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Introduction

In this paper we study certain star-operations on an integral domain. The first
section contains the pertinent definitions and elementary facts. In the second section
we introduce a star-operation, which we call the f,-operation, and we ask whether
the t,-operation is the same as the r-operation studied by Jafford and Griffin. Using I,
to denote (I ™*)7", this question can be recast as follows. If I is an ideal of a domain D
such that (a, b), = I whenever a, b € I, then is J, I for every finitely generated ideal
JcI?

The third section defines and studies two star-operations which give rise to the
F-ideals introduced by H. Adams and the semi-divisorial ideals introduced by S.
Glaz and W. Vasconcelos. We then ask whether F-ideals and semi-divisorial ideals
are the same, or, rephrasing in terms of the v-operation: If [ is an ideal inadomain D
such that I : J = I whenever J is a two-generated ideal with J, = D, then can the same
be said for all finitely generated J with J, = D? We note that this questlon can be
easily answered affirmatively if D is Noetherian.

The major results of the paper are in the fourth section. In this section we show that
in D[x], where D is a domain and x is an indeterminate, F-ideals and semi-divisorial
ideals are the same. This follows from the following lemma, which is interesting in its
own right: IfAisa finitely generated ideal of D[x]with A, = D[x], then A contains a
two-generated ideal B with B, = D[x]. We also show that, with appropriate restric-
tions on D[x], every f,-prime ideal is a t-ideal.

1. Star.operations of ﬁniie type

Throughouf this paper we shall use D to denote an integral domain with quotient
field K. Also, #(D) and (D) will denote, respectively, the sets of nonzero integral
and fractional ideals of D.
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Definition. A star-operation on D is a mapping I »I* of #(D) into % (D) which
satisfies, for each a # 0 in K and each I, J € #(D), the following conditions:

(1) (a)* =(a), and al* = (al)*.

(2) I<I*, and I*<J* whenever I < J.

(3) I*)*=1*.
Anideal I of #(D)is called a #-ideal if I = I'*. A star-operation * is said to be of finite
type if I* =\_J{J*:7J is a finitely generated ideal contained in I'} for each I € #(D).

Remark. This definition, as well as many elementary properties of star-operations,
can be found in [2, Section 32], where it is pointed out that a mapping I -» I'* of $(D)
into (D) satisfying conditions (1), (2), and (3) above has a unique extension to a
star-operation on D. Thus, for the most part, we shall concern ourselves only with
integral ideals of D, and we shall use the word ‘ideal” to mean “integral ideal.”

We collect for easy reference some of the facts about star-operations which we
shall use:

Proposition 1.1. Let I > I'* denote a star-operation on D. Then

1) CLY* = (X IE* for every subset {I,} of F(D) for which ). I, € F(D).

(2) (IZE =(\E)* for every subset {1} of F(D) for which (% #0.

(3) (INy*=(IT*Y*=I*T** for every pair I, J € F(D).

(4) I:Jis a *=-ideal whenever I, J € #(D) and I is a *-ideal.

(5) If = is of finite type and P is a prime ideal minimal over a *-ideal I, then P is a
*-ideal.

Remark. Parts (1), (2), (3) constitute Proposition 32.2 of [2], and part (4) is Exercise
1 of [2, Section 32]. Part (5) follows from [6, Theorem 9, p. 30]. We offer an alternate
proof of (5): Let J be a finitely generated ideal of D contained in P. We shall show
that J* < P. Since P is minimal over I, PD, =rad(ID,) in D,, and there is a positive
integer n such that J"D, < ID,. Thus there is an element s € D — P with sJ" < I It
follows from part (3) above that

sUF) < s(TH)" Y = s = (T < T* =T < P.

Therefore, since s& P, we have J* < P, as desired.

2. The v- and f-operations

One of the best known examples of a star-operation is the v-operation. For
Ie%(D)]I,isdefined by l, = I H't=N{J:Jisa principal fractional ideal contain-
ing I'}. The v-operation is not in general of finite type. However, [2, Exercise 3,
Section 32]shows that to every star-operation *, we may associate a star-c 7#ration #;
of finite type by defining I*s=|_J{J*: J is a non-zero finitely generated fractional
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ideal contained in I'}. The vs-operation is called the f-operation (see [4] and [5]). We
introduce a closely related star-operation of finite type:

Proposition 2.1. For each subset Jof D, letJ' = UA(a, b)y: a, b eJ}. For each ideal I
of D, let Iy =Iand I, = (I,—,)' for n =1. Define a map * by I'* = Uf:o I.. Then * isa
star-operation of finite type.

Proof. We first show that I* isanideal of D. If x, y € I* then x, y € I, for some n and
x—ye(x,y)s(x y), whence x —y € I, .y < I'* and I'* is closed under subtraction.
An easy induction argument shows that each I, is closed under D -multiplication, so
that I * is anideal of D. To verify that * is a star-operation, we first note that (a)* = (a)
follows easily from the fact that (a), = (a). Now

al'=al\J{(c, d)y: ¢, deI}=J{(ac, aéi),,:c,de[}

=G, y)or x, yeal}=(al)'.

It follows that al* = (aI)*. It is clear that I < I'* and that I* < J* whenever I < J.
Finally,

I*y=U{(a, b),: a, b I'*}
=J{(a, b),: a, b, forsome n}< I'*.

Thus (I*)* =T*. \

We have left to show that = is of finite type. Let I be an ideal of D and let
I'=J{C*: C is a finitely generated ideal of D contained in I}. Clearly I <.
Inductively, assume I,_; < I. If x €I, then x € (a, b), for some a, b eI, ;. Hence
a € A* and b € B*, where A and B are finitely generated ideals contained in /. Thus

x€(A*+B*Y < (A*+B*)*=(A+B)*cI.

By induction I'* < I. The reverse containment being evident, the result is proved.

Remark. We shall refer to the above star-operation as the #,-operation. One may.
define, for each integer n > 2, an analogous #,-operation, merely by changing the
definition of J' above to J'=|_J{(ai, ..., an)v: a1, ..., a,<J}. One then verifies
easily that an ideal [ is a z-ideal if and only if 1 is #, for each n > 2. We do not pursue
this here, mainly because it is conceivable that the f-operation and the ¢,-operation
are the same. Thus we raise the following

Question. If anideal I of D has the property that (a, b), < I whenever a, b e I, then
as I necessarily a t-ideal? :

We are able to give an affirmative answer in case [ is prime and D is either a
coherent or an integrally closed polynomial ring. This is postponed until Section 4.
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3. F-operations

In[1] H. Adams defines an F-operation in a manner equivalent to the following.
For each subset J of D, let

J'={xeD:xa,abeJ forsome a, b € D with (a, b), = D}.

For each ideal I set Io=1 and I, = (I,—1)' for n = 1. Finally, let I = Uf:() I.

The details required to show that the map I - I is a star-operation of finite type on
D are routine, with the exception of the verification that I is an ideal. As this is done
in [1, Lemmas 2.3 and 2.4] we state without proof:

Proposition 3.1. The map I - Ir defines a star-operation of finite type on D.

Many results in [1] follow easily from known facts about star-operations. In
particular the fact that D =(){D,: P is an F-prime ideal of D} ([1, Theorem 2.14])
follows from [4, Proposition 4].

Remark. Since the ideal J' above is defined in terms of pairs of elements a, b, we
could call the F-operation the F,-operation. One can then define, for each n =3, an
analogous F,-operation, merely by changing the definition of J' accordingly.

In [3] Glaz and Vasconcelos call an ideal I of D semi-divisorial if 7:J=1
whenever J is a finitely generated ideal of D with J, = D. It is easy to see that [ is
semi-divisorial if and only if I is F,, for each n =2, 3, . ... In this context one could
call a semi-divisorial ideal an F-ideal.

Proposition 3.2. For each ideal I of D define I'* by I*=J{I:J|J is a finitely
generated ideal of D with J, = D}. Then * is a star-operation of finite type.

Proof. Let I be an ideal of D. We first show that I* is an ideal. To this end let
x, y € [*withxA c I, yB < I, where A, B are finitely generated ideals with A, = B, =
D. Then (x—y)AB <! and (AB), =(A,B,),=D. Hence x—yeI*. One easily
verifies that I™* is closed under D-multiplication, so that I* is an ideal. Most of the
details required to show that * is a star-operation are also routine. We verify only that
(I*)*=TI* If te(I*)*, then tAel* with A finitely generated and A, =D. If
A=(ay,...,a,)thenforeachi=1,..., n,there is a finitely generated ideal B; with
(Bi),=D and ta;B;< I Let B=B,...B, Then tAB < I, AB is finitely generated
and (AB),=D. Thus teI*, as desired. Finally, we show that = has finite type.
Suppose t € I'*, say tA = I with A finitely generated and A, = D. Note that LA< A
implies 1€ A*, so that A¥*=D. Thus tetD = tA* = (tA)*<| J{C*|C =T and Cisa
finitely generated ideal of D}. This completes the proof.
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The natural question arises: Are the F- and Fw-operations the same? In Section 4
we answer this question in polynomial rings. The answer in case D is Noetherian is
given by

Proposition 3.3. If D is Noetherian, then every F-ideal is an F-ideal.

Proof. Let I be an F-ideal of D. By [7, Exercise 2, p. 102] an ideal B of D satisfies
B, =D if and only if B has grade at least 2: Thus, if xA < I and A, = D, then there
are elements a, b € A with (a, b), = D. It follows that x € I, since I is an F-ideal.

Remark. It is clear that every f;-ideal is an F-ideal and that every ¢-ideal is an
F-ideal (semi-divisorial). To show that neither of the converses is true, we shall
produce an example of a Noetherian domain containing an Fe-prime ideal which is
not a f,-ideal. Another (non-Noetherian) example can be constructed essentially by
adding another indeterminate to Adams’ example ([1, Section 3]).

Example. Let K be a field and let R'=K[x,,..., x,]s, where the x; are indeter-
minates over K and S is the complement in K[xy, ..., x,] of the union of the
maximal ideals M = (x4, ..., x,)and N =(x1,..., %X, 1, x, T 1). Let [ =M n N and
put R =K +1I By [8, E2.1, p. 204] R is a local (Noetherian) domain with maximal
ideal I and integral closure R'. Since IR' < I = R, we have R' < I 'sothat I, =11t
follows easily that I is an F.-ideal of D [2, Theorem 34.1(4)]. We then claim that
every ideal A of R is an F-ideal. For suppose xJ < A with J an (finitely generated)
ideal of R and J,=R. Since 12 I we have 1 - JZ I so that J = R. Thus x € A.

Now assume n > 2 and let Q be the prime ideal of R’ generated by x; and x,. Then
Q is also a prime ideal of R, since Q < I. We shall show that Q is not a #,-ideal of R.
Since B = (x1, x,)R < Q it suffices to show B, Z Q. As Q is contained properlyin [, it
is enough to show B, = I, or, equivalently, B l'cI Now, B'Q=B 'BR'cR’
and B~'= Q7", where Q™' is taken with respect to R’. Since in R’ Q contains the
regular sequence xj, X, Q '=R' (as in the proof of Proposition 3.3). Thus
B 'cQ '=R'cI asdesired.

4. Star-operations in D[x]

In this section we show that ¢-ideals and Fo-ideals extend, respectively, to ¢-ideals
and F.-ideals in D[x], x an indeterminate. We further show that the F-and
F-operations are the same in D[x]. Lemma 4.1 is due to Nishimura [9, Proposition
7]

Lemma 4.1. Ler I € (D). Then (ID[x]) ' =I1"'D[x].

Proof. Note that if u € K(x) with ul < D[x] then, since I #0, u=k(x)e K[x]. Let
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A denote the fractional ideal of D generated by the coefficients of k. Then
k(x)e(ID[x]) ' k(x)ID[x]=D[x] AJd <D
S Accl ' e k(x)el 'D[x].

Lemma 4.2. Letfi(x), ..., fulx)e D[x]. Then
(fi,- - f) " nK[x]=D[x]& (L A;) ' =D,

Proof. Suppose k(x)e K[x] and k(x)fi(x)e D[x] for each i=1,2,...,n. By [2,
Theorem 28.1] there is a positive integer m with A7 A, = AT'A, for each i. Since
A =D we have Y A7 A, = D, whence A, (Y A7), = D. However, assuming
(X Azp)'=D, we have (Y Al'""), =D also. Thus A, <D and k(x)eD[x]. The
converse is trivial.

Proposition 4.3. If * denotes either the v-, the t-, or the F-operation, then (ID[x])* =
I*D(x] for each I € #(D).

Proof. Itsuffices to prove the result for integral ideals I of D. The statement for the
v-operation follows immediately from Lemma 4.1. We next consider the ¢-opera-
tion. We claim that I,D[x] is a t-ideal. To see this let f1,..., f, € .D[x]. Then
2 An<=I, whence, since I, is a t-ideal, (3 A;),<l. Thus (fi,..., ) C
(X AD[x]), = Ap).D[x]c ILD[x], and the claim is proved. It follows that
(ID[x]); = I.D[x]. Conversely, if g(x) € I.D[x], then A, < I, so that A, < B, for some
finitely generated ideal B contained in I. Thus g(x)e A, D[x]< B, D{x]= (BD[x]),.
Since BD[x] is a finitely generated ideal contained in ID[x], g(x)e (ID[x]),, as
desired.

Finally, we let * denote the Fy-operation. An argument analogous to the one just
completed yields I*D[x]< (ID[x])*. To complete the proof, it suffices to show that
I*D[x] is an F-ideal. To this end suppose u(fi(x), ..., f.(x)) = I*D[x], where
ueK(x) and fi(x),...,fa(x)eD[x] with (fi,...,f)»=D[x]. Then uD[x]=
u(fi, ... fa)ecI*D[x]), = D[x], so that u=~h(x)eD[x]. By Lemma 4.2
(X Ay), =D. Again by [2, Theorem 28.1] find m with A7 A, = ATA,, = I'* for
each i=1...,n Then A,(Y A" < I*. However, (L A7), =D and I'* is an
F-ideal, so that A, < I'*. It follows that h(x) e I*D[x], and [*D[x]is an F-ideal.

Lemma 4.4. Let A be a finitely generated ideal of D[x] with A~' = D[x]. Then
() AnD#0,
(i) there is an element f € A with A;' =D, and
(i) if a is a nonzero element of AN D and f € A with A,Tl =D, then (a, f)_l =
D[x].

Proof. Suppose A "D =0. Then AK[x]=k(x)K[x] for some k(x)e K[x] with
deg(k)>0. Hence A(k(x))”' is a finitely generated D[x] submodule of K[x].
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Choose ¢ # 0 in D with cA(k(x)) ' < D[x]. Then c(k(x))"'e A™'—D[x], proving
(i). To prove (i) assume A =(fy,...,f,). If fx)=Y1_, x“ " "Mfi(x), where N>
max{deg(f)|i=1,...,n}, then A,=Y A;,. By Lemma 4.2 A;'=(} A;) ' =D.
Finally, let a, f be as in (iii). Since (a, f)nD #0, (a, A =(a, /) ' nK[x]. Thus,
since D =(Ap), c(A.+Ap), =D, (A, +Af)‘1 =D, and (a, /)" =D[x], again by
Lemma 4.2.

Theorem 4.5. Every F-ideal of D[x] is an Fe-ideal.

Proof. Let I be an F-ideal of D[x], and suppose gA < I with A finitely generated
and A, =D[x]. By Lemma 4.4 there are elements fe A and a € A n D such that
(a, o = D[x]. Of course g(a, f)= I, whence ge [, as I is an F-ideal.

Proposition 4.6. Let I € F(D). Then the following statements are equivalent:
(1) Iis an Fw-ideal of D,
(2) ID[x] is an Fu-ideal of D{x],
(3) ID[x] is an F-ideal of D[x].

Proof. The equivalence of (2) and (3) follows from Theorem 4.5, and the
equivalence of (1) and (2) follows easily from Proposition 4.3.
We next characterize those primes of D[x] which are F-primes.

Proposition 4.7. A prime ideal P of D[x] is an F-prime & either PnD =0 or P
contains no elements f with A;" = D.

Proof. If P~ D =0, then P is minimal over a principal ideal, which implies that P is
an F-prime by Proposition 1.1(5). Suppose that A7 " # D for each f € P. If P is not an
F-prime, then by [1, Proposition 1.4] there are elements f1, f> € P with (fi, f2), =
D[x]. In this case we may use Lemma 4.4 to find fe(fi, f») < P with A;l =D, a
contradiction.

Conversely, suppose P N D # 0 and there is an element f € P with A;'=D. Then,
choosing p # 0 in P, one shows easily that (p, f), = D[x], and P is not an F-prime.

We close by giving some conditions on D[x] that ensure that every t,-prime of
D[x]is a t-prime.

Proposition 4.8. Assume that D is integrally closed. Then every ty-prime of D[x]is a
t-prime.

Proof. Let P be a t,-prime of D[x]. Suppose (f1,...,f.) S P. Pick fe(fi,....fu)
with Af = Ag +- - -+ Ag. By Proposition 1.1(5) we may assume P n.D # 0. Choose
p # 0 in P and consider the ideal (p, f). Since P is a #,-prime we have (p, f), = P. We
shall complete the proof by showing that (f1, .. ., f.) € (p, f).. For this it is enough to
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show that (p, /)" < (f1, -, f.) " Suppose u < (p, /). Since p #0we have u =k(x) e
K[x] Then f(x)k(x)eD[x]. By [2, Theorem 28.1] choose m so that A;A Af" =
AF A = Af'Ap < AT Since D[x]is integrally closed, we have A;A, < D, whence
AfAr €D for each i=1,...,n Hence k(x)fi(x)e D[x] for each i, and k(x)e
(fi, - ,f,,)_l, as was to be shown.

Proposition 4.9. Assume that I is finitely generated for every 2-generated ideal I of
D[x].(This occurs, for example, when D[ x] is coherent.) Then every t,-prime of D[x ] is
a t-prime.

Proof. Let P be prime in D[x] with (fi,..., fu,) € P. Choose p, f as in the above
proof. If k(x) e (p, ) ', then A7 "' A, = AT' A < D, where m = deg(k) ([2, Theorem
28.1)). Hence foreachi=1,...,n, A7"" A, <D and f;(x)" "'k(x)e D[x]. If X is a
finite base for (p, 7 et N >max{deg(k)|k(x)e X}. Then f.(x)"k(x)e D[x] for
each k(x)e X, and (f1, ..., /M) (p, /) =D[x]. Choose M so that (fi,..., f)M <
(Y, ... ). Then

((fl: Y 7fn)u)M g(((fl) EEE 7fn)v)M)v :((fla .. 5fn)M)z.)

g(ffﬁ- "9flt:l)1)§(p’f)v gP‘
This completes the proof.
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