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Let D be a commutative integral domain with quotient field K. Let F(D)
denote the set of nonzero fractional ideals of D and let /(D) denote the subset of
finitely generated members of F(D). The function on F(D) defined by
A—{47%) " = A, is a s-operation called the v-operation. The reader may
consult [1], Sections 32 and 34, for the basic properties of =-operations and the
v-operation. The reader is also referred there for definitions and notation not
given here. At one point our notation will differ from that of [1] in that, for
A, Be F(D),

(A:B) = (A:xB) = {xe K] xB < 4}.
Let 4, BeF(D). Then AB< (A:B"H) < (4,:B7%), s0
(4B), = (4:B™ 1), < (4,:B™H

since (A4,:B 1) is a v-ideal. The purpose of this paper is to investigate how the
replacement of certain inciusions by the equality in the preceding chain of
inclusions relates to D being integrally closed, completely integrally closed, or
a v-domain.

In [3], Malik proved that if D is integrally closed, then

(A:B™%, =(4B), for all Aef(D) and BeF(D).

Example 9 at the end of this paper shows that the converse is false. We show
that D is completely integrally closed (respectively, a v-domain) if and only if
(AB), = (4,:B™%) for ali AeF(D) (respectively, 4ef(D)) and all Be F(D).
Now, for 4, BeF(D), 4B~ = (4:B), so
(AB™ %), =(A4:B), = (4,:B) = (4,:B,}.

We show that D is completely integrally closed (respectively, a v-domain) if and
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only if (4B~ 1), = (4:B), for all AeF (D) (respectively, 4 €f(D)) and all Be F(D).
In general, for 4, Bef! (D), we need not have

(AnB),=A,NB,.
We show that if D is essential, then
(A, 0. 0A), =40 - NnA, foral Ag..... A eftD);

and that if D is integrally closed and this equality hoids, then D is a v-domain.
This is done by first proving that, for D integrally closed, D is a v-domain if and
only if (4:B), = (4.:B)) for all 4, Bef(D). We call D a crescent domain if, for
any collection {4} /(D) with ()4, # 0,

(Q Ay = Q Ay

We show that if D is a crescent domain, then (A:B~ 1Y), = (4,:B™%) for all
Aef(p)and Be F(D). Hence a crescent domain satisfying (4:B7%), = (4B), for
all Aef(D) and BeF(D) is 2 v-domain. However, a v-domain need not be
a crescent domain. In fact, by Theorem 5, a Krull domain is 2 crescent domain
if and only if it is 2 Dedekind domain.

Malik’s result is contained in our first theorem. :

TaeoreM 1. Let A,BeF(D). If (A:4) =D, then (A:B™Y), =(4B), In
particular, if D is integrally closed (respectively, completely integrally closed),
then (A:B™Y), = (4B), for all Aef(D) {respectively, AeF(D) and BeF(D).

Proof Suppose that (4:4)=D. It suffices to show that

(A:B~ Y= (AB)" .

Since AB = (A:B;l), we have (A:B~ 1)1 = (4B)" " Let 0 # xe(AB)"*. Then
xAB < D, so xA < B™*, and hence

(A:x4) =2 (4:B7H).
Since (4:xA) = x~(4:4), we get x(A:B"Y) = (4:4) =D, s0 xe(A:B~H™h
The last two statements of the theorem follow since D is integrally closed
{respectively, completely integrally closed) if and only if (4:4) =D for all
Aef(D) (respectively, AeF(D) ([1], 34.7 and 34.3).

Recall that D is 2 v-domain (respectively, completely integrall vy closed) if, for
all A<f(D) (respectively, Ae F(D)), there exists 2 Be F(D) with {(4B), = D- In
this case, B, = A~ L.

TueoreM 2. For an integral domain D, the following conditions are
equivalent:

(1) D is a v-domain. ‘

@) (AV:B)s(AE’i),, for all Acf(D), BeF(D).

(3 (A,:B~%) = (4B), for ali Aef(D), BeF(D).
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(4) (4:B,) =(AB™Y), for all Acf(D), BeF(D).
(5) D is integrally closed and (A:B), = (A4,:B,) for all Acf(D), BeF(D).

Proof. (1)=(2). We always have (4B™ "), < (4,:B). Let 0 # x€(4,:B), s0
xB < A4, Then we have x 'B 12(4,) ' =A4"" so xA™ ' B~ ' Then
xAA™r < AB™Y, so '

xeDx = x{AA™Y), S (AB™Y),.
{2)=>(3). Replacing B by B~ gives
(4,:B™1) = (AB™1)7Y), = (4B), = (4B),.
(3)=(1). Take B= A% then
D S(A;A)=(44"Y), € D.

Hence (447 1Y), = D for ali 4ef(D), so D is a v-domain.
(1)=(4). The proof of this implication is similar to the proof that (1)=(2).
(4)=(1). Take B = A. Then D = (4:4), = (4471, =D, so

(AA™1Y, =D for all Aef(D).
(5)=(1). Take B = 4. Since D is integraily closed, D = (4:4). Hence
D = D, = (4:4), = (4,:4,). Consequently, A4, has a v-inverse ([1], 34.21). (Note
-that we have only used the hypothesis that (4:B), = (4,:B,) for 4, Bef(D))
(D=(5). It is well known that a v-domain is integrally closed. Let
0+ xe(4:B). Then xB < 4, so xB, < A,, and hence xe(4,:B,). Thus
(4:B), = (4.:B,), = (4,:B,).
Suppose that 0 % xe(4,:B,), so xB, € A,. Then
xBA P < 4,A7 <D,
so xBA 1A < A. Hence xA™*4 < (4:B), so
xeDx = x{(4" 1 4), < (4:B),.

THEOREM 3. For an integral domain D, the following counditions are
equivalent:

(1) D is completely integrally closed.

(2) (A,:B) = (4B 1Y), for all A, BeF(D).

(3) (4,:B™ Y =(AB), for all A, Be F(D).

(4 (A:B), = (AB™ 1Y), for all 4, BeF(D).

The proof is similar to the proof of Theorem 2.

It is always true that (A+B) ' =A4"'nB™! for A, BeF(D). More
generally, (J 4,)7% = () A;* provided that 4,,) A,eF(D). The “dual” con-

dition (4N B)"' = A" '+ B~ however need not be true. (In D = K[X, ¥},
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K 2 feld, take 4 = (¥) and B = (Y).) Now, for any collection {4} S F(D)
with )4, # 0 we bave '

(N4)" 224"
and hence (V4 ' 2 (A< 1), It is easily seen that

(Q Aa)ﬂ = (Ea: Az 1')v

if and only i

(Q A= ﬂ A

However, even for D Noetherian, we need not have (AN B), = A, N B, as

the following example due t0 W. Heinzer shows. Let K be a field and let

p = K{[X?, x4, X711,
Then D is 2 one-dimensional local domain with maximal ideal

M = (X3, X%, X3).

Lot A = (X3, X% and B = (X*, X*). Then 4, = B, = M but An B = (X?), 50

(4 B), = (X)) c M =40 B,

Other examples of domains not satisfying (4 0 B), = A, N B, may be obtained
from Theorem 7. However, on the positive side, any essential domain D has tbe
property that

(A, 0...0A) = Ao N Agy for all A4, ---» A, ef{D)-
(Recall that D is an essential domain if there is a set of prime ideals {P,} of
p such that D = (\Deg, and each Dp, is a valuation domain.)

TuEOREM 4. Let D be a crescent domain. Then, for Acf(D) and Be F(D).
(4:B), = (A,:B,), and hence (4:B™), = (4,:B"H).In particular, if D is @ crescent
domain and D also satisfies (A:B7Y), = (AB), for all Ae (D) and BeF (D), then
P is a v-domain.

Proof Let B=y Db, where each 0 # b,e K. Then
(A:B)= (A:ZDED@) = ﬂ(A:Dbu) = ﬂAb;l.
Since D is a crescent domain, we have
(4:B), = ([ Abz H, = (M\(4bz ), = N Abs* = (\(A.:Db)

= (4,:3.Db,) = (4,:B) = (4,:BJ-
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Replacing B by B~ gives the second result. If we further assume that
(A:B~Y), = (4B), for all Acf(D) and Be F(D), we get (4B), = (4B~ ) for all
Aef(P) and BeF(D), which by Theorem 2 implies that D is a v-domain.

Thus an integrally closed crescent domain is a v-domain. However,
a v-domain need not be a crescent domain. Let K be a field; then K[X, Y] is
a Krull domain, and hence a v-domain, but, by the next result, it is not
a crescent domain. For D Noetherian and I an ideal of D, let G(I) denote the
grade of I, that is, the length of the longest R-sequence in I. Recall that for
D MNoetherian, I, = D if and only if G(I}) > 1.

THEOREM 5. Let D be a crescent domain that is also a Mori domain (ie.,
D has ACC on v-ideals). Then every maximal v-ideal of D is a maximal ideal of D.
So if D is a Noetherian crescent domain, then G(D)= 1. Morecver, a Krull
domain is a crescent domain if and only if it is o Dedekind domain.

Proof Suppose that D is both 2 Mori domain and a crescent domain. Let
F be a maximal v-ideal of D. It is well known that P is a prime ideal. Moreover,
there is a finitely generated ideal I < P with I, = P, = P. For ceD—P,

(In“‘"v (Ivb C)VZ(PVD C)v:D
Suppose that P is not maximal; say, P ¢ M, where M is a maximal ideal of D.

Then
ﬂ {,o,= ﬂDmD.
ceM —F
Let
ze [} (9.
ceM— P

Then AEP"‘}“(A:.Z), 50 z = p+rz” for some pe P and reD. Then z(1 —rz) = pe F;
and 1—rz¢ P since ze M, so zeP. Hence

N @ocp,

celM —F

(N ULo)sP,=PsD= () {09,
ceM —~F ceM — P
This contradiction shows that P is maximal.

Suppose that D is a Noetherian crescent domain. If G{D) > 1, then there is
a maximal ideal M of D with G(M) > 1. Let P be a maximal v-ideal that is
contained in M. By the preceding paragraph, P must be maximal, so P = M
and G(M) = G(P) = 1, a contradiction.

It is easily seen that a Dedekind domain is a crescent domain. Conversely,
suppose that D is a crescent Krull domain. Then each prime ideal of D of height
1, being 2 maximal v-ideal, must be maximal, so D is a one-dimensional Krull
domain, and hence a Dedekind domain.
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Obviously, a Priifer domain D is a crescent domain since every A€ (D) 1s
invertible, and hence divisorial. More generally, if every A€ (D) is a v-ideal,
then D is a crescent domain. Such domains, called FGV-domains, were briefly
discussed in [4]. They include one-dimensional Gorenstein domains. It follows
from 34.12 in [1] or from [4] that an FGV-domain is Pritfer if and only if it is
integrally closed.

It is not hard to show that a valuation domain D satisfies the property that

(Q A= Q As

for any collection {4,} < F(D) with () A4, # 0. However, while a Priifer domain
x

is a crescent domain, our next example shows that a Pritfer domain need not

satisfy this stronger property.

ExaMpLE 6. Let 4 be the ring of all algebraic integers and et K be its
quotient field. Then 4 is a one-dimensional (and hence completely integrally
closed) Bézout domain. Let {M,} be the collection of maximal ideals of 4. Each
M, is idempotent ([1], PP 520-522), and bence M,, = 4. Moreover, it is easily
seen that

(\M,=0

(since Z < 4 is integral). Let

p = A+ XK[[X7].

Then D is a Bézout domain ([1], Exercise 13, pp. 286 and 287) with quotient
field K[[X1][X~*]. Since D is 2 Pritfer domain, it is a crescent domain. Let

M = M+ XK[[XT]-
Then each (My), =D, s0
N(Mz), =D,

while

(N M2, = (XK [[xT]). = XK[[X]]-

TueoreM 7. (1) If D is an essential domain, then
(Aim...nAﬂ)valvm...mAnv for all Ai,‘..,, A, ef(D).

(2) If D is integrally ciosed and (A, ...V Ay = Az 0o O Ay for all
Ay eres Ay €f(D), then D is a v-domain. ‘

Proof (1) Let w be the s-operation on D defined by
‘ Aco = m ADPD::
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where D = () Dp is a representation of D as an essential domain, i.e., each P, is

a prime ideal of D and each Dp, is a valuation domain. By 44.13 in [17], w is
equivalent to the v-operation, ie., for all 4ef(D), 4,= A4, Now, for
Ay -ns A ef(D),

(Ain..0 A4, =4 N...0 4)Dp_

= (V(4:Dp, 0.0 A,0p) = () 41Dz ) ... () A.D5)

=AM N A, = A0 0 A,
Hence
| Ay A, = (A o0 4)),
=50 0A,), =4, 0. 0 A,

{2) By Theorem 2, it suffices to show that, for 4, B € f(B), (4:B), = (A,:B,).
But this follows as in the proof of the first part of Theorem 4 where we can Bow
take B to be finitely generated

So, by Theorem 7 (2), an integrally closed domain that is not a v-domain
_ does pot satisfy

4,n...04), =4,0...04, for some A4,,...,A4,cf(D).

For an example of an integrally closed domain that is not a v-domain, see [ 17,
Exercise 2, p. 429. This raises the patural question of whether a v-domain
satisfies

A,n..nd),=4,,n...n4,, for all 4,ef(D).

We have shown that an essential domain (which is of course a v-domain) has
this property and that this property plus integral closure (or the crescent
property plus (4:B7%), = (4B), for Aef(D) and BeF(D)) imply that D is
-a v-domain.

- We end by giving the promised example of an integral domain D satisfying
(A B™Y), = (4B), for all Aef(D) and BeF(D), although D is not integrally
closed. Qur example will involve PVD’s. Recall that a domain D is called
a pseudo-valuation domain (PVD) if every prime ideal P of D is strongly prime
{ie, x; yeK with xye P implies xe P or ye P). PVD’s were introduced in [2]
and further studied in a number of other papers. We recall a few facts about
PVD’stthat are given in [2]. Let D be a PVD. Then D is quasi-local, say wiLh
the maximalrideal M. If D is not a valuation domain, then V= M~
a valuation overring of D with the maximal ideal M. Moreover, the
nonprmczpai dmsonai wdeals of D comcxde with the nonzero ideals of ¥
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PROPOSITION 8. Let D be a PVD (which is not a valugtion domain) with the
maximal ideal M and valuation overring V= M™Y. Suppose that

(2) the ideals of V are all of the form xV or *M {(xeV),

(b) V is not a finitely generated D-module.

Then, for all Aef(D) and BeF(D), (4:B™%), =(4B),

Proof. Since the equality (A:B™1), = (4B), is easily seen to hold if B, is
principal, we may assume that B, is not principal. Since (4B), = (4B.}, and
Bt = (B,)" !, we may assume that B is a nonprincipal v-ideal of D. Hence, by
[2} and (1), B=xM or xV for some xeX. So it suffices to show that

(A:V), = (AM), and  (A:M), =(4V),.

(1) (4: V), = (AM),. Now AMV = AMM ™' < A, so AM < A:V, and hence
(AM), < (4:V),- Let ye(d:V). Then yVe 4 = AV = aV for some acA since
A is finitely generated. If y¥ = a¥, then 4 = a¥; so V=a %A is a finitely
generated D-module, 2 contradiction. So yV& a¥, and hence y/aeM; con-
sequently, yeaM = AM. Hence (4:V) & AM, so

(4:7), = (AM),.

() (4:M), = (AV),. Now AVM c A, so AVS(4:M), and hence
(AV), = (4:M),. Let ye(d: M), so yM s Ac AV= aV for some aed. If
yV=2 aV, then yV=2 aV=2 yM; s0 M = (a/y)V. Thus, using (1), we get

(A:M), = (A:(a/N)V), = Gl 4:V), = G/a)(AM), = (A(@/a) M), = (AV),.
Consequently, we can assume that yV< aVl Then
| yeyVe aV= AV,
so (4:M) = AV, and hence (A:M},, < (4V),.
ExaMPLE 9. Let K/k be an infinite algebraic field extension and take
V=K[[X]] and D= k+XK{[X1].

Then D is 2 PVD with M™% = ¥, and the conditions of Proposition 8 are ail
satisfied. Now D is not integrally closed, but, by Proposition 8, D satisfies
(4:B™%), = (4B), for zll Aef(D) and BeF(D).
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