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RINGS BETWEEN D[X] AND K|[X]
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Abstract. Let K be a field, D a subring of K, and X an indeter-
minate over K. The purpose of this paper is two-fold: to study
the rings between D[X] and K[X] and to use these rings to give
some interesting examples. Special attention is given to the rings
A + XB[X] and I(B, A) = {f(X) € B[X]|f(A) C A} where ACBisa
pair of subrings of K containing D.

I. Introduction. Let K be a field, D a subring of K, and X an indeter-
minate over K. The purpose of this paper is two-fold: to study the rings
between D[X] and K[X] and to use these rings to give some interesting
examples. There are two classes of rings between D[X] and K[X] of partic-
ular importance. Let A C B be a pair of subrings of K with D C A. The
ring A+ XB[X]={ao+ a1 X + -+ a, X" € B[X]|ag € A} is called the
composite of A and B and the ring I(B, A) = {f(X) € B[X]|f(A) C A}
is called the ring of A-valued B-polynomials. We have A[X] C I(B, A) C
A+ XB[X] C B[X].

We show that the intersection of a family of composites is again a
composite. This leads to the result that every ring R between D[X] and
K[X] has a composite cover, the unique minimal overring of R that is a
composite. We use the composite cover of R to study R itself. For example,
we show that R is integral over D[X] if and only if its composite cover is
integral over D[X]. Composite covers are studied in Section II along with
other basic properties of rings between D[X] and K[X].
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Sections III-VI use composites to give examples of certain types of
rings. Two important special cases of composites are D + X Dg[X], where
S is a multiplicatively closed subset of D, and K;+X K[ X], where K; C K
are fields. In Section III, we show that for any multiplicatively closed subset
S, D+ X Dg[X] is an S-domain. (Recall that R is an S-domain if for each
height-one prime ideal P of R, ht P[X] = 1 in R[X].) In particular, D[X]
is always an S-domain. In Section IV, we construct some non-Noetherian
Hilbert domains. For example, if D is a Dedekind domain with infinitely
many primes and S = {d"}?2, where d is a nonzero nonunit of D, then
D+ X Dg[X] is a two-dimensional coherent non-Noetherian Hilbert PVMD
that is also a ring of Krull type.

Sections V and VI are concerned with divisibility properties. We
show that if Ky & K, are fields, then K; + X K,[X] is half-factorial but
not factorial. This example also yields perhaps the simplest example of an
atomic ring without unique factorization. We give an example of a ring with
the ascending chain condition on principal ideals (ACCP) whose integral
closure does not satisfy ACCP.

The final section, Section VII, considers the ring I(B, A) = {f(X) €
B[X]]|f(A) C A} where A C B is a pair of rings. This ring generalizes the
ring of integer-valued polynomials 1(Q, Z) which has been widely studied.
We show that in certain cases, A+ X B[X] is the composite cover of I(B, A).
We show that for D an integral domain with quotient field K, I(), D) has
ACCP if and only if D has ACCP. Thus I(Q, 7Z) is an example of a non-
Noetherian Priifer domain with ACCP.

Rather than give an exhaustive treatment of composites and A-valued
B-polynomials in any one context, we show how they arise in many different
contexts. The novelty is in fact in the number of different contexts and the
simplicity of the examples.

All rings are commutative with identity, usually integral domains. Our
terminology and notation will follow that of [15] or [21].

I1. Basic properties. Let K be a field, D a subring of K and let X be
an indeterminate over K. The main feature of a ring R between D[X] and
K[X] is that the values of elements of R at X = 0 split the ring into two
parts: Mp = {f(X) € R|f(0) = 0} and Sg = {f(X) € R|f(0) # 0}.
Of these, Mp is a prime ideal of R, Sy is a multiplicatively closed set and
Ry = {f(0)| f € R} is a ring. The map 7 : R — Ry given by 7(f) = f(0)
is a ring epimorphism with ker 7 = Mp. Hence Ry & R/My.
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If Ry C R, then Ry is a subring of R and R = Ry + Mp. This form
resembles the celebrated D+ M-form of Gilmer (cf. [4]). Further, if Ry C R
and Mp = X R, [X] for some Ro-algebra Ry, then R = Ry + X R[X] and
this is the now familiar composite of Ry and R;.

However, we may have Ry ¢ R. For example, consider Q[X] C R =
QIX][V2X +7] € R[X] where @ and R denote the rational numbers and real
numbers, respectively. Here 7 ¢ R, but 7 € Ry = Q[r]. Let S = R[r] =
Q[7][X, V2 X]; then R € S = Sp+ Mg and Sy /Mg = Q[r] = Ry /M. This
procedure may be applied to any ring R between D[X] and K[X].

THEOREM 2.1. Let K be a field, D a subring of K and let X be an inde-
terminate over K. Let R be a ring with D[X]| C R C K[X]. Then there is
a unique smallest ring S, R C S C K[X], of the form S = Sy + Ms where
S/Ms & R/MEg.

ProoF: Let T' = Ry — R and set S = R[I]. Then Sy = Ry C S, so
S =80+ Ms. Also, RIMp = Ry = So & S/Ms. Clearly S is the smallest

such ring.

We now turn our attention to the composites and ask, ‘When is a
D + M-form a composite?’” The following proposition provides the answer.

PROPOSITION 2.2. Let R be a ring satisfying D[X] C R C K[X] and sup-
pose that R = Ry+Mp. Then R is a composite if and only ifzg;l a;X"€eR
implies that a; X € R for each 1 < i < n.

Proor: Since the implication = is obvious we only prove the implication
<=

Let Ry = {a € K|aX € R}. Then D C R, C K and R, is closed
under addition and subtraction. Now for a, b € R, a.X, bX € R and hence
abX? = (aX)(bX) € R. But then, by hypothesis, abX € R, so ab € R;.
Thus Ry is a ring and R = Ry + X Ry [X].

ProrosITION 2.3. Let {R; = Rjo + X R;1[X]}jes be family of composites
lying between D[X] and K[X]. Then R = NR; is again a composite given
by R = Ry + X R,[X], where Ry = NRjy and Ry = NR;1.

Proor: This proposition may be easily proved directly or may be proved
using Proposition 2.2.
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COROLLARY 2.4. Let R be a ring satisfying D[X] C R C K[X]. Then
associated with R is a unique composite ring S which is the intersection
of all the composites between D[X] and K[X] containing R. Morcover,
S = So + X S1[X] where So = Ry, and S, is the subring of I generated by
U{Af|f € R} where Ay is the D-module generated by the coefficients of

COROLLARY 2.5. Let {Dj};er be a family of overrings of D with D = ND;.
Then D[X] = ND;[X] = N(D + X D;[X]).

The results we have proved give us an idea of how to find a decent ring
nearest to the given ring. Now we shall see how the knowledge of a property
of a composite cover provides us with information on the ring itself.

Let R be a ring between D[X] and K[X] and suppose that K is the
quotient field of D. If the composite cover of R is integral over D[.X] then
obviously R is integral over D[X]. If on the other hand R is integral over
D[X] we find that for each f € R, f € Dy[X] where Dy is the integral
closure of D ([15, Theorem 10.7]). Thus R C Dy[X] and Dy[X] is a com-
posite, so the composite cover of R lies between R and Dy[X] and hence is
integral over D[X].

PROPOSITION 2.6. Let D be an integral domain with quotient field I and
let X be an indeterminate over K. Then a ring R between D[X] and K[.X]
is integral over D[X] if and only if its composite cover is integral over D[.X].

On the other hand, it is easily determined when a composite is inte-
grally closed, completely integrally closed, root closed, or seminormal. We
leave the proof of the next theorem to the reader.

THEOREM 2.7. Let A C B be a pair of integral domains and let R =
A+ XB[X].
(1) R is integrally closed if and only if B is integrally closed
and A is integrally closed in B.
(2) R is completely integrally closed if and only if A = B and
B is completely integrally closed.
(3) R is n-root closed if and only if B is n-root closed and A
is n-root closed in B.
(4) R is seminormal if and only if A and B are seminormal.

Also, by applying the Mayer-Vietoris sequence (U, Pic), one can show
that Pic(R) = Pic(A) & NPic(B), where NPic(B) = ker(Pic(B[X]) —
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Pic(B)). Thus Pic(R) = Pic(A) if and only if B is seminormal. (This fact
also follows from [2, Theorem 1] since R is almost seminormal if and only
if B is seminormal.)

By Theorem 2.7, if D is an integral domain with quotient field ' and
D C Dy C K, then D + XD;[X] is integrally closed if and only if D and
D, are both integrally closed. Since Priifer domains are characterized by
the fact that every overring is integrally closed, it easily follows that D is
Priifer if and only if each composite D + X D;[X] is integrally closed where
DCD, CK.

In a similar vein, let D be a Schreier domain ([7]). Then the following
statements can easily be shown to be equivalent: (1) D is a Bézout domain,
(2) for every overring Dy of D, D + XD;[X] is integrally closed, (3) for
every overring Dy of D, D + XD,[X] is a Schreier domain, (4) for every
pair of overrings D; C D, of D, Dy is a quotient ring of D;. The proof is
based on the fact that a Priifer domain which is also a Schreier domain is
Bézout ([11, Theorem 2.8]).

A less trivial result is the following:

THEOREM 2.8. An integral domain D, which is not a field, is a one-
dimensional Bézout domain such that every nonzero nonunit belongs to

only a finite number of prime ideals if and only if for every two overrings
D, C D, of D, Dy + X D5[X] is a GCD-domain.

PROOF: (=) A one-dimensional Bézout domain D with the property that
every nonzero nonunit belongs to only a finite number of prime ideals is
easily seen to be a generalized UFD ([31]). Hence by [31, Theorem 3.1], for
each multiplicatively closed subset S of D, D+ X Dg[X] is a GCD-domain.
Since every overring of a Bézout domain is a quotient ring, D+ X D-[X] is a
GCD-domain for every overring Dy of D. But since every overring D; of D
is itself a one-dimensional Bézout domain in which every nonzero nonunit
is contained in only finitely many prime ideals, the result follows.

(<) By the paragraph preceding Theorem 2.8, D must be a Bézout
domain. Since every D+ X Dg[X]is a GCD-domain, again by [31, Theorem
3.1], D must be a generalized UFD. But is easily seen that a Bézout gen-
eralized UFD must have dimension one and have the property that cvery
nonzero nonunit is contained in only finitely many maximal ideals.

If R is a Priifer domain, then certainly the composite cover of R is
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Priifer. However, the converse is false. For example, R =7 +7X + X2Q[X]
is not Priifer, but its composite cover Z + X Q[X] is Priifer.

Call a ring R, D[X] C R C K[X], homogeneous if whenever ay +
a1 X + -+ a, X" € R, each a; X" € R. A composite is of course homoge-
neous (Proposition 2.2). For R homogeneous, let R; = {a € K |aX" € R}.
Certainly R; is closed under addition and subtraction and R;R; C R,4;.
Hence each R; is an Ry-module. Moreover, D[X] C R implies that D C
Ry C Ry C ---. Conversely, such an ascending sequence D C Ry C R,
C Ry C --- of D-submodules of K satisfying R;R; C R;}; gives rise to the
homogeneous ring R = Ry+R; X+---. A simple example of a homogeneous
ring that is not a composite is given by D [%] =D+ %DX + d]—QDX2 4
where d is a nonzero nonunit of D.

There are two examples of composites that merit special attention.
First, suppose that D is an integral domain with quotient field K. Let S be
a multiplicatively closed subset of D. Then R = D+ X Dg[X] is a composite
between D[X] and K'[X]. Taking S = D — {0}, gives R = D+ X K'[X]. The
D + X Dg[X] construction is investigated in [12] and [31]. Also, Sections
II and IV use the D+ X Dg[X] construction to give examples of S-domains
and Hilbert domains.

The second important special case is R = K + X o[ X], where By C
K> are fields. Note that R has quotient field K5(.X') and that the integral
closure of R is I + X I{5[X] where I{; is the algebraic closure of I in
K. Also, R is Noetherian if and only if [ : IV;] < oo ([4, Theorem 4]).
The next theorem shows that the prime ideal structure of I + X K,[X]
is very simple. While parts of Theorem 2.9 follow from Theorem 2.10, we
give a proof of Theorem 2.9 to make this paper self-contained.

THEOREM 2.9. Let Iy be a subfield of {5, let X be an indeterminate over
K, and let R = K| + X K3[X]. Then

(i) every nonzero prime ideal of R is maximal;
i1) every prime ideal P different from X K,|X] is principal;
1 )
and
1) R is atomic, 1. e., every nonzero nonunit of R is a finite
) ) y
product of irreducible elements.

ProOF: (i) First note that X I,[X] is maximal since R/XK,[X] & K.
Let P be a nonzero prime ideal of R. Now X € P implies (X K»[X])? C P
and hence X IX5[X] C P so P = XK,[X]. So suppose that X ¢ P. Then for
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N = {1, X, X? ...}, Py is a prime ideal in the PID K,[X, X~!] = Ry.
(In fact, Rp 2 K,[X, X~!]isa DVR.) So P is minimal and is also maximal
unless P © XK,5[X]. But let £, X" + --- + {,X° € P where £, # 0.
Then X"+ 0010, 1 X2 . 4 0714, X* € P,so X ¢ P implies that
1+ E;IE,H.]X + -+ 014, X" € P, a contradiction. So every nonzero
prime ideal is maximal.

(ii) If P is different from X K,[X], then it contains an element of the form
1+ X f[X] where f(X) € K2[X]. Now if 1 + X f(X) can be factored in
K,[X] it can be written as (1 + Xg(X)(1+ Xh(X)). Hence 14 X f(X) is
irreducible in R if and only if it is irreducible in K»[X].

Now let 1 4+ Xf(X) be irreducible in R and suppose that
1+ Xf(X) | h(X)E(X) in R. Then 1+ Xf(X)|h(X)k(X) in Ko[X],
and so in K»[X] we have, say, 1+ X f(X) | h(X). Then, in K»[X], h(X) =
(1+ X f(X))d(X). Now d(X) can be written as d(X) = a X" (1+Xp(X)). If
r>0,d(X) € R, whileifr =0, h(X) = (14X f(X)) (a(14+Xp(X)) and a €
K1 because h(X) € R. In either case, d(X) € R and so 1+ X f(X) | h(X)
in R. Consequently, in R every irreducible element of the type 1+ X f(X)
is prime.

Now since every element of the form 1+ X f(X) is a product of irre-
ducible elements of the same form and hence is a product of prime elements,
it follows that every prime ideal of P different from X K[X] contains a prin-
cipal prime and hence is actually principal.

(iii) Thus a general element of R = K; + X K5[X] can be written as a X" (1+
X f(X)) where a € K, (with a € K; if r = 0) and 1 + X f(X) is a product

of primes.

A variation of the two previous examples is D + X L[X] where L is a
field and D is a subring of L. For a detailed study of this construction the
reader may consult [13]. We only mention the following result from [13].

THEOREM 2.10. Let L be a field, D a subring of L and let X be an inde-
terminate over L. Then the following statements hold for R = D + X L[ X].

(1) If P is a nonzero prime ideal of R disjoint from D* =
D — {0}, then P = X L[X] or P is principal.

(2) If A is an ideal of R with AN D* # ¢, then A= AND +
XL[X] = (AN D)R.

(3)  Every maximal ideal of R is either principal or of the form
P + X L[X] where P is a maximal ideal of D.
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(4) IfS is an overring of R then S is a quotient ring of SN L+
XL[X].

There are many other interesting rings between D[X] and K[X]. For
example, Eakin and Heinzer [14] have shown that for any finitely generated
abelian group G, there is a Dedekind domain R such that Z[X] C R € Q[X]
and R has class group G. Another important class of domains between D[X]
and K[X], the A-valued B-polynomials I(B, A) = {f € B[X] | f(A) C A},
where A C B is a pair of rings with D C A C B C K, is discussed in Section
VII.

ITI. S-domains. An integral domain D is called an S-domain (the S stands
for Seidenberg) if for each prime ideal P of D with ht P =1, ht P[X] = 1.
D is called a strong S-domain if D/P is an S-domain for each prime ideal
P. The terms S-domain and strong S-domain were coined by Kaplansky
in his treatment of the Krull dimension of polynomial rings given in [21].
Certainly Noetherian domains and Priifer domains are S-domains. The
purpose of this section is to show that S-domains exist in abundance.

LEMMA 3.1. For an integral domain D, the following statements are equiv-
alent.

(1) D is an S-domain.

(2) For each prime ideal P of D with ht P = 1, Dp is an S-
domain.

(3)  For each prime ideal P of D with ht P = 1,Dp is a Priifer

domain.

ProoF: (1)= (2) Now ht P = 1 implies that ht P[X] = 1 since D is an
S-domain. Hence ht Pp[X] = 1. So Dp is an S-domain. (2)=(3) Now Dp
is a one-dimensional domain with ht Pp[X] = 1. Hence dim Dp[X] = 2.
By a result of Seidenberg [22, Theorem 7.23], Dp is Priifer. (3)=(1) Let
P be a height-one prime ideal of D. Then Dp is a one-dimensional Priifer
domain, so dim Dp[X] = 2. Hence dim Dp[X] = 2 since Dp[X] C Dp[X]
is integral. But dim Dp[X] = 2 implies that ht Pp[X] = 1 and hence
ht P[X] = 1. So D is an S-domain.

Kabbaj [20] has shown that if D is an S-domain, then D[X] is an
S-domain. Our next theorem shows that for any integral domain D, D[X]
is an S-domain. Hence D[{X,}] is an S-domain for any nonempty set {X,}
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of indeterminates. However, D[X] need not be a strong S-domain. For, if
D[X] is a strong S-domain, so must be its homomorphic image D. However,
even if D is a strong S-domain, D[X] need not be a strong S-domain (cf.
[3, Proposition 2.1]).

THEOREM 3.2. For any integral domain D, D[X] is an S-domain.

PROOF: Let QQ be a height-one prime ideal of D[X]. By Lemma 3.1, it
suffices to show that D[X]q is Priifer. If QD = 0, then D[X]q is a DVR.
So we may suppose that P = QND # 0. Then ht P = 1 and Q = P[X]. But
then Dp is an S-domain. So by Lemma 3.1, Dp is Priifer. Thus D_p(Y) is
also Priifer [15, Theorem 33.4]. But then D[X]g = D[X]px) = Dp(X) =

Dp(X) is Priifer. (Here the last equality follows from [16, Theorem 3].)

COROLLARY 3.3. Let D be an integral domain and S a multiplicatively
closed subset of D. Then D + X Dg[X] is an S-domain.

Proo¥: Let R = D+ X Dg[X] and let I be a height-one prime ideal of R.
First suppose that PN S # ¢. Then P D X Dg[X]P = X Dg[X]. But since
htP =1, P = XDg[X]. But then PN S = ¢, a contradiction. Thus we
must have PN S = ¢. Then Ps is a height-one prime ideal in Rg = Dg[X].
By Theorem 3.2, Rs is an S-domain. Hence Rp = Rg,_ is also an S-domain
by (1)=>(2) of Lemma 3.1. Thus R is an S-domain by (2)= (1) of Lemma
3.1.

It is easily scen that for any nonempty set {X,} of indeterminates
over D, and any multiplicatively closed subset S of D, D+ {X4}Ds[{Xa}]
is an S-domain. However, if K is the quotient field of D, then D + X K[X]
is a strong S-domain if and only if D is a strong S-domain {23, Theorem
5.2].

IV. Hilbert domains. A commutative ring R is called a Hilbertring if
every prime ideal of R is an intersection of maximal ideals of R. In [26]
it was shown that if D C K where K is a field, then D + XIK[X] is a
Hilbert domain if and only if D is a Hilbert domain. Thus if D is a PID
that is not a field and K is the quotient field of D, then D + X K[X] is
a two-dimensional, non-Noetherian, Bézout-Hilbert domain in which every
maximal ideal is principal. In this section we give further examples of non-
Noectherian Hilbert domains with special properties.
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THEOREM 4.1. Let D be an integral domain and S a multiplicatively closed
subset of D with the property that for a prime P of D with PN S # ¢,
then Q NS # ¢ for each prime 0 # Q C P. Then R =D + XDg[X] is a
Hilbert domain if and only if D and Dg are Hilbert domains.

PRrOOF: (<) Let () be a prime ideal of R. Suppose that Q@ NS # ¢.
Then XDg[X] = XDg[X]Q C @, so Q = QN D+ XDg[X]. Since D is
a Hilbert domain, ) N D is an intersection of maximal ideals, hence so is
Q. So we may suppose that Q NS = ¢. Then since Dg[X] is a Hilbert
domain, Qs = NyM, where {M,} is the set of maximal ideals of Dg[X]
containing Q@s. Then @ = N,(M, N R). So it suffices to show that each
M, N R is a maximal ideal of R. So let M be a maximal ideal of Dg[X].
Then M = Ng where N is a prime ideal of D[X]. Now M maximal implies
M N Dg is maximal since Dg is Hilbert. If M N Dg = 0, then Dg is a field
and hence R is a Hilbert domain [26, Theorem 5|. So we may assume that
M N Dg # 0. Then by the hypothesis on S, (M N Dg)ND = NN D must
also be maximal. Since N 2 (N N D)[X], N must be a maximal ideal of
D[X]. Hence D[X]/N C R/M N R C Dg[X]|/M = Dg[X]/Ns = D[X]/N
since D[X]/N is a field. Therefore M N R is a maximal ideal.

(=) Suppose that R is a Hilbert domain. Then D = R/X Dg[X] is
also a Hilbert domain. Suppose that Dg is not a Hilbert domain. Let ) be
a nonzero prime ideal of D with Q NS = ¢. Since D is a Hilbert domain,
Q = NeM, where {M,} is the set of maximal ideals of D containing
Q. Since Q@ NS = ¢ by the hypothesis on S, each M, NS = ¢. Hence
Qs = NM,s is an intersection of maximal ideals of Dg. So every nonzero
prime ideal of Dg is an intersection of maximal ideals. Since Dg is not a
Hilbert domain, Og is not an intersection of maximal ideals. Hence there
is a nonzero element u € D such that u is in every nonzero prime ideal of
Dg. Consider v+ X € R. Let P be prime ideal of R minimal over (u+ X)
with PN D = 0. (Such a prime P exists since (u+ X) N (D — {0}) = ¢.)
If () is a prime ideal of R with Q 2 P, then @ N D # 0. For otherwise in
Ds[X], 0 # Ps € Qs would both contract to 0. Now if Q@ NS # ¢, then
X € XDg[X] C Q; whileif QNS = ¢, then u € (Qs N Ds)ND C Q. So
every prime ideal of R properly containing P contains both v and X. Hence
P is not the intersection of the maximal ideals containing it, contradicting
the fact that R is a Hilbert domain. So Dg must also be a Hilbert domain.

Some examples of multiplicatively closed sets with the property that
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PNS # ¢ implies that Q NS # ¢ for each prime 0 # @Q C P include
S=D-{0}, S=D~—-(PU---UP,) where Py,--- , P, are height-one
maximal ideals of D and S = {d"}32, where 0 # d € D with D a one-

dimensional domain.

COROLLARY 4.3. Let D be a PID (resp., Dedekind domain) and let S be a
multiplicatively closed subset of D containing a nonunit such that Dg has
infinitely many prime ideals. Then R = D + X Dg[X] is a non-Noctherian
Hilbert domain which is a coherent GCD-domain (resp., PVMD).

PRrooF: Since Dg has infinitely many prime ideals, so does D; hence D
and Dg are both Hilbert domains. Since dim D = 1, the previous theorem
applies to show that R is a Hilbert domain. Since Dgs 2 D, R is not
Noetherian. Suppose that D is a PID, then by [12, Corollary 1.2] R is a
GCD-domain, while by [12, Theorem 4.32] R is coherent. Suppose that D
is a Dedekind domain. Again by [12, Theorem 4.32], R is coherent. Since

R is coherent and integrally closed, by [29, Theorem 2], R is a PVMD.

Example 4.4. Let D be Dedekind domain with infinitely many
primes and let S = {d"}?2, where d is a nonzero nonunit of D. Then
R = D+ XDg[X] is a two-dimensional coherent non-Noetherian Hilbert
PVMD that is even a ring of Krull type (i. e., R is a locally finite intersec-
tion of essential valuation overrings). For by [19, Proposition 16], a PVMD
is a ring of Krull type if and only if every nonzero nonunit belongs to only
a finite number of maximal ¢-ideals. However, if P is a prime ideal of R,
then either PN S = ¢ and ht PDg[X] =1s0o ht P =1, or PNS # ¢ and
P =PnND+ XDg[X]. But since there are only finitely many primes of D
intersecting S nontrivially, the set of height-two primes is finite. So for P
a prime ideal of R minimal over 0 # f € R, either ht P = 2 or Ps is also
minimal over fRg = fDg[X]. So the set of such primes P is finite.

However, R = D 4+ X Dg[X] may be Hilbert without the set S satis-
fying the hypothesis of Theorem 4.1. For example, take R = Z + X7 5[X]
where either S = Z — {0} or S = {d"}%2,, d a nonzero nonunit of Z.
Then R is a Hilbert domain by Theorem 4.1 and hence so is R[Y] =
Z[Y]+ XZ[Y]s[X] by [21, Theorem 31]. But S is a multiplicatively closed
subset of Z[Y] with SN (d, Y) # ¢ while SN (Y) = ¢. It seems reasonable
to conjecture that D + X Dg[X] is a Hilbert domain if and only if both D

and Dg are Hilbert domains.
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V. Divisibility properties I. If an integral domain R satisfies ACCP,
then R is atomic, that is, every nonzero nonunit of R is a product of ir-
reducible elements. However, an atomic domain need not satisfy ACCP
[18]. Also in [18, Proposition 2.1], it is observed that if A C B is a pair of
domains with U(B) N A = U(A) (here U(B) is the set of units of B), then
B has ACCP implies that A has ACCP. In particular, if A C B is integral
and B has ACCP, then A has ACCP. We first show that the converse is
false.

Example 5.1. An integral domain R which satisfies ACCP, but
whose integral closure does not satisfy ACCP.

Let Z be the ring of all algebraic integers and R = 7 + X 7[X]. Then
R = 7Z[X] is not even atomic since Z is not atomic (for an atomic Bézout
domain is a PID). However, R satisfies ACCP. For if not, then there is an
infinite properly ascending chain of principal ideals of R. Slncc the degrees
of the polynomials generating these principal ideals are nonincreasing, the
degrees eventually stabilize. The principal ideals in Z generated by the
leading coefficients of these polynomials gives an infinite ascending chain
a1Z C aZ C --- where each an/any1r € Z. Thus all a, € Q[a;]. Let
A= Z N Q[al], Then a1 A € asA € --- € A, a contradiction since A is
Dedekind.

Note that for R a ring between D[X] and K[X], R has ACCP if and
only if for every n > 0, any ascending chain of principal ideals generated | t
by polynomials of degree n terminates. If K is the quotient field of D, the | ;

following proposition may be used to show that a ring R satisfies ACCP |

PROPOSITION 5.2. Let D be an integral domain with quotient field K. Let
R be a ring with D[X] C R C K[X]. Then R has ACCP if and only
if RN K has ACCP and for each ascending chain of polynomials fiR C
f2RC f3R C --- where the f; € R all have the same degree, then there is
a0#de€ RNK such that df; € (RN K)[X].

PRrROOF: (=) Since U(RNK) = (R)ﬁK R has ACCP implies that RNK
has ACCP. The chain fiR C foR C --- stops, say foR = fariR =

So fat+1 = u;fi, where u; is necessarily a unit of RN K. Since f, € K [X ]
there exists a 0 # d € D C RN K with df, € D[X] C R. But then the
coeflicients of df,4; = u;df,, all liein RN K.

(<) Let fiR C foR C --- be an ascending chain in R. Since deg
i+1 < deg f;, eventually all the f; have the same de ree, so without loss
fiv deg f; lly all 1 fi h h deg h 1
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of generality, we can assume that deg f; = deg f» = ---. By hypothesis
there exists a 0 # d € RN K with each df; € (RNK)[X]. Now fiR C fi}1R
implies f; = fiy1c0 where @ € R has degree 0, so « € RN K. Hence
dfi(RNK)[X] C dfiy1(RNK)[X]. But RN K has ACCP and hence so does
(RN K)[X]. So for large n, fo,(RN K)[X] = foy1(RNK)[X] = ---, and
hence fo,R= fop 1 R="---.

In [32], Zaks introduced the notion of a half-factorial domain and
gave a detailed study of half-factorial Krull domains in [33]. Recall that
a domain R is called a half-factorial domain (HFD) if (1) R is atomic
and (2) for each nonzero nonunit € R, x = ©1--- &, = Y1 - Y, Where
the zis and y;s are all irreducible, implies that m = n. Certainly a UFD
is half-factorial and a half-factorial domain satisfies ACCP. We next show
that if K; C Ky are fields, then K; + X K>[X] is half-factorial. However,
K, + X K»[X] is factorial (equivalently, Krull) if and only if K; = K.

THEOREM 5.3. Let A be a subring of a field K. Then R = A+ XK[X] is
a HFD if and only if A is a field.

ProoOF: (=) Clearly, R a HFD implies that A is a HFD. Suppose that A is
not a field, so there is an irreducible element a € A. Then X = a"(X/a™)
for all n > 1. Thus A must be a field.

(<) Suppose that A is a field. By Theorem 2.9, R = A + XK[X]
is atomic. The proof of Theorem 2.9 shows that an irreducible element of
R is of the form aX where a € K or a(1 + X f[X]) where a € A, f(X) €
K[X], and 1+ X f(X) is irreducible in K[X]. Thus for any g(X) € R, the
number of irreducible factors in a representation of g(X) as a product of
irreducible factors from R is the same as the number of irreducible factors
in a representation of g(X') as a product of irreducible factors from the PID
K[X]. Hence R is a HFD.

A careful choice of fields K7 C K5 can yield HFD’s with some inter-
esting properties. If K; € K5 is algebraic, then R = K; + X K>[X] has
integral closure K5[X], a Euclidean domain. If actually [K, : K;] < oo,
then K3 + X K5[X] is a Noetherian HFD that is not integrally closed. If
K, is algebraically closed in Ko, then K; + X K»[X] is an integrally closed
non-Noetherian HFD. Of course, K; + X K[ X] always satisfies ACCP.

Example 5.4 A HFD R with the property that R[Y] is not a HFD.
Let R = R+ XC[X], so R is a Noetherian HFD. But in R[Y] = R[Y] +
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XC[Y][X] we have (X (1 +¢Y))(X(1-1Y)) = X - X(1+Y?), two factor-
izations into irreducibles of different lengths. So R[Y] is not a HFD. (Note
that for R a Krull domain, R[Y] is a HFD if and only if CI(R) is either 0
or 7/27 [33, Theorem 2.4].)

The proof of (=) in Theorem 5.3 shows that if A+ X B[X]is a HFD,
then 4 is a HFD and U(A) = ANU(B). However, Example 5.4 shows that
the converse if false. Here is another example.

Example 5.5 Let n > 1 and R = Q[t"] + XQ[{][X]. Then for m
with 1 <m < n, (t™X)" = ()™ X" are two factorizations of "™ X" into
irreducibles of length n and m + n, respectively. Hence R is not a HFD.

The usual example of an integral domain without unique factorization
is Z[v/=5] with 3-7 = (1 4+ 2/=5)(1 — 2¢/=5). This example entails a
nontrivial amount of explanation. A much simpler example is R = R +
XC[X]. We have already remarked that R is a Noetherian HFD. Here
clearly X - X = (iX)(—i¢X) are two factorizations of X? into irreducibles,
but X and ¢X (or —iX) are not associates, so R is not a UFD. Of course,
R is not integrally closed, while Z[/=5] is a Dedekind domain.

If we wish to avoid complex numbers, we may take R = @ + XR[X].
Here R is a non-Noetherian HFD. For each r € R—{0}, X is irreducible and
two irreducible elements r; X, ro X are associates if and only if v /ry € Q.
Thus for a € R — Q, X? = (aX)(a"'X) are distinct factorizations. In par-
ticular, X? has an uncountable number of distinct nonassociate irreducible
factors and factorizations into irreducible elements. This example also con-
veys well the difference between an element being irreducible and being
prime. For X is irreducible, but is not prime since X | (v2X)(v/2X), but
X +V2X.

VI. Divisibility properties II. In this section, we use composites to
give some examples of almost GCD-domains, almost Bézout domains, and
almost factorial domains.

An integral domain D is said to be an almost GCD-domain (resp.,
almost Bézout domain) if for a, b € D —{0}, there exists an n = n(a, b) >
1 with a" DNb™D (resp., (a™,b™)) principal. 1t is easily seen that an almost
Bézout domain is an almost GCD-domain. Almost GCD-domains were
introduced in [30], while almost Bézout domains were introduced in [1].

THEOREM 6.1. Let ¥ C L be a pair of fields with L purely inseparable
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over K (that is, char K = p > 0 and for each { € L, there exists a natural
number n = n(f) with £?" € K). Then every ring R between K[X] and
L[X] is a one-dimensional almost Bézout domain.

PRrOOF: Since K[X] C L[X] is an integral extension, dim R = dim K[X] =
1. For each f € L[X], f*" € K[X] for n large enough. Hence for f, g €
R, fP", g*" € K[X] for some n > 1. But (f*", g*") K[X] is principal.
Hence ( fr, g"") R is principal.

Thus if K C L is a pair of fields with L purely inseparable over K,
then R = K + XL[X] is an almost Bézout domain. It can be shown ([1,
Example 4.14]) that R satisfies the stronger property that for any subset
{aq} of R, there exists an n = n({a,}) with ({al}) principal if and only if
there is a bound on the degree of inseparability.

The domain R = K + X L[X] is also an example of a general almost
factorial domain. Let us recall the definition of a general almost factorial
domain as given in [30]. Let D be an integral domain. Two elements
x, y € D are called v-coprime if tDNyD = xyD. A nonzero nonunit b € D
is called a prime block if for all z, y non-v-coprime with b there exist a
natural number n(z, y) and d € D such that 2™, y™ € dD and at least one
of 2™ /d, y™/d is v-coprime to b. For example, if q is a principal prime such
that N(¢"™) = 0, then every power of g is a prime block. It can be shown
that if x is a product of finitely many prime blocks, then some power of z is
uniquely expressible as a product of mutually v-coprime prime blocks. Now
if D is an integral domain with the property that for every nonzero nonunit
x, 2™ is expressible as a product of prime blocks for some n = n(z), then
D is called a general almost factorial domain. 1t is easily seen that an
almost factorial domain of Storch (i. e., Krull domain with torsion divisor
class group) is a general almost factorial domain.

Our next example is a slight generalization of an example given in
[30].

Example 6.2. Let ' C L be a pair of fields with L purely inseparable
over I{. Then R = K + X L[X] is a general almost factorial domain.

Because R is atomic and because every element of the form 1+ X f(X)
is a product of prime powers p; with the property that ﬂ;?‘;l(pg) =0, 1t is
sufficient to show that aX is a prime block for every a € L. For this
we note that if f(X) and g(X) are both non-v-coprime with aX, then
F(X) =bX"fi1(X) and ¢g(X) = ¢X g (X) where r, s > 0 and f;, g; are of
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the form 14 X h(X). Now for some n, b*", c?" € K, and fP" = bP"X’"”nffn
and ¢?" = c”nXs”"gf". So if d = X' where t = min(rp", sp™), then at least
one of fP"/d, gP" /d is v-coprime with aX. Finally, all the prime powers
being prime blocks and aX™ being a prime block for alla € L and n € N, we
conclude that R = K + X L[X] is indeed a general almost factorial domain.

In the previous example, R is always a HFD, but R is not integrally
closed unless K = L.

VII. Integer valued functions. Let A C B be a pair of rings, not neces-
sarily integral domains. The set I(B, A) = {f(X) € B[X] | f(A) C A} is
easily seen to be a subring of B[X]. Since for f(X) € I(B, A), f(0) € A, we
even have A[X] C I(B, A) C A+ XB[X]. The second containment is strict
unless A = B (for f(X)=a+bX € I(B, A) <= a, b€ A). Also, I(B, A)
is homogeneous if and only if I(B, A) = A[X]. The case where B = @ and
A = 7, the integer valued polynomials, has received wide attention. Most
of the papers concerning I(B, A) have been restricted to the case where A
is a Dedekind domain with finite residue fields and B is its quotient field.
Here is a sampling of some recent papers concerning rings of integer valued
polynomials: [5]-[8], [17], [24], and [27].

It is easily seen that the composite cover of I(Q, 7) is Z+ X Q[X]. We
next show that this holds for any domain all of whose proper homomorphic
images are finite.

PROPOSITION 7.1. (a) Let R be an integral domain with quotient field K.
Suppose that for each 0 # r € R, R/(r) is finite. Then the composite cover
of I(K, R) is R+ XK[X].

(b) Let A C B be rings where A is finite. Then the composite cover of
I(B, A) is A+ XB[X].

PRroOF: (a) Let r be a nonzero nonunit of R and let R/(r) = {r; +
(r), -+, rn+ (r)}. Set f(X) = XX —r))---(X —r,) € K[X]. Now
for a € R, a+ (r) = r; + (r) for some i, so a — r; = sr for some s € R.
Hence f(a) = 1(sr)[Ijz1(a—7;) € R. So f(X)=1X"+... € I(K, R) and

hence I(K, R) has composite cover R + X K[X].
(b) For each b € B, f(X) = b(Il,ea(X —a)) € I(B, A).

Our next result is the analogue of Theorem 2.7 for I(I, R). The
statement of (1) without proof is given in [10, Corollaire 1, p. 304] while
(4) is reported to be in [9].
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PROPOSITION 7.2. Let R be an integral domain with quotient field IS.
(1) I(K, R) is integrally closed if and only if R is integrally
closed.
(2) I(K, R) is n-root closed if and only if R is n-rooted class.
(3) I(K, R) is seminormal if and only if R is seminormal.
(4) I(K, R) is completely integrally closed if and only if R is
completely integrally closed.

ProoF: (1) (=) Clear. («=) Let f € K(X) be integral over I(I{, R). Then
7 € KIX]. Now f(X)" +g1(X) F(X)" 4 g1 (X) f(X)+a(X) = 0 for
some g;(X) € I(K, R). Forr € R, f(r)" + g1(r)f(r)" ™ + - + gn(r) = 0.
Since each g;(r) € R, f(r) is integral over R and hence f(r) € R. So
f € I(K, R). The proofs of (2) and (3) are similar.

(4) (=) Clear. (<«=) Suppose that R is completely integrally closed.
Let f be almost integral over I(K, R). Then f € K[X]. Let g(X) €
I(K, R) with g(X)f(X)* € I(K, R) for all k > 1. Hence g(r)f(r)* € R for
all £ > 1. So if g(r) # 0, f(r) is almost integral over R and hence in R.
So f(r) € R for all r € R except possibly for the finite sct of roots of g(X)
which lie in R. So it suffices to observe that if f(X) € K[X] has f(r*) € R
for some r* € R, then f(r) ¢ R for an infinite number of » € R. For let
f(X)=ap+a; X +---+a,X" and let d be a nonzero nonunit of R (we
can assume that R # K) with da; € Rfor i =1, ---, n. Then for k > 1,

for* +d*) =ag+a1(r* +d¥) + -+ a,(r* + d)"
= (ap + arr* + -+ apr*™) + (a1d* + 2a,7%d" + - + @, d*)
=f(r") + &

where 7 € R. Hence f(r* + d*) ¢ R.

For a polynomial f(X) € I(Q, Z) of degree n, n! f(X) € Z[X]. A
similar result holds for I(K, R) for any integral domain R.

PROPOSITION 7.3. Let R be an integral domain with quotient ficld I{. For
each n > 0, there exists a 0 # t, € R so that t,f(X) € R[X] for all
f(X) € I(K, R) with deg f(X) < n.

Proor: Now for n = 0, we may take to = 1. Assume that 0 # t,_; € R
has been chosen so that t,,_19(X) € R[X] for all g(X') € I(K, R) with deg
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g(X) <n—1. If R is equal to K, we may take t, = 1. So suppose that rq
is a nonzero nonunit of R. Let f(X) =ao+a; X +---+a,X" € I(K, R)
have degree n. Now ag +roa1 X +--- +rja, X" = f(roX) € I(K, R) as is
ro f(X) =rfag+rga; X +---+rfa, X™. Hence (r§ —1)ag+(ry —ro)ay X +
g = 1 g XY = g f(X) = f(r0X) = g(X) € I(K, R). By
induction, t,,_;9(X) € R[X], thatis, ¢, (r§—rf)a; € Rfori=0,--- ,n—1.
Put t, = t,_ 177 (r§ — r§) € R. Since rq is a nonzero nonunit, each
rd —ry # 0, so t, # 0. Certainly t,a; € R for i = 0,---,n—1. Now
aptai+---+an, = f(1) € R,s0 tpag+ -+ t,a,-1 + tha, = t,f(1) € R;
hence t,a, € R. So t,, f(X) € R[X].

COROLLARY 7.4. ([27, Corollary 3]). Suppose that R is an integral domain
with quotient field I{. Suppose that R contains an infinite ficld. Then

I(K, R) = R[X].

PROOF: Let Ky be an infinite subfield of R. Suppose that in the proof of
Proposition 7.3, ¢y, --- ,t,_; have been chosen so that they all lie in K.
It suffices to show that we can find an 0 # ro € K so that v —r§ # 0
for 0 <4 < n-—1. For then 0 # ¢, = t,,,_lﬂ?z_ol(rg —rd) € Ky and
to f(X) € R[X] implies that f(X) € R[X]. However, since K is infinite
and since the equations X" -1 =0, X" - X =0,---, X" = X""! = ( have
only finitely many solutions, the desired rq € K must exist.

Let R be an integral domain. Let us call R a bounded factorization
domain (BFD) if for each nonzero nonunit a € R, there exists a natural
number N(a), so that if a = a; ---as where cach a; is nonunit, then s <
N(a). (Equivalently, any strictly ascending chain of principal integral ideals
starting at Ra, has length at most s.) Certainly a BFD has ACCP, but the
converse is false. The domain in Example 5.1 is a BFD, but its integral
closure is not.

THEOREM 7.5. Let R be an integral domain with quotient field . Let T
be a domain with R[X] C T C R+ XK[X]. Suppose that for each n > 0,
there exists an 0 # r,, € R so that r, f € R[X] for all f € T with deg f < n.
Then T has ACCP (resp., is a BFD) if and only if R has ACCP (resp., is
a BFD).

Proor: (1) This is a special case of Proposition 5.2.
(2) Suppose that R is a BFD. Let 0 # f € T have degree n and lead-
ing coefficient b. Write f = g1 -+-gsgs41--* gm where gy, -+, g, € T are
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nonunits with g;,---,gs € R and gs41, - ,gm € T have degree > 1. Now
gs+1 -+ - gm has degree n, so m — s < n. Also, rp,gs41 -+ gm € R[X], say it
has leading coefficient ¢ € R. Then r,b = g; ---g,c. But R is a BFD, so
there is a bound on the number of factors for r,b and hence on s. Thus
the min f = g1 ---gsgs41 - - gm has an upper bound. Conversely, if T is a
BFD, it is easily seen that R is a BFD without any additional hypothesis
on 7.

COROLLARY 7.6. Let R be an integral domain with quotient field K. Then
I(K, R) satisfies ACCP (is a BFD) if and only if R satisfies ACCP (is a
BFD).

Proor: Combine Proposition 7.3 and Theorem 7.5.

Proposition 7.2 and Corollary 7.6 together with the well known fact
that I(Q, Z) is a Priifer domain yields the following interesting example.

Example 7.7. I(Q, 7Z) is a two-dimensional completely integrally
closed Priifer domain that is a BFD and hence has ACCP.

Actually, if R is any Dedekind domain satisfying (1) char D = 0, (2)
D/P is finite for each nonzero prime ideal P, and (3) if f(X) € D[X] is a
nonconstant polynomial then the equation f(X) = 0 (P) has a solution for
infinitely many primes P, then I(K, R) is a Priifer domain ([8, Theorem
2]) and is a Hilbert domain ([6]). It is easily seen that I(K, R) has Krull
dimension two. By Proposition 7.2, I(K, R) is completely integrally closed
and by Corollary 7.6, I(IK, R)is a BFD and hence has ACCP. A. Grams [18]
has also given examples of non-Noetherian Priifer domains satisfying ACCP.
It is interesting to note that if M is a height-two maximal ideal of I(K, R),
then I(K, R)s is a two-dimensional valuation domain and hence is neither
completely integrally closed nor satisfies ACCP, even though I(K, R) is
both completely integrally closed and satisfies ACCP.
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