeadb=c and anec = ¢, then A bo = ¢, This ie 2 simple on-

sequence of (a).
() If @&y,..,0, are pairwise orthogonal elements, them o, v..ve&,

existe and

By ¥ s ¥ Gy == G vr G s
By (b), &1 ... 44y 15 orthogonel 0 ¢, . Hence from the identity z(z Ay ty =
=xvy we infer @ .. 0,1 ¥ G = G; ... @53 Oy . A simple induction conchides
the proof.

(% Note that Exsmple 10 is a apeciel cese of Ezample 4.

e
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(@) Orthogonal elements commuie, This fellows f{rom (¢} in the special
cage B == 2.

(e) If @ Riesz group @ is the direci product of its convex normal gud-
groups 4 and B .G = A >< B, then the positive clements of A are ovithogonal
to the positive elemenis of B,

Let o€ A, b€ B be positive elements. Then €< Lia, &), If g€ &+ belongs
to I (a,b), then by comvexity g€ A and g€ B whence g=e. If geiifa,
and if ¢ were incomparadle with e, thep by the dual of (2) in Theorem 2.2,
shere would exist ap k€L ({e, d) such that ¢ <k and ¢ <A which has beern
shown to be impossible.

(f) The set X" of elements of G+ orthogonal to every element of a sub-
set X of Gt 18 a convexr subsemigroup, confaining e, of G+,

Evidertly, e€ A" and X" is convex. (b) implies that it is & semigroup,
in fact.

i1n {rying to generalize the notion of orthogonality to pon-pesitive ele-
ments, analoguously to the lattice-ordered cese, a serious difficulty arises.
This stems from ithe fact that in oor present case the sbaclute of am ele-
ment fails to exist in gemeral. Though it can be replaced by 2 cerfainm

o

anbset of & (see Fuoms [7], p. 77), which is adequate for certaim purposes,
it does not lead to a very mnatural cept of generalized orthogonality
Therefore we do mot discuss it herxs.

On using orthogonality, the notion of carrier (filef) con be introduosd
in the same way a8 in lattice-ordered groups {(cf. |81\

The posgitive elemenis «,d of & are gaid to belong to the same carrier
ifgaz=c¢ for some z€ & implies b Az = ¢ apd viceversa. ’“hz'a subdivides
G+ into pamwme msgmnt carmeﬁs tbe ope contam;ng a is deno & bv a.
" It follows at omce: T

(A) The carriers are conver gubsemigroups of G™.

In fact, for positive 4,8, abaz=1c¢ if and only if eaxz=¢ and
bazg=—e,

Let g¢* = b" mean that be == ¢ implies a Az = ¢, for each z € 4. Ther
this definition is independent of the representatives ¢, b of a*, d" aud makes
the set L of carriers of @ into a paru&b ordered set. The map a — 6" of
g+ onte € is obvicusly isotone.

(B) The union 6°¥ B of two carriers a, b always existy, and saiisfies

a" v B = (ab)’ {aca, bedn.

The inegualities " < (eb), »" =< (ab)® being obrious, let ¢ satisfy
"= e, b= ¢, and let c€¢®, Then cAz==¢ implies both aax=¢ and
baz=ec By (b) these imply b A ®==c whence (ed)* =< ¢", as we wisbed to
show.
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(O) If @ < b end if a€ ", then there is ¢ BEY such that & < b.
Taking some b, €0", we bave, in view of (B), 0" = = b va" = (b a),
thus B =0, a io an element of the desired iype.
(D) 61 is Qistributive im the semse that if @” A DY exisis, then se does
(@ v YA (b v e*) for each £ and

{a* ANy " = (a" v ey a (D v o).

Put & =a"ab"; then obvicusly d"ve* =g vcrand 2"ve
Assume thas «° exists with 2" < ¢"v ¢" and 2" < & v¢* which is not
Then by (B) there is alse one such that d*w e <2 Let dedt, ¢
let ez, afay, BEY saticly de <l <{ae, < be, which can be
beeanse of (0). Then & < {wc™Y), for equality wonld imply {de) =

(e v ¢ = ", against bypothesis. But we™? € £ (a, b) implies (ze™i)* = a°
(we™1)* < b, a coniradiction to the cheoice of .

%:gmm

TagoREM 4.1. [f @ pariially ordered group @G has a finite number of
carriers, then the portially ordered set (L of iis carriers is a Booleon algebra.

By (B), €-i8 a upicn semi-Jattice, therefore the existence of a minimal
element ¢ in € and the assumed fniteness of 4 imply that € is a lattice.
By (D) it is distributive. If &) ..., a) (g€ €%) are the atoms of @, and f
b € satisfles 4} ,.., 0, =8 bub al .., 8] == b then ¢ = Gpag ¥ o @)
will be the complement of " in (. For, " a " = (B"aaf ) v..v (@ ral) =\
Furthermore % == bec (3 €%, c£¢") satisfies a] = 0" v = (e)c)“ == 2" for every
i whence u Az == ¢ implies a; Az =-¢ for sl i; thus x* coatains no abends,

= ¢ and u" ig the maximal element of .

"

§ 3. e-ideals.

The importance of the role played by [l-idesls im latiice-ordered groups,
is wellknown. In arbitrary partially ordered groups, im partienlar in Riesz
groups, the oidesls seem to have corresponding though not se imporiant a
role. We are going to mention the main properties of o-ideals.

Recall thet s subset 4 of o partially ordered group & is called an
o-ideal if

(i) 4 is 2 pormal subgroup of &;
(i) A4 is a convex subset of @;
(iii) 4 is a dirscted set.

It is evident that an e-ideal of a lattice-ordered group is nothing else

then an I-ideal. Note that

CALOS
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(A) o-ideals contain unions and intersections of their elements whenever
they exist in G.

(B) Neither the npion mnor the jptersection of two o-ideals need be
an o-ideal

(C) The union of en ascending chain of c¢-idecls s again an o-idecl.
Therefore, if 4 is an oideal of G apd x¢ & dJoes not belong to 4, then
there exists zn e-ideal B of & maximal with t to the properties of
containing 4 end exelading x.

(D) o ideals gencrated by scts of positive elements do have ¢ meening.
The conves hull of the mormal subsemigroup with ¢ generated by a given
get of positive elements i8 obviously a conves normal subsemigroup & of P
which must be contained in all o-ideuls generated by the given set. The rest
follows from

'}

espec

N

ProPosiTION B.1. There is a one-fo-one correapondence between the o-ideals

-~ g - T — AT

A of a partially ordered group G and all comnvexr normal subscmigroups 8 of
G+ contatning ¢. The correspondences are given du (%)

o

p: A—>GT A ond yw: §— {8

whick are tnverse to each oiher.

It is clear that if 4 is sp oidesl, then G N 4 is 2 convex normal
subsemigroup with €. Also, {G* N 4] == 4, because 4 iz directed ; thuna(’)
oy is the identity. NWow if § is as formulated, then [§]= 4 is plainly a
pormal snbgroup which is directed. To see comvexity, let =£ G satiefy
a1 < x < ed? (a, b,0, € 8). Then on right multiplication by bd we get
ad < xbd < ¢ bd where ad€ 8 and ¢(d 7 2d)£ 8. 8o — in view of the
convexity of § — we have y =xbd ¢ 8. Thus & = y{bdy 7 € (8}. Finaliz,
G+n|8}= 8, for if a,b€ S satisfy ab™? € G+, then e= @b = a implies
ab1 € 8. Bo we 18 again the ideptity map.

Note that the oidesl corresponding $o &+ coincides with @ if and only
if @ is directed. Also, the o-ideal generated by a family of ¢-ideals does have
2 MLADIBE.

(E) The canonical map of a pertially ordered group G onlo its faclor
group G4 with respect to an o-ideal A of G preserves unions and inlersections.
If, for z, ¥€ @, zAy —z exists in &, them for the corresponding cosels
mod 4 one has evidently z< = ané z < v. If the coset u satisfies n < z

2
A
g3 |

(5) {8] denotes the subgroup gemerated br the scbset 8.
(*) In o prodnct of wappings the ieft factor is followed by the right one.
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A
w

and u,

and % < y, then for some cH €2, y. By the directedness
of cosets, there i3 a u€u such that v uy, v S uy. Therefore » = » and
n=Z Yy U g Ay ==z 224 thus <A Consequently, 2 = = A .

It sheonld be noted that property (A) or {E) is mot characterigtic fez
o-ideals. In fact, there existe a larger class of convex subgroups which shares
this preperty. Calling 2 subgroup ( of G an w-ideal if it is the intersection
of a family of ¢-ideals 4. of &, it ia obvious that € gtill contains unions

=z
=

‘and intersections of ite eiements if they exist. Furtbermors, :E) slso prevails,

since G/C is caponically isomorpbic to a_snbdireet product of the G/4.,
and since the natural homomeorphisms ffz»—\ C’A preserve unieps and intr-
sections, so daes the man & — ¢/C ther induce. The a-idezls hazve tie
advantage that the wideal generated by an arbitrary sabset o
well-defined meaning.

Next let & be an arbitrary partiailly eordered group. and consider the
set @ of 2il e¢-ideals of &, partially ordered by inclusion. Tt is ratber sir-
prising thst @ is a lattice (but it is only exceptionzlly a sublattice of all
normsal enbgroups of &, ¢f. Theorem 5.6):

4 has 2

ProposiTion 5.2, If the sct of ol o-ideals of a pariially ordered group
G is ordered by mcluswn, then it is a complete latiice,

By what bas been poted st the end of (D) it follows that the set § of
o-ideals is a complete semilattice under nmien. By a standard resalt in lat-
tice theory, 0 is them a compleie lattice provided it has a minimum element
whichk is nov ibe case.

Up to now e have copsidered e¢-ideals in arbitrary partialiy ordcred
groups; in the vest of this section we shail be toncemed with theso in
Riesz groups.

ProrosirioN 5.3. The factor group G/A of a Riesz group & with res-
pect to an o-ideal A iz again a Hicgz group. _

Let the cosets a,, &, , b, 2—152 mod 4 satisfy &= bili=1,2,0=1,
Then given a; € a; arbitrarily, there esist elements by € b; satisfring a 2Z bi
(i==1,2; j=1,2) By the directedness of cosets, there are b; €5, (j = %, 2)
such that by, b, =< b,. We applr the iunterpolatiom property te the »Hairs
@, , @, 2a0d b, b, to conclude the existence of 2 ¢ € & such thata. T e = ¥

for all 4, j. Then the zoset ¢ coutaining ¢ satisfies e = ¢ £ b for all 4.

PROPOSITION 5.4. The intersection of a finite number of o-ideals iz alsc one.
We prove that 4 N B is an o-ideal if 50 are 4 and B. We need only
show that 4N 3 is direc Led. Let 2, y€ AnB. For some a€ 4 snd b€ R we
have @,y = a apd x, ¥ = b. Let ¢ lie between the pairs «, ¥ end a, » By
eonvexity, ¢ € A and ¢ ¢ B, and se ¢ is an upper bovnd for z, ¥ in 4 0 B

S E
2
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For infinite intersectionps the last propesition fails im general. For ins-
tance, let Hn(n =1, 2,...) be the fully ordered group of ratiopals and He
ahe same group with the triviel order. Let & be the lexicographic product

the groups H e s Hin s vy Heo (im this order). 1t is eaay to check that
G is & Riesz gronp in which the lezicographic product 4, of H, , .., Heo i8
an oideal for n==1, 2,.... But the intersecticn of all these 4, is equal to
H.,, which is not an o-ideal.

PROPOSITION 5.5. The product of a finite number of o-ideals is again an
o-ideal. The subgroup generated by an arbitrary sel of ¢ ideals ig likewise am
o-ideal.

e show that 4B is av oideal if s0 are 4 and B. Since the elements
of AB are of the form ab{a € 4,5 ¢ B) and A. B are directed, it is evident
that AR is directed. To see the copvexityr of AB, assume x ¢ & safisfes
e< z < ab for some 6 4, b B; in vievw f\fd rectedness @ and b may be
agsumed o be positive. Theorem 2.2, {a; ensures the existence of a/, 5 ¢ &
gatisfying e S ¢/ =@, e S ¥ =0 and © = a'l’. Here cextainly "€ 4, 8¢ B,
and consequently, = € 45. Since the subgroup generated by s family of
o-ideals ia the set union of the subgroups genersted by frite subdfbmilies,
the second statement is an immediate consequence of the first one.

The next result is s generalization of the corresponding siatement on

l-ideals in lattice-ordered groups.

THSOREM 5.6. The o-ideals of a Riesr group G form a distributive sub-
lattice in the lattice of all normal subgroups of 4.
By virtue of Propositions 5.4.5.5, we need only verify the distributivity

A

AN{RB, Cl={4103 A0}

for o-ideals 4, B, € of G. It suffices to establish the inciusion C. Let e=be
(b€ B, cc C) belong to the lefi member; without loss of generality ¢ < a
may be sssumed. By directedness, B and € coniain positive clements &, ¢,
such that 2 £ 3,, ¢ = o, . Applying (3) of Thecrem 2.2 t0 ¢ = a5 bie, we
infer that @ = byc, for some &, ,¢, with ¢ = b = b, ¢ = ¢, = ¢,. Sinece
beB, e, € Coand b, S @, ¢, = 2, it mfl'ﬂ'sﬁhamb EAmB ¢, £4 N T and
thus a2 £(4 N B) (4 0 €), as desired.
It is to be ohserved that even the infinite distribative law

AN {.., Ba,...gz f.a., 4&(";8»,,”}

holds true when B, runs over an arbitrary set of o-ideals of s Riesz group.

e
PUTArx
This is an imwediate consequence of the fm e disiributive law and the fact
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that a subgroup generated by infinitely many subsets is the set unjon of
gubgroups generated by a fSnite number of subsets,
In Riesz groups we aico have:

__FrorositioN 8.7. If G ir o FKiesz gromp and 4 i3 an o-idegl of &, and
if @, v, z are cosets of A such that

A

x ¥ == =z,
o

A

then to every ¢ € x and 0 cvery z = z salisfying © < z there ewisis o v € %
such thai

r 2 v E e

B

=

Under the given bypotheses, ther
and g, =< 2. The coset ¢ being direct
s = ¥,. By the interpolation properiy, some y € G lies between x, y, and
¥y, % Bub y, = ¥y =< 4 Implies y €y, 50 ¥ is 2 desired element.

exist y,, %, £y such that 2 < g, ,
some ¥, £ ¥ satiefies ¥, < ¥, and

— 3

7=
(@
a8
e

The following resnlt may be of some interest.

PROPOSITION B.8. If G is e« Ricsz group and if A,, .., 4, are o-ideais
of G such that G as an absiract group is the direet product of the 4., then G
as a particlly ordered group iz also the direct produci of the partially ordered
groups A;.

Wa need to prove that @, ... 3, = 2 (&€ 4,) imoplies a: = e for each i
There exists to each ¢; positive D€ 4; such thal & ;, apd we replace
the a;(j==1) by these b, to get b, .. B4 biy...ha=e. “Fe also wrike
a; = b;¢; ' with positive b, c. in 4;. Bince ¢ commutes with b; (5 3 §), we
bhave

51 are b;_..; 3y b,;,_'( e Op = Ci

Here the 4;(j == i) must be ortbogensl to ¢;, in view of § 4 (e} On accovn
of § 4 {g) we ipfer

t

L {cq} = L (B big By Zri,H wae B NES (b{, €3)

which means & = o, that ig, ax = &.

§ 6. Extenzions of commnaistive Riessz groups.

The Schreier extension preblem for partinlly order2d groups bas been
copsidere¢ by the svthor {§]. The latlice.ordered case bus heen investigatel
by B. TELLER {14]; bere we mneed the extensions for comiputalive Riesz
groups, discussed recently by TELLER [15]. For complefeness’ sake we

prove here his main resplt (Theorem 6.1)

Eai

oot A
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Let & and I be partially ordered groups and & an extension of [ by
¢. This means that & can be regarded as the set of pairs (4, ¢) with a¢ G,
z € I” such that
(a, &) == (b. B) is equmivalent to & =5, o =f,
and A
(@, a) - (&, F) = (ah, aff{a, b)).
Here f denotes a factor sei, i.e. 2 function from the product set & >< &
into I satisfying
(i) fl@,e)==¢ for ail a€ & (c denotes the neuniral element of I');
(i) fla, b)=f{},a) for all a,bc&; f{a};,)});f
(i) f (@, B) f(ab, ¢} == Fla, be) f (B, c) for all a4, b,¢6 G, '

?

The order reiation in G can be given in terms of the sets:

P, =—=the set of all € I sueh that (g, ) = (g, 2).

These P, satisfy:
{iv) P is mot woid if and
(¥) Pe= I3
(Vi) Pspbf{a'ab}gvpab-

The equivalence of extensions mey be formulated in the obvious way;
we shall not need this nofiom.

We are interested in Riesz groups. For themw we have [15]: )

TEEOREM 6.1. Let G end I be commutatire Rigsz groups, and G a com-
muiative extension of I by @, corresponding to fla, by, Po. Then (B is again
a Riesz group if and only if

(8) P, ig ldirected for each at G
(b) PoPofla,b) = P, for all @, b G+,

First assume that & is a Riesz group. Let o, $€ P, and choose some
re I with y = o, y = f- Then cach of {¢,0), {4, y) iz = each 0of (g, @), (&, £);
consequently, some (d, §) can be inserted between them. Evidently, 4 = g, and
so 6€ P, sabisfies 05 a, 8 = 5. Hence (8} i & necessary condition. To
every ¥ € Pa we can certainly fnd elemenis ¢, f such that a ¢ P, €5
and y < af f{a, b), beeanse the sets P are mpper classes. Then

only If a = e

(¢; 8) = (ab, ») = (@, =) (b, 8)

implies the exiptence of «" € £, and B’ € P, guch that y = a” § f(a, b). Thus
Py S P Py f (a, B), and by (vi), we get (D).

Conversely, let @ and I” be Riesz groups, and let f and F satisfly (a)
and (b). In order to prove that (& is again = Riesz group. let

(1 (e =l = (e G p)

2. Anneli delle Sevolz Norm. Sup. - Pics.
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with e € P,, f€ P,. We show that {e, y) = {a/, ") . (b, ) for some

&' € Ppr, f 8 Py with (67, &) = (e, ), (3", 8) < (B, B).

== /

By the Riesz property of @, ¢= &, 8, for some ¢, ,0,€¢ with e < o, < a,

e
e =0, = b. We also have (g, 8) = (g,, %) = (g, &) for some a, € P, , smce

asF, =1 ”JP Flaag?, a) = ng‘lf(a;17 Fla, a7y F, a9 ?

- —1 = =) £0qg—1 —Iy— 2
and 80 == (ae; M) e, with xe € Poor J (as?, @) fa,a7i)"2 ané G € B,

"

Similarly, (e 2) = (by, A) = (&, B) for some f,. Since y€F, = P,; =
= Py, Py, Flag - by} and 7 Fo, I‘g,,‘ are T-directed, a,, fly max be assumed 1o be
chosen so as to satisfy -:40 By Fleg,bs) = y. Then 4dividing by (Ay 5 xg) =04
{bo, By), we bave reduced (1) to the case c=e.

In the case c==¢ we have 8 f{a, by € Py = P, Py (¢, b) 2nd so
e fla, 0y =, B, fia, ¥ for some e P, 8, eF. I atP., P
are chosen 8¢ 88 %o sabisly @y a6, S, , 5 = 8., = F,. then we have
&y By = o, B, = af. Thus the Riesz property of I implies that «, £, = &, fiy
Sa,f,=0 = andsoa,€P B P, . On potting & = as !
we havs (¢ o) (6 1) = (6 7) where (e, &) Z (& &) = (6, 0) (6 6 =

with o, = «,
B =867,
= {e, p") = (b, ). This complete

A

@
cr
tr
@
N
33
2
>
»h

REMARES. 1. If 7" is a fully ovrdered group, thep comdition {(a) maj be
omitted.

2. if the group I is assumed only te have the inierpolation property
(and not to be directed), then & will certainly be s Riesz group provided
it is directed.

for

3. The Riesz group & has the property that if (a4, o) = (b;, 6 for
ie=ly e, M= 4o, ® a0d if ¢ £ G satisfles & = ¢ = By for 21l 4, §, then
to this ¢ we can find 2 » €1 satisfring

(6o, 00 = (€. ) = (3;, 6 for ail i}

=8

¥t suffices to sghow that we cap a y, € I7 such that (a:, e < (¢, py), for
then setting (Dua; . Buta) = (€ ¥p) .Dmi doipg the same with the e
property of B settles the guestion, Smm

£ @y, a7 £ (e, a7 1)
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not void in view of the upper class property of the I’s, any v, in the
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intersection will do.

4. By condition (b), it iz suffcient o know the sets P, for generators
s of @*. If G is a free semigroup, snd a: € G* are free generators, then
gprescnb;ng P, arbitrarily on the free gemerators so that they are upper
clusses and s&fﬂ!fv (a), T. for every ¢€ G* can uniguely be determined
on the basis of (b). They will obvicusly satisfy (b) and — as easily seen —

alse (a)

The copcept of aptilatlices seems to be of fundamental importunce in
the theory of Riesz groups. They play essentially the same role as the fully
ordered groups do in the theory of lattice ordered grouns. They are, roaghir
speaking, Riesz groups without proper unioa or intersection of elements.

A Riesz group H is said to be an anfilattice if it satisfes the following
condition :

(") if @4 % exists in H, then either sAb =g or ¢ Al =D

This condition is equivaient, to saying that the elements of an anfilattice
are meet-irredueible. Considering that av b =={(a"t A b3y, (") imples thai
if avb exists in H, then either avb=12 or avb=210.

Every fullv ordered group js cleariy an antilettice. On the other-band,
if an antilattice is latiice-ordered, then it {5 a fully ordered group. Ezamples
for antilattices are the groups in Examples 1, 5, ¢, 8 ef & 3.

LEMMA 7.1, For a Riesr group &, the following conditions are equivelent:
(a) @ iz an antilstiice ;
(b)if aab=c¢ for ¢, bEQ, then a==¢ or b= ¢;
{€) P* is ldirected.
The proof ig straightforw=ard =n d w2y be left to the resder.
Mote that if sn sptilattice H has stom a (O> ¢), then every positive
element ™ ¢ must be = 4.
In general, the existepce of the intersection aabAc does not imply
that of e ab. Therefore it is desirable to kmow whether or not o fnite
number of elements may hav intergection in antilattices.

ProrosiTion 7.2. If in er antilcitice o, A .. Aa, =D exists, then a=Db
for some i,

Thiz being trne for n =1, assuwe n = 2. If g A ... Afg,_; exists. then
on account of (b), either g A..A2.3=F or ,=05, and the assertion
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follows by induction on n. 1f a, A ... A G,_; does not exist, then Lida;,.., 2, 1)
being u-directed, there exists a ¢¢ Lie;, «,n,3) such thal ¢ > 0, We claim
tAa,=b. Indeed, if ¥ = ¢ and & = a., then b = a; for every ¢ whenee
b =< b Bul thep e¢aa,=» implies 4, =5, a8 we wished 1o show.

We are going to introduce a topology in dense Riesz groups, the sa-called
open-interval topology. Ag 2 subbase of open sets in & we take the subsets

G, U%ta), L*(s) for each af &
? iy

Then this is a HAUsDORFF Sopology if and only if there exists no e€ ¢
{¢ &= ¢) such that P%¢c = P (i. &« no psende-identities exist in the sense «f
§ 8;, aud in that case & is a topoiogical group in the open-intervel tope-
logy (8).

PROPOSITVION 7.3. A dense Riesz group without pseudo-identities 43 an
antilatiice if and only i it i5 not discrele in ile open-inierval topology.

If the Riesz group A is mot an antilattice apnd if eab =¢ with
@ == ¢ == b, then the open intervals L7 {a), L*(®), U (a— "), U™ (") have ile
intersection e, and so A is discrete in the open-interval topology. (The same
conclusion holds when & is an anfilattice, but is not dense, for then there
is an atom in H.) Conversely, let B be a dense antilattice, witheut pseud»-
idlentities. it is te be shown that fur a., b€ H, the inlersection

U, g o) BT (B oy B2)

is either void or contsins a clesed interval [e¢, @), ¢ <(d. Let & belong ¢
the intersection. Since U7 (a4, ..., @) is ldirected apd contains ne minimal
element (by Proposition 7.2), there is a ¢€ U {a,, ..., a,) with ¢ a. &i
milarly we can find a2 d€ L% (4, , .., &) with 4 > x. Then [¢, d] is ap interva
in the intersection. Q. e. d.

It sbomld be observed that the proof shows that the open intervels
{¢, @) form a dase for the open interval topology in the case covered by tae
last result.

Let H be a commutative torsien-free antilattice whose order is isolated.
Br Proposition 2.5, H can be cmbedded in a2 divisible commutative Ricsz
group £} which has isolated order again. Here we peint ount that 2 will
again be ap antilattice, sinee the orthogenpality of @ and b wounid imply the
orthogonality of a® apad & (€ H). Cleerliy. 1) i1s = dense antilatiice.

The pext resultl 18 worthwhile wen  oning.

(8 CL [7), p. 23. For the resalts or lepological groups see [11]
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prorosiTioy 7.4, Let B be a commulative Ricsz group thet is an
extension of a dense antilattice I” by a densze antilattice G, and lot G be
described in terms of f(a,b) and P, as in § 6. G is again an antilaiticc ewactly
if the sets Fala™>e) are open in the open-interval topology of I

Sinee ne intersections exist im I” 2zd in @, two elements of 3 can be
orthogenal only if they are of the form (4, &} with ¢ > ¢ =nd (¢, f). But
(e, a) A (€, ) = (¢, 2) is equivalent fo

& P, 0 P, = P,

’

!

which can be written im the form
Paﬂ?’f?c:::cc?c with y = c:ﬂ.._?\ R

This amounts to saying that FP. Ny P, bas sz minimal element o, since —
as readily seem from the interpeolatiom property — Fo Oy P, is again I-di-
rected. We see that B is ap antilattice exactly if 2, 1y P, has 5o minimsl
elewent unless € P, If Po iy P, bes no minimal element, then for each
€PNy F., eome e PNy P, existe with a¢ UM {HC F,, and P, is cpen.
Oonversely, if ¥ i8 open and af PNy P, then in sase y{ Ps we have
e P, =P NT"( thus « lies in the opem set Pa 0 U®{y) 2nd hence
63 T L LV /
i+ capmot be minimal there.
bon
oA
Finally, let us nofe the simple observation :
? k

PRrOPOSITION 7.5. If an antilattice is comnected im the opea-interval to- ||
pology, then it has no o-ideals except the irivial ones. :

If the antilattice 4 aatisfies the hypothesis, then every neighborhood

4 2 of

of ¢ generates 4 as a group. If given a uw > ¢ in 4, then tbe open interval
(u—l, u) generates 4, i. e. to each a€ 4 there exists an integer n such that
u—™ < g < ¥*. Henee the convex subgroup generated by « coincides with 4.

§ 8. Psende-identities and pseude-positive eleoments.

Iet uws turm onr attention o slements whick sre exceptional i
groups in the sense that such elements do not exist im the lattice-
case.

Let & be 2 Riesz growp. An element ¢ € &, distinct from ¢, i called a
paeudo identity if

0% = P*

and is seid to be peewdo-positive if ¢ € P and

P O P




o

e
<373 SRR

x

N a1,

22 Fucas: Riese
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where as always P* denotes the set of all elements greefer than ¢ in 6.
Since ¢P* never contains ¢, every pseundo identity is pssudo-positive.

Lemwa 8.4. If in G both o and ¢ are pseudo-positive, then ¢ is & psoudo-
identity.
Hypothesis implies the imclusicns
cP*C P® gng ¢l P* © PR

The second one meaps P*C ¢P® whence ¢P® = I

A lattice-ordered group ¢ contzins Do pseundo-positive elements. Fow, if
¢ € & were such, then ¢ v ¢ wonld satisfr: ¢ <& implies eve < o Tience ¢
would be meet irreducible, and so G fully ordered. That im iully orderad
groups po pseundo-positive elements mway occur is guite obvious.

In Example 3 of § 8, the compiex numbers iy &= 0 are psendo-jdentitics.
in Example 1 the numbers # > 0 and 4y with x> 0 are pseudo-positive,
and so are the functions f in Examples 6, 8 which are pogitive everywhere
except for one place.

LEvwMa 8.2. In o Kiesz group & the pzeudo-identifics form, together with
¢, & convexr mormal subgrowp O, XIf C=ge, then the facior group G/C is a
dense antilatiice without pseudo-identities.

If € denotes the sel consgisting of ¢ apd the psendo-identities of @,

then ¢, 4 € C implies (¢d) P® = ¢P" = P? ie cd€C Clearly, ¢~ € € and

27t ex € ¢ for eack #£ &. Thus € is 3 npormal subgrowmp which is trivially
ordered, and so_convex. Since a < & implies ¢c <[ b and o < e for ¢£ G,
we see that if a<C b for cosets a, b mod C, then for all a€a, 6€0 one has

& < b Hence the Riesz property of G/C is immediate.

Now if e<(a apd i{ ¢& €, ¢ == ¢. then there exists some & between
the pairs e, ¢ uad 4, ac, and s¢ ¢ <z < & shows that G is demse whence
G/C is dense too. if for e, b€ G|C the element a nb exists and differs frow
2, b, then for ata, bebh, otgomb and ¢ F= c€ € we have some @ € G between
@, de and a,b. Wow 4 <% < @ snd = < b which is impossible. Hence & zud
G/C are dense antilattices. Since each element in a cozet med ¢ which
2 psendo-identity inp G/C is a pseudo-identity in &, the proof is completed.

By making use of this lemma, *e can describe the Riesz groups «with
pseudo-identities.

TEEOREM 8.3. If the Riesr group R contains a pseudo-ideniity, then it is
a dense antilattice. ¢ coniaing g irivially erdered comicx mormal subgroup C
such that the factor group G/C 45 a derse aniilatiics withoul psew’e 4dentities,
and g€ G is positive iff and only if either g = ¢ or the coset g of g mod  is
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than ¢ in G[C. Conversely, ecvery growp G which
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g,,mggr grises in {his way

from G end G/C

The statement concercing the positivily of ¢ needs ne verification. As-
eume that & iz a partially ordered grouvp that arises im the described way.
Then striet inequalities between cosets mod € are equivalent fo strict ine-
gualities between arbitrary representatives of the cosefs whence everything

i @ dense antilattice.

is clear.

Sipce € c2p be an arbifrary group, it fellows that a Riesz group, wo-
reover an antilattice need noi be forsion-free.

we shall make use of the following characterization of psevde-identities.

4. Let G be @ partialiy ordeved group with isolated order.
together with D, also

PROPOSITION 8
c€ G, ¢ & ¢ i5 @ pseudoddentify of G if and only if
{D, ¢} is a trivially ordered subgroup of 4.

Since pseudeo-identities ¢ have the properts thal it is allowed %o muji-
tiply by them one member of strict imequalities, it is clear that if D is
trivially ordered, them se is [P, ¢]. Converseir, let ¢ == ¢ havs the indicated
property, and Jet p > e¢. Then 4 ==cp connot be incomparsble with e, for
otherwise D = {4} wonld be a trivially ordered subgrenp of &, but (D,
would not share this property, since p€ (D, ¢]. Hence either cp<le or op >¢
The first ease is8 by ¢ < op < e exciunded, thus ¢p > ¢ for all p € P*. We
copelnde that ¢ is pseudo positive. Similarly ¢ is pseudo positive, and
Lernma 8.1 implies that ¢ ia a pseundo.identity. :

Concerning psendo-positive elements we do pot have much to say. The
preduet of two psendo-positive elements may be positive; but trivially, LhE
set of all pesitive and psendo-positive clemenis is a subsemigrouy Q f G
which is clearix mormal and convex. if @ does mot comiain Pﬁemeuts # ¢
along with their inverses, then @ defi 2 partial order of & in which G may
agaip possess pseudo-positive eiemezma. By mezns of Exampie 6 in §3 it
mar be shown that @ need not define 2 Riesz order on & ever if the order
of & we started with bas been ome.

Finally, let us mention » method of consirweling peeudo-positive ele-
ments. Let & be an arbitrary partially ordered grmm and & s non-trivial
pormal convex subgrenp of G. M P is the pesitivits domain of &, then
delete from P btf

4%

the e¢lements of I with the exception of e. It is straigbifor-
ward to check that with this smaller positivity domain 7, & will in fact
be a partially ordered group im which the elements of F net in P/ are
psevdo-positive. It is also easy to see that if & i3 a Hiesz group, ¥ un

is a dense antilattice, them P will make & into

o-ideal of @ such that G/¥
2 Riesz group again.
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§ 2. Tho siruciure of commaiative aniilaiiices.

in the special case of commutiative antilatiices it i possibie o give
the structure. whenever the order is isolated. Ip

more infermation about
and a remark im § 7, we ghall confine ourselves 1o

view of Proposition 2.5
divisible aptilattices.

Let H be a divisible
H is torsicn-{ree. Ameng the snbgroops of H which are trivially order-d
there exist maximal ones; let € denote one of these. Then € is conves im

commntative Riesz growp with isolated order; thus

H. Now H/C does not contain any trivially ordered subgroup = ¢, for the
elements of H Ubelonging te these ecosets would form a trivially ordersd
gubgroup of H which properly comirins €. The erder of H/C is agrin
isolated, for if the coset ¢ mod € satisfies }E”g?. for some positive integer
n, then for a representatlive a €a we bave a" = ¢ for some ¢£ (. Now O

being obviounsly divisible, ¢} = ¢ for some ¢ € C. Hence ¢” = 7, and tlus

a = ¢,, because & has isplated order. Therefore @ = e and the order of £7/C
js in fact isolated. But then F/C must be fully ordered, since if a€ ¥/C
were incomparable with ¢ then the powers of a wonld form a trivially ordered
subgroup of H/C. We conclude that H is an extension of a trivially ordered
greop ¢ by a fully ordersd grounp H/C.

Since. because of divisibilily, H as ap absiract group is isomorphi: te
the direct prodmct of € and H/C, the representatives of the cosets car be
chosen so that the factor sel f{s, &) coliapses %o the idemntitr. By malirpg
use of Theorem 8.1 and Remark 2 in § 8, ™e see that if in the direct pro-
duct of € and F/C the sets IS € for positive a € H/C are subject to con-

ditions of Theorem €. and care is taken that a directed greup wili arise,

then the arising group X = C>< H/C will be a2 Riesz group, moreover an
€ is trivially

aptilattice, if orthogonal elements == ¢ do noi exist. Since
ordered and H/C need not de
sabgroup, Theorem 6.1 ia not
are led to:

THEOREM 9.1, L
order. Then H as an abstraci group ig isomorpiic to & direct produci:

H o G> I

where & 18 fully ordered amd I is triviclly ordered. If I is considered as an
G with fector zet f{a,b)==2¢ for all a 1€ G, then the

extension of I by @
partially ordeved group H® 2. G >< I where P, salisfy

(i) Pq i3 not void if ond only f e € G,
() P,=Ft =g

representable withim A by a fally ordered
applitcable to itbe direct produet. Hencs we

et H be o divisible commutative Riesz group wilh isc lated

R

AN
o iy

Sl arhas




ible to give
isclated. In
onrselves to

order; thus
ally ordered
18 COBFEX im
#+ e, for the
ally ordered
€ iz again
sitive integer
€. Now ¢
», and thus
arder of HfC
e if a€ H/C
ially ordered
.ally ordered

somerphic to
isets can be
By making
e direct pro-
thject Lo con-
p will arise,
MBOTROFET am
* is trivially
il ordered
t. Hence we

with izolaied
oduct ¢

‘idered as an
G, then the
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has the property that the camenical map of K into H® is an o-monemorphism.
Fvery group H ? shick arises from a Giwvisible fully ordered group G and
from a trivially ordered group I im ilkis way iz & Ricsz group.

The e¢ase when H is osimple iz worthwhile wmentioning. Then the
o-ideal generated by a positive element a == ¢ coincides with K. This means
that ‘0 given a4, b > e in H, we can find s positive integer = such that
a* > b. Hence H/C is archimeGezn, 2nd 80 it is o-isomorphkic to a subgroup
of the real nuwmbers.

4

COROLLARY £.2. If the group M of the preceding theorem {8 p-simple,
then G i3 o-isomorphic to & divisible subgroup of the real numbers. Conversely,
if @ is such a group, them HT iz o-simple.

in Example 1 of § 3 we maj take € to consists of 81l {a,b) with & = ¢,
apd in BEsample 6 © can be chosen 28 the set of 21} polynomials vamishing
ot & fixed & in [0,1].

There is amother approach of getting information about commmitative
sntilattices. This is » representation by wesna of fwlly ordered gromps which
wili pext be considered. MNeow the absence of pseudo identities must be assu-
med which is, by virtue of Theorem 8.3. not too restrictive 2 hypothesis.

Let H be a divisibie commutative entilattice with isolsted eorder having
no psende-identities. We let €, rum over all subgromps of H which are
maximal with respect to the property of excinding some positive element = ¢
of H. Ve claim that the intersection of all these C, ig just e. By way of
contradiction, suppose %hat seme z == ¢ belongs to each €,. This x posses-
ses the property that if the subgroup 4 is trivially ordered, then 8¢ is
{4, z]. Thus & would be a peeude-identity of H (cf. Proposition 8.4). Therefore
N 0, == ¢, indeed, and comsequently, & is isomorphic te a subdirect product
of the partially ordered groups H/C,. We bave shown aboeve that H/C, are
folly ordered, so an o-womomorphism of E inte a subdirect product of fully
ordered groups H/C, srises.

This representaiion hos the additionsl property thet if a < bin H, then
we have @, < b, for the components 5, of ¢ and &, of 0 in each H/C,. This
followa from the faet that ba—! mever beiongs to a ¢,. Thus we arvive at
the following result:

THEOREM 9.3. Let H be a divizible commutaiive antilattice whese ord
iz isolated and which contains no pseudo-identitica. Then H is o-isomorphic
to & mild subdirect product of fully ordered groups.

It is t0 be shown thet the canonicsl map @ of HF ints the mild cariesian
product of the H/C, carries only positive elements into positive clements

er
ie



R -

26 L. Fuces: Ricsr

e If @(B)>>e for some A€ H, then no €, may inciude A Thus & is ot
incomparable with e, and sinee & < ¢ ig absurd, it follows that k > ¢, indeed.

Note that s mild cartesian product of divisible fuily ordered groups
is necessarily an sptilattice. Alse, in Theorem 2.3 «aniilattice » ctsr be
replaced by « Riesz growp », bdut then the o-isoweorphbism does not preserve
meets and unions.

In case the additiomal assumption is made that X is o simple, we zet
from Corollary 9.2 and Theorem 2.3:

CorOLLARY 2.4. Let H be as in Theorem 9.3 and assume H is e-simple.
Then H is o-isomorphic io a subgrovp of real-valued funciions on some set 5
where a funclion f is > ¢ if and only if F(&) > O for il F€ .5,

§ 19, Hepregentation of commutative Riesz groups.

M
CD

We wish to get a subdirect product representation of commutative
groups such that it preserves not only group operations and order rela twns.
but upions and infersectioms =25 well whenever these happen Ho exist. Sinee
the clase of Riesz groups is not egustiopally definable, there is notiimg
to guarantee the a prioxi existence of such a representation.

We begin with considering the subdirectly irreducible Riesz groups (7).

THEORENM 10.1. 4 commulative Riesz growp ir- 'subdirectly irrecucidie if
and only if it is an antilottice.

If the commutative Riesz group ¢ is subdireclly reducible, then there
exist mop-trivial ¢-ideals A and B such that 4 0 F = ec. Then every jposi-
tive element of 4 18 ortbogonzl to every positive element in B whence &
cannot be ap antilattice. Thus zun antilattice is sunbdireetly irreducible.
Conversely, assnme that & is pot an antilattice. Then we can find elements
@, b in & which are > ¢ and satisfy aA b = c. The set of all positive =€ 6
orthegonal to & generates an eoideal 4 of ¢ containing a, and the 3z0% of
all positive ¥ £ & orthogonal to svery & geperaies am o-idesl B containing
b. We bave AN B = ¢, since every positive element in the intersecticn is
orthogonsl #o itself, and the interseciior must again be an ¢-ideal ov account
of Proposition 5.4, We claim that the canonical mup @1 @ — G/A < G/B
yields a subdirect prodnet representation of &. Clearly, ¢ is bijective and
order, union. intersertion preserving. It remains to verify that (g =€

(%) By sobdirect irredneibility we mean tbat the group iz net properly representable
as the subdirect produet of iwe (or 2 Spite mumber ef) f.x(,»o: groups; for the sike of
convenience we assums that the kerpels are o-ideals. This is not essentiel for what follews.
(Xf weo omit the last hypethesie, then the «if» part of Theorem 10,1 shenid be cancelled.)
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implies g = ¢ Now o(g) = ¢ means that the coset of g both moed 4 and
med B contains positive elements, sar ga=¢ and gh=> ¢ for ac 4, b€ B,
By directedness, We may assume, without loss of geaerality, that ¢ = ¢ and
b = o Since aAb=e¢ exists, 80 doe2 geAgh =g (@A b)==g Thus ga,cd = e
jmplies ¢ = ¢, and this completes the proof.

Now we bave come to the problem of geiting an sdequate subdirect
produch representation for commptative Riesz groups, namely ome which
gives the Lorenzen representation in the special case of lattice-ordered grouvps.
In establishing the existence of sueh a representation, a slight modifcation
of the preof, nsnally given for equationally definable class of algebras, is
ReCessary.

The main result reads as follows.

TaeoREM 10.2. Lei G be a commutative Riesz group. There exists o family
H (A€ A) of antilattices and an o-isomorphism @ of G onfo a subdirect product
of the H; such that ¢ preserves unrions and intersections.

Let g range over all elements of & whick are mot = e. For each such
¢ toke am o-ideal 4 {§) of & which iz waxzimal with ‘respech to the property
of not intersecting U(g): since e€ Ulg), 4(g) does exist. We cloim that G/A4 (5
is an antilattice. It suffices to show, on account of Theorem 12.1, that if B,
¢ are oideals properiy containimg 4 (g9), them BN € has the same property.
et bEBN U(g) and ¢€ N U(g); evidently, & and ¢ mar be chosen 0 be
positive. By the interpelation property, we can intercalate between ¢, ¢ and
3, ¢ some g€ &, and this a i clearly contaiped im each of B, € and U{g),
ue. B0 C intersects U (g). Mow the iniersection of all the 4 {g) eoilapses to
e, since if k== ¢ then either 4 (k) or A4 ("~7) exists and excludes h, There-
fore, if we choose for the H, the antilattices G/4 (g), then the natural map
p of @ inte the cartesian preoduet of the K, is an o-monomeorphism preser-
ving unions and intersections. What we still have to werify is tbat o~ is
order-preserving toe, or in other vwordg, that ¢ {f) = ¢ implies g = ¢. But if
@{g) = ¢ then ¢ cannot be incomperable with ¢, for if it were so then im
@/4 (g~1) the coset of ¢ would conisin, by the meaning of @ (g) = ¢, 2 positive
element, say ga = ¢, ¢ € A (g7%), in centradiction to the fact that U (g7*) does
not meet 4 {¢™). This completes the proof of the theorem.

Observe that if & happens to be latiice-ordered, then Therem 10.2 is
egnivalent to the Lorenzen representation theorem. ¥Fox, im fhat ecase the
groups H;, — ag union and intersection preserving images of & — must be
lattice-ordered, and so they are fully ordered, indeed.
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Irredundant represeniations.

in Theorem 10.2 it bas been showp thal commutative Riesz groups can
be represented as subdirect produncte of antilattices, preserving unions and
intersections if exist. We are naturaily interested in getting conditions under
which the mentioned rejresentations are shortest in the sense that “hey
don’t have amy superfinous componentis and certain unigueness statement
can be establisbed.

An eo-isomorphism ¢ of a partially ovdered grenp & inte the curtesian
product ¢ of antilattices & «will be called a representation of G. il the
nels of the projections & — &, are o-ideals of G. From Theorem 10.2 we
know that a commutative Riesz group alwave has a represeptation.

Let y; denote the projection of € omto the eartesian product of the G,
with g 5= 4. If for some A, the cowposite map oy, is stii ap isomorplism
of the abstract group . then we cali the componert &, superfiuous. If pyn
iz o longer an isomorphism of G, then &, is said to De an essential com-
ponent. Obviously, &, iz essential exaetiy if

() ) Ker op,, e
holds true where g, denotes the projection of € on 4G, . Clearly, there is
pothing to prevent wus from identifying & with a subgroup of € under .
If one tries to carry over fhe representation theory of commutaiive
iattice-ordered groups, developed by JAFFARD, HIBENBOIM gnd CONRAD. to
tue case of Riesz groups. then am unsurmountable difficulty arises: the in-
tersection of infinitely many a-ideals need mot be an o-ideal again. In order
to overcome this dificulty, one has the choice either to make restrictizns
on the representations to be comsidered or to sssume thal we are dealing
with Riesz groups where sapy intersection of o-ideals is again am oad«lal.
Since the second alternative seems o be the simpler 2nd since this incinles
the most important exsmpies, we are going o discuss Riesz gronps with
the mentioped properts. For the eake of brevity, we shall call thewm sirmg
Riesz groups; thus a Riesz group is stromg if zpd only if its w-ideals are

o-ideals.
LeMMA 11.1. Jf G & an cssential component of a strong Ricsz group G,
then for some a € G wilh @ula) == ¢, t?z carrier a" is minimal in the par-

tially ordered set £ of carricrs Of
Wow the left member of {1) is an o-ideal of &, since the kernels of ¢,
are such. If @, is an essential component in the representation of &, tlen
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(1) holds, and bence the left membler containg an a€ G+, g =

This o has

&

>

oniy one component == ¢ ip the representaiion, namely @, {a). The carrier &
must be minimal in €, for i J' = 2" end b == ¢", thep we have aleo 2,(b) & ¢,

for otherwise & A b =¢ wonld hold whence &" == a* A " = ¢", a copirsdiction.
If bax ==¢ for some T ¢ G+, then mpecessarily ¢ {x) = ¢, and 80 4AZT = e.
This shows that ¢ < 3", and & = o

A representatien in which every component is essential is called irre-
dundant. We bhave as a main resull:

TEEOREM 11.2. A commufatic: strong Riesz group G admiiz ar irrefun-

dant represeniation if and only if i salcxfles :

(i) the partially ordered set £ of iis carriers is atomic,

() if ca(pe€ M) 35 @ sci of positive elomenis in G suck that to eack
a € P? there @3 @ BeP™ with b <L a and r§_!_.-i’.“ for zome My them x = Cu for
all p implies © = e

Any two trredundant represenigiiens of G are o-dsomorphic.

Assume that ¢ bas an irredundant representation with components &
(i€ 4) which are antilattices, apd let @: Gepote the projeciion & —» &, . Let
3 be an arvitrary earrier of . not equal to ¢, and Jet B €8 Thers i3 2n
index 4 such that ¢u (k) > ¢. The component &, deing essential, some g€ G+
satisfies g (2) > ¢ suck that " is » miniwal carrier {cf Lemma 11.1). Since
G, is an antilatlice, ¢a(e) and ¢, (8) do not have am infersectienm, and so
aab fails to exist in @, But then some ¢€ GT, ¢ ¢ satisfiea e < @« 25d
¢ = b. Therefore ¢* = e, ¢ = &, 20d Dbence the mipimality of &* implies
et =@, t.e. € is atomic.

If ¢, is a set as deseribed in (i) 2pd if ¢ = ¢, for all g, then let a € G¥
such that its A-tb compenent is ™ ¢ and all ite other components egual e.
If ¢, is orthogonal to @, then the I-th component of ¢, must be e Thns
z =< ¢, for every u onply if the compenenis of x are = ¢, 2nd ac z < e

Conversely, if (L is atomie, then let us consider the set of stoms af
{indexed by a certuin set 4) in . The eet of ali elements of G+ orthogonal
to the elements of a fxed &} is the positivity dowain of an oideal I, of &
{Proposition 3.1 and § 4, (f}). This 7 cle contains all the clements of &
contained in the carriers a” =itk g == 4, bul nene in af . Ve claim that
G/, = H, is an antilattice. If b, ¢ are positive elements of & such that
by acl; = I in H, and neither 3F, = [, nor ¢/, = J;, ther neither & por ¢
is orthogonal to any «, (€ a1). Ilence some )€ ay astisfes 4] =< b and 5; < ¢,
sad thus &3 1, S 8, e [, = iy, in contradiction to blacl;=1;. Now
the intersection of all [, does not coutain any positive element == e, for
such an element must be orthogonal to esch @, copsequently, §) [; == ¢, since
it is by hypotbesis an oideal. But the intersection of the [, with u == 1 is
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distinct from ¢ for each fixed 2, because i contaips the elements iz a].
The last two sentences show that & has an o wmopomorphism @ into the
cartesian product of the aptilattices H,, » is induced by the natural ehe-
momorphisms of G onto H;.

It remzins to show that @ maps only positive elements uponm positive
elcments. £ € & is wapped by » npon a positive element in the carfesian
product of the &, if and only if the coset #I; contains a positive element,
for each 4, that 38, xey = ¢ for some ¢; € 7; which may evidentiy be assumed
to be positive. hcm we have a set of positive elements ¢; (1€ 4) which has
the property deseribed in (i) becanse of the atomicity of ¢ and the defini-
tion of Ip. Hepce by (i) x ' = ¢ implies 271 = ¢, or o = &

Finally, to show unigueness up to c-isemorphy, suppese that & has an
irredondant represenfation Dy wmeans of the antilattices G, , and let @,
denote the projection of & onto &, . By our hypothesis on &, the intersec-
tiom ﬂ Ker @, is an o-ideal &= ¢, hence it contains some positive b, ; this b,

hing e fer its »th component, » == u. Obviously, b, is an atom in G, G,

being an antilatiice. Thus each component &, determimes uniguely an atom
in ¢€. If ¢* is 2n atom in € a2nd if a€e”, then @ cannot have two compo-
nents e, for if the uth apd »th components of a were > ¢, then Loth
Zr,,,S_a and w;a"? which would contradict the atomic character of &'
Henece each atom determibes & component &, . and 8o atows of € snd
components €&, of am Irredundant representation are inm & OnDe-to-one corre-
spondence. Moreover Ker ¢, must be the snbgroup genevah&-@ by the positive
elements of & ortbogopal to b, . i.e. Kexr g, =1, as defined above. Iience
G, 2, G/F, and G, is determived uniguely up to o-isomorphism.

The group in Bxawple 7 of § 3 has 2 representiation, bul in no repre-
gentation is it posaible fo find ap essemntial component. Condition (1) is
always satisfied in the lattice-ordered case.

The Conrad radical.

We cap associate with esach directed group & 2n w-ideal of ¢ which
is reminiscent of the radical and has been discovered by P. COoNRAD in the
lattice.ordered case. The discussion to be given bere differs from Conrad’s
in that we introduce the radical as the uniom of certain elements of &, and
then we show that it is the intersection of certaim e-ideals.

Throughont this section Jet G denote a direcied group with isolated order.

With 2 finite set 2, ,..., %, € G we associate the subset
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The following simple observation will be needed.

LEMMA 123, If 4, , ..., 4. are oideals of a directed group € with ise-
lated orvder and if g > ¢ belongs fo the oddeal gemerated by A, , ..., Ay, then
there exist positive elements ;¢ 4, such thal

GE Gy on o o) -

Since (@, , -, &)~ i8 2 lower class and since o each g in the oideal
genersted by 4, , ..., 4., there exist g€ A7 such that 3 < Gy onn fFm 5 36 BT
fices to esfablish the assertion for ¢ = g, ... g With &€ A7 U m = 2, then
take (9, 572 ,gzg;‘)ﬁ, By (e), this contains ¢, whence g =g 7,€(¢7,4, 4, ¢, g,VH=
={a, et with ¢ =g} ¢ A 8nd a,=g6,075,€4,. If m>2, then g=
=g e G £ (@1, With a, €4, and &’ = e in the ¢-ideal geperated by
Ay e y A B indnction, & €(ay, ..., Gn,) for some 4 € 4. Since both &,
and a’ are contained in (a;, ..., 6.7, property (b) shows that (%, e &
Sy 5 ooe 5 G)F. Hemee the desired inclusion g €(6y, ..., a,.)% follows.

The following coneept is fundamentzl for the radical. Call an element
o € G subordinate to a positive element g€ & if whenever

(}) g€ {91 3 g%)ﬁ
holds for pesitive ¢ € G, then there is am imdex ¢ such that
{2) g € 1 (g5

where I (g:) denotes the o-ideal genernted by g:. The sign a4¢ will be used
to dewote that a is subordipate to g. If ¢ is pol necessarily positive, then
a4g will mean that if g =g g7 with positive g, ,¢,, then 244 g, in the
sense above. That this definition ryields the same copeept for positive g,
will be clear from (v) below,
We have the obvious properties:
() edg for each g€ G
(i) a4 ¢ implies a€ I (g);
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(iti} in fully ordered groups, & 4 g if and only if 2¢€ 7 (g);
(iv} in lattice-orderved grouns, &4 g means that |gi==g, v .. ¥ g, with
g z= ¢ implies a € I (g;) for some 4
(v}l.iegadgandifeg =&, then bak;
(v1) if a1 g, them o ax a4y gy for arbitrary =z, v € 4.
The elements of & to which 2 fixed @ 2= ¢ is not subordinate form an
o-ideal of & whick can easily be characterized.

. i];\
ll/\

ProrosiTion 12.2. In a directed group G with isolated order, o == 2 is
not subordinate to g cxactly if g€ Q{a) where £2(a) denotes the o-ideal gene-
rated by all o-ideals of @ that fail fo conigirn a.

Let a be not subordinate to g. Then there is & decomposition g
with z,,%, = ¢ sueh that =z, ?E(:; v, gaft for some g€ G, but a¢
for all ©. Then =z, &, € £2(5), since g, .. 7. € T {6, ; .., Gu) IMDIICS B, 5 = gy o Fur s

2

and &, €, €L (g, , -, Fu) Thus g€ (a). CTonversely, if g€ 2(a), them there

exist 2 fAnite number of e-ideals 4, , ..., 4, not mmalmng a such that g
belongs o the o-ideal they generate. If g =2 277 with & ,%, = ¢ still in
this o¢-ideal, then also &, x, belengs to the same o-ideal, and bence by Lemma
12.1 we have &, £, €£{G, , ... , Gn)T for suitable o € AY. Buta€r {e) < 4:, s0
a is not subordinate to ¢.

The set of all g such that a < g implies @ = ¢ will be denoted by B (&),
and called the Conred radical of &G. We easily obtain the intersection property-

[

TEROREM 12.3. The Conrad radical R (G) of a directed grouwp & with

isolated order iz the imiersection of all Q(@) with a==¢in G

B (@)= 2(a)

Thus R (G) i an e-ideal of 4.

If ¢ 4g implies @ = ¢, then by the preceding resmlt g€ (=) for every
a €@, a=e; and conversely-

In Exampic 1 c’F §$ 8 the Conrad radical is @, since this groap is o-simple.
In Example 5 of § 3 the Conrad radical is the whole gronp, since a pon zero
polynomial cannot be subordinate to any polymomial.

The following terminology will be mseful in our subsequent comsiders-
ioms. If ¢ € @ and if A is an o-idesl of @ that is maximal with respect te
the exciusion of a, then we eall B a regular oideal associvted with <. The
intersection of all o-ideals of G properly containing M contains g, sul thus
it is the only w-ideal M™ of & for which M C M™ and thers is ne o-ideal
between M and M°. Obvieusly, £2(e) iz just the nnion of a1l regular o-ideals
of @ sssociated with a.

-
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Call an o-ideal 4 of G essential [4] if
(A) it is regular, and
(B) there is a b 3=¢ in & such that 4 D Q2().

3f %o some G € @ there is oniy one regular o-ideal ¥ =ssociated with 4, then
2 == 2{g), snd bemee M is essentizl.

LevMa 12.4. A regular oideal M is eseentiol if and only if the inicrsection
of olf regular o-ideals of G not coniained in M is @ifferent from e.

Assume that the intersection of all regular ¢-ideals & mot in A com-
tains some element a == ¢ Then po regular o-ideal associated with ¢ may
oocur ameng ibe N, whence I contains ail regular o-ideals associated with
& Therefore M 2 2(a), and M is essential. Conversely, if 2 (@) S M, then
a must belong to the indicated imtersection.

By makizg use of the concepts of regular and essemtial lideals, Coxn-
2AD [4] has sbhown that the radical is 2 lattice-invariant of a lattice-ordered
gronp: it can be characterized lattice-theoretically ip the Ilattice of all 2.
ideais of & (whick is a complete sublattice of all normal sabgrovps of ).
This resull admits a generalization fo our present case.

B Tt & be a directed group with iseolated order, T the lattice of its

.ﬂemal sobgroups and ¥ the set of its o-idesls. New the regalar o-ideals
of & can be characterized as elements of I which eanmnot be represented as
the intersectiom (taken in #)) of any set of greater elements of ¥ By virtue
of the last Lemma, the essential o-ideals can also be singled out by means
of B and ¥ The next resuit will show that the same holds for the
Qowrap radical R(H).

TREOREM 12.5. The Conrad radical R(&) of a direcied group G with
drolated order is the interseciion of all esseniial o-ideais of .

From the definition it follows tihal tbe imtersection of ali essential o-
ideale ot G contains the intersection of a1l the £2{¢) {2 == ¢), and hemes
B(% owing to Theorem 12.3. To prove the converse, lel g§ R (), that s
to say, g€ £2(c) for some ¢ == ¢ in &. By Zorn’s lemma, there is & regular
e-ideal B, containing £ (a), sssociated with g. Thie M is essentizl, and so
the interseetion of the essential o-ideals does not comtain ¢ either. This
completes the proof.

Budapel and Pisa.

2. Amoeli della Bevole Norm. Sup. -
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