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Abstract
Anderson, D.D., D.F. Anderson and M. Zafrullah, Splitting the t-class group, Journal of Pure
and Applied Algebra 74 (1991) 17-37.

Let D be an integral domain and § a saturated multiplicatively closed subset of D. We say that
S is a splitting set if for each 0# d € D, we can write d as the product d = sa, where s € S and
a€ D, with s'"DNaD =s'aD for all s'€S. An important example of a splitting set is the
multiplicatively closed set generated by a set of principal primes having the property that for
cach 0+ d € D, there is a bound on the length of a product of these primes dividing d. If S'is a
splitting set, then T'={0#r€ D | tD NsD = tsD for all sE€ S} is a saturated multiplicatively
closed subset of D. We show that the map from the monoid T(D) of t-ideals of D to the
cardinal product T(D;) X, T(D,), given by A— (AD,, AD,), is an order-preserving monoid
isomorphism. Moreover, the induced map Cl,(D)— Cl (D) x Cl(D,), given by [A]—
([AD],[AD,]), is an isomorphism which splits the t-class group of D. Applications and
examples of this splitting are given.

1. Introduction

Let D be a Krull domain. If S is a multiplicatively closed subset of D generated
by principal primes, then it is well known that the natural map CI(D)— Cl(Dy) is
an isomorphism, where CI(D) is the divisor class group of D. The converse is also
true. Thus, for example, D is a UFD if and only if Dy is a UFD. One of the
purposes of this paper is to extend this result to arbitrary integral domains as
follows. Let D be an integral domain and let S be the multiplicatively closed set
generated by a family { p,} of principal primes having the property that for any
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0 x € D, there is a bound on the length of a product of the p_’s dividing x. (This
is the case, if for example, D has ACC on principal ideals.) Then the natural
homomorphism Cl,(D)— Cl,(Dy) is an isomorphism, where Cl,(D) is the t-class
group of D, that is, the group of t-invertible t-ideals of D modulo the subgroup of
nonzero principal fractional ideals of D. (See Section 2 for the definition of a
t-ideal.) This has also been shown by Gabelli and Roitman [14] using entirely
different techniques.

Actually, we prove a much more general result. Let D be an integral domain
and let S be a saturated multiplicatively closed subset of D having the property
that for each 0# d € D, we have d = sa for some s € S and a € D with s'D N
aD = s'aD for all s’ € S. We call such an S a splitting multiplicatively closed set.
Then the set T={0#t€ D |sDNtD =stD for all s€ S} is also a saturated
multiplicatively closed subset of D. We show that the map T7T(D)—
T(Dg) X . T(D;), given by A—(ADg, AD,), is an order-isomorphism from the
monoid of fractional t-ideals of D to the cardinal product of the monoids of
fractional t-ideals of D¢ and D,. (See Section 2 for the definition of a cardinal
product.) We also show that A € T(D) is t-invertible (respectively, principal) if
and only if both AD; and AD, are t-invertible (respectively, principal). Thus we
get an isomorphism Cl (D)— Cl,(Dg) X Cl,(D;) given by [A]— ([ADy], [AD]).
In particular, the natural map Cl,(D)— Cl,(D;) is surjective. If S is generated by
principal primes as in the preceding paragraph, then S is a splitting multiplicative-
ly closed set and D, is a UFD, so CI(D;)=0. This gives the isomorphism
Cl(D)=Cl/(Dy) mentioned in the preceding paragraph.

This splitting of the t-class group can also be used to prove certain ‘Nagata-
type’ theorems: if Dg has property X, then D has property X.

Section 2 first reviews some of the necessary facts about t-ideals and the t-class
group. Splitting multiplicatively closed sets are then defined and are related to the
group of divisibility. Section 3 shows that not only does a splitting multiplicatively
closed set split the group of divisibility, but it also splits the monoid of t-ideals and
the t-class group as well. Examples and Nagata-type theorems are given in the
final Section 4.

2. Splitting sets and the monoid of t-ideals

Let D be an integral domain with quotient field K and group of units U(D).
Recall that for a nonzero fractional ideal A of D,

A, =AY '=[D:[D:A]l=N{xD|xD2A where x€ K} .
An ideal A is said to be a v-ideal, divisorial, or reflexive if A= A . For properties

of the v-operation, the reader is referred to [15, Section 34]. However, we will be
mostly interested in the t-operation A— A, where
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A, =U{J,|0#JC A with J finitely generated} .

An ideal A is called a t-ideal if A= A,. A t-ideal (respectively, v-ideal) A has
finite type if A= (a,,...,a,), (respectively, A=(a,...,a,),) for some finite
subset {a,,...,a,} C A. While the set of v-ideals may be a proper subset of the
set of t-ideals, evidently the set of finite-type v-ideals coincides with the set of
finite-type t-ideals. An ideal A is said to be t-invertible if there exists an ideal B
with (AB), = D. In this case, we may take B= A" A t-invertible t-ideal has
finite type. For properties of the t-operation, the reader is referred to [18] and
[19] and for t-invertibility [17] and [20] may be consulted.

The set T(D) of fractional t-ideals is a monoid with identity D under the
t-product A* B=(AB),. Now T(D) is partially ordered by reverse inclusion:
A =B if and only if BC A. It is easily seen that this partial order is actually a
lattice order. The positive cone T, (D) of this partial order is the submonoid of
integral t-ideals. The subgroup of invertible elements of T(D) is the group TI(D)
of t-invertible t-ideals. As previously remarked, a t-invertible t-ideal has finite
type, so TI(D) is actually a subgroup of T*(D), the monoid of finite-type t-ideals.
In fact, TI(D) is a directed partially ordered group under =. Further, let /(D) be
the group of invertible fractional ideals and P(D) its subgroup of principal
fractional ideals. Thus we have

P(D)CI(D)C TI(D)C T*(D)C T(D) .

Each of these monoids inherits the partial order from 7(D) and in each case the
positive cone corresponding to this partial order is the set of integral members of
that monoid. For example, I, (D) is the monoid of integral invertible ideals.
The group P(D) is order-isomorphic to G(D)= K*/U(D), the group of
divisibility of D, partially ordered by xU(D)=yU(D)& x|y in D, via the
correspondence xD <> xU(D). Also, we have the two abelian groups

Pic(D) = I(D)/P(D)C TI(D)/P(D) = Cl(D),

where Pic(D) is the Picard group of D and CI,(D) is the t-class group of D. When
D is a Krull domain, Cl,(D) is just the divisor class group CI(D). For properties
of the t-class group, the reader is referred to [7-10].

Given two partially ordered monoids (M, <) and (N, =), the cardinal product
M X N of M and N is the monoid direct product M X N with the partial order
(a,b)=(c,d)yoa=cand b =d. Sometimes we use the notation M &_ N and say
cardinal sum when we are dealing with an internal direct product.

Mott [21, Theorem 2.1] showed that there is a one-to-one correspondence
between the set of convex directed subgroups of P(D)= G(D) and the set of
saturated multiplicatively closed subsets of D. This correspondence is given as
follows. If S is a saturated multiplicatively closed subset of D, then (§) =
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{s,5;'D]s,,5,ES} is a convex directed subgroup of P(D) with positive cone
(S),={sD|s€S}. (In G(D), we may identify (§) with U(Dy)/U(D); so
G(D)/(S) is order-isomorphic to G(Dy).) Conversely, if H is a convex directed
subgroup of P(D), then S={s€ D |sD €& H,} is a saturated multiplicatively
closed subset of D.

In [22], Mott and Schexnayder considered the question of when (S) = U(Dy)/
U(D) is a cardinal summand of P(D)= G(D), that is, when there is a subgroup
H of P(D) with (S)®_ H = P(D). (Here, of course, H is order-isomorphic to
P(D)/(S)= G(Dy).) They gave a condition ([22, Proposition 4.1], essentially (4)
of Theorem 2.2) in terms of multiplicatively closed subsets of D for () to be a
cardinal summand of P(D), which essentially amounts to saying that (S), is a
cardinal summand of P, (D). They showed that if S is generated by principal
primes satisfying certain conditions (which will be given later in this section), then
(S) is a cardinal summand of P(D). They then observed that this approach could
be used to prove known results such as if D is a GCD domain (respectively,
UFD), then D[X] is a GCD domain (respectively, UFD); and certain ‘Nagata-
type’ theorems: if S is generated by principal primes (with (S) being a cardinal
summand) and if Dy is a GCD domain (respectively, UFD), then D is a GCD
domain (respectively, UFD). Additional Nagata-type theorems were given in [3],
where an alternative characterization for (S) being a cardinal summand was
used. It is that definition that we now give.

Definition 2.1. A saturated multiplicatively closed subset S of D is said to be a
splitting set if for each 0# d € D, we can write d as the product d = sa for some
s€ S and a€ D with s"D NaD =s'aD for all s' € S.

For S any multiplicatively closed subset of D, let
T={0#teD|sDNtD=stD for all s € S}

be the set of all nonzero elements of D that are lcm-prime to each element of §.
(Observe that s and ¢ are lem-prime (that is, sD N tD = stD) if and only if s and ¢
are v-coprime (that is, (s,t), = D).) It is easily proved that 7 is a saturated
multiplicatively closed subset of D. Thus § is a splitting set if and only if
ST = D —{0}. Hence if S is a splitting set, each nonzero clement d of D may be
written in the form d = st for some s €S and r€ T, and this factorization is
unique up to unit factors. We will call T the complementary multiplicatively closed
set for S or just the m-complement for S. Note that T is also a splitting
multiplicatively closed set with S for its m-complement. Several conditions
equivalent to S being a splitting multiplicatively closed set are given in the next
theorem.

Theorem 2.2. The following conditions are equivalent for a saturated multiplica-
tively closed set S in an integral domain D.
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(1) S is a splitting multiplicatively closed set.
(2) (S) is a cardinal summand of P(D), that is, there is a subgroup H of P(D)
with P(D) = (S)®_ H.

(3) If A is an integral principal ideal of Dy, then AN D is a principal ideal of D.
(4) There exists a multiplicatively closed set T such that
(a) each element 05 d € D may be written as d = st, where s € S and t € T, and
(b) one of the following equivalent four conditions holds:

(i) If st=s't", where s,s' € Sand t,t' € T, then s’ = su and t' = tu " where

ue U(D).

(i1) If d = st where s€ S and t € T, then dD¢ N D = tD.

(iii) For each s€ S and each t€ T, sD N tD = stD.

(iv) For each t€ T, tDgN D =1tD.

Proof. The equivalence of (2) and (4) is essentially given in [22, Proposition 4.1],
while the equivalence of (1) and (3) is given in [3, Corollary 1.3]. Certainly
(4)=>(3) and the remarks given in the paragraph preceding Theorem 2.2 show
that (1)=>(4). O

Let S be a splitting multiplicatively closed subset of D. It is easily seen that the
saturation T of the multiplicatively closed T from (4) of Theorem 2.2 is TU(D)
and that T={0#(E€ D |sDNtD=stD for all s€ S}, that is, 7 is the m-
complement for §. It is also easily seen that D = D¢ N D,. Moreover, G(Dy)
(respectively, G(D,)) is order-isomorphic to { T') (respectively, (S)) and P(D) =
(SYBAT)=G(D;)PD,. G(D,). Note that condition (4) of Theorem 2.2 states
that P, (D)=(S),®.(T),. We next define an important special type of
splitting set.

Definition 2.3. A splitting multiplicatively closed subset S of D is said to be an lcm
splitting set if for each s € S and d € D, sD N dD is principal.

Our next proposition gives several characterizations of lem splitting sets. Of
special interest will be lem splitting sets generated by principal primes, see
Definition 2.5.

Proposition 2.4. The following conditions are equivalent for a splitting multiplica-
tively closed subset S of D.

(1) S is lem splitting.

(2) Fors,,s, €S, s,DNs,D is principal.

(3) Fors,,s, €S, s,DNs,D=sD for some s€ES.

(4) D, is a GCD domain, where T is the m-complement for S.

Proof. (1)=>(2) Clear.

(2)=(3) Suppose that s, DNs,D=xD. Write x=s't', where s'"€ S and
t'eT. Then 'D=s't'DsND=(s,DNs,D)D;N D =D, sot' €U(D). Hence
sisDNs,D=s"D.
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(3)=(4) Every principal ideal in D, has the form sD, for some s € S. Since
sD;Ns,D;=(s;DNs,D)D;is principal, the intersection of two principal ideals
of D, is principal. Thus D, is a GCD domain.

4)=> (1) Write d=ys,t,, where s, €S and ¢, € T. Then sDNdD =sD N
sit;D=sDNs DNt,D. By the proof of (2)=(3), it is enough to show that
sD Ns,D is principal. For then sDNs,D=s,D for some s, €S, and hence
sDNdD=s,DNtD=s,tD. Since D;is a GCD domain, sD, N s,D, is princi-
pal. Since T is also a splitting set, (sD, Ns,D,)N D is principal. Thus sD N
s D=6D,ND)N(s,D,ND)=(sD,Ns,D;)N D is principal. [

Definition 2.5. A set {p,_} of principal prime elements is said to be a splitting set
of principal primes if the saturated multiplicatively closed set {up, -~ P, | UE
U(D), p,, €{p.}, n=0} generated by the p,’s is a splitting set.

It is easily seen [3, Proposition 1.5] that a set {p,} of principal primes is
splitting if and only if (1) for each «, (,_, p” D =0 (equivalently, ht p,D =1)
and (2) for any sequence {p, } of nonassociate members of {p, }, nr_, p. D=
0. In the terminology of Mott and Schexnayder [22], { p,} has the UF-property.
Also, if D satisfies the ascending chain condition on principal ideals, or more
generally, if D is atomic (that is, every nonzero nonunit of D is a finite product of
irreducible elements), then any saturated multiplicatively closed set generated by
principal primes is a splitting multiplicatively closed set [3, Corollary 1.6].
However, in general a saturated multiplicatively closed set generated by principal
primes need not be a splitting set. For a valuation domain (V, M) with principal
maximal ideal M = pV, {p} is a splitting set of primes if and only if V has rank
one. Let E be the ring of entire functions and let S be the saturated multiplicative-
ly closed subset of E generated by the principal primes of E. Then S is not a
splitting set. Here while each principal prime has height one, so (1) is satisfied,
condition (2) is not satisfied.

If § is generated by a splitting set { p,} of primes, then every principal ideal of
D, (where T is the m-complement for §) is a product of principal prime ideals of
the form p,D,. Hence D, is a UFD. Since a UFD is a GCD domain, § is an
lem splitting set by Proposition 2.4. Conversely, suppose that S is a splitting
multiplicatively closed set and that D, is a UFD, where T is the m-complement
for S. For s € S a nonunit, we may write sD, = p,D, -+ p,D,, where p, € § and
p;D is a principal prime ideal of D,. Since T is also a splitting set, p,D = p,D; N
D is a principal prime ideal. Thus S is generated by a set of principal prime
elements, necessarily an lem set of principal primes, since S is an lem splitting set.
We summarize these equivalencies in the next proposition.

Proposition 2.6. The following conditions are equivalent for a saturated multiplica-
tively closed subset S of D.
(1) S is generated by a set of prime elements {p,} satisfying (a) for each «,
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M _, p"D =0, and (b) for any sequence { P.,} of nonassociate members of {p,},
- P, D=0.
(2) S is generated by a splitting set of principal primes.
(3) S is generated by a set of principal prime elements and S is a splitting set.
(4) S is a splitting set and D is a UFD, where T is the m-complement for S. [

Thus a splitting set generated by principal primes is an lcm splitting set. For
atomic domains (for example, domains with ACC on principal ideals, Noetherian
domains, or Krull domains), the converse is also true.

Corollary 2.7. Let D be an atomic integral domain. Then a saturated multiplica-
tively closed subset S of D is an lcm splitting set if and only if S is generated by
principal primes.

Proof. (&) Suppose that S is generated by principal primes. Since the conditions
of Proposition 2.6(1) are obviously satisfied, S is an lcm splitting set.

(=) Suppose that S is an lcm splitting set for D and let T be the m-complement
for S. Since P, (D) is order isomorphic to P, (D) x_P,(D,) by Theorem 2.2
and the remarks following it, D, is atomic. (The fact that D, is atomic also
follows from [3, Corollary 2.2].) By Proposition 2.4, D, is a GCD domain. Thus
D, is an atomic GCD domain and hence is a UFD. By Proposition 2.6, § is
generated by principal primes. [

Examples of lcm splitting sets not generated by principal primes will be given in
Section 4.

3. Splitting the t-class group

Let S be a splitting multiplicatively closed subset of D with T the m-
complement for S. We have seen in the previous section that each nonzero
principal ideal dD of D has a unique representation of the form dD = (sD)(tD)
(=sDNtD), where s € S and t € T. Moreover, sD =dD, N D and tD =dDgN
D. Stated in terms of the monoid P, (D) of nonzero principal ideals of D, we
have that the map P, (D)— P, (D) X.P.(D;), given by A— (ADg, AD;), is a
monoid order-isomorphism. Or, in terms of the group of all nonzero principal
fractional ideals of D (respectively, the group of divisibility of D), we have that
the map P(D)— P(Dy) X . P(D;), given by A— (ADg, AD,) (respectively, the
map G(D)— G(D,) <. G(D,), given by xU(D)— (xU(Dy), xU(Dr))), is an
order-isomorphism.

The purpose of this section is to show that similar results hold for the monoid of
t-ideals and the t-class group. We show that if § is a splitting multiplicatively
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closed set with m-complement 7, then the map T(D)— T(Dg) X T(D,), given
by A—(AD,, AD;), is an order-isomorphism. Moreover, the image of P(D)
(respectively; TI(D), T*(D)) under this map is P(Dg) X . P(D,) (respectively;
TI(Dg) X . TI(D,), T*(Dg)*x.T*(Dy)). Hence the map Cl(D)— CI,(Dg) %
Cl (D), given by [A]—= ([AD;], [AD]), is a group isomorphism. In particular,
Cl(D)— Cl,(Dy) is surjective. Here as usual, [ A] denotes the equivalence class
of A€ TI(D) in Cl (D).

The next lemma is the key observation needed to prove Theorem 3.2 which
states that if S is a splitting multiplicatively closed set, then a t-ideal may be
written as a t-product of an ideal generated by elements from § and an ideal
generated by elements from 7', the m-complement for S.

Lemma 3.1. Let S be a splitting multiplicatively closed subset of D with T the
m-complement  for S. Let s,,...,s,€S and t,...,t,€T. Then

> n

(sltl’ Tt Sntn)v = ((Sl’ st Sn)(tl’ Tt l.n))v'

Proof. Put s=s,...s,, §,=s/s,, t=1,...t, and i, =t/t,. Note that for 1=

i,j=n,§i;D=3§DNID since §,€S and 7, € T. Then
Syt syt t=s ' DN ' D=5 '( §f.D>

while

(5o ns )t "= () s, 't;'D :s"‘f'( .e,i,,D) :

1=i,j=n =i, j=n

Since

>

M §iD= (\ ($,DNiD)y=(\EDNiD)Y=()§iD,
1=i,j=n 1=i,j=n i=1 i=1

we have that (s,¢,,...,s,6,)"  =((s;,...,s,)(,...,t,)) ", and hence the
desired result. [

Theorem 3.2. Let S be a splitting multiplicatively closed subset of D with T the
m-complement for S. Let A= ({a,}) (each a, #0) be an integral ideal of D. For
each «, write a, = st,, where s, €S and t, € T. Then A, = (({s,})({t,})),. In

particular, A = ((S,)(T,)),, where S, ={s € S |st€ A for some t€ T} and T, =
{(teT|ste A for some sE S).

Pr00f° Certainly A = ({aa}) = ({Sat(x}) g ({S(r})({la})’ SO AI g (({S(V})({[(v}))l‘
Conversely, let 07 x & (({s,})({,})),. Then x €((sz, ..., 5)(t, -1, )
where s, ... s, E{s, }and ¢ ... 1 {1} Thus
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xXE ((sﬁl, NP VI ’Svm)(tﬁ.’ RPN P tym))v
= (SBItBN T SB,,tﬁn’ SVlt“Yl’ T S%nt“/m)v

=(ag,... ap,0a,,...,a,) CA,
where the next to the last equality follows from Lemma 3.1. O

The next theorem concerns the relationship between localization at a splitting
multiplicatively closed set and the t-operation.

Theorem 3.3. Let S be a splitting multiplicatively closed subset of D and let T be
the m-complement for S. Let A= ({a,}) (a,#0) be an integral ideal of D. For
each a, let a,=s,t,, where s, €S and t, € T. Then (ADg) N D =({t,}),. In

particular, if A is generated by elements of T, then (ADg), N D= A, and hence
(ADy), = A Dy.

Proof. Since AD¢ = ({t,})D;, it suffices to prove the result where eacha, =1, €
T. Now A, C(A D), N D =(AD;),N D since (ADg), = (A,Dy), ([19, Lemma
3.4] or [25, Lemma 4]). Let 0# x € (AD,), N D,sox&€((t,,...,t,)Dg), N D for
some finite subset {f,,...,t,} C{r, }. Write x = st, where s €S and t € T. Then
te€((t,, ..., t,)Dy),, so t((t,,...,t,) 'Dg)=1t(t,,...,t,)Ds) ' C Dg. Hence
Wt;'DgN---Nt,"'Dg)C Dy. Multiplying both sides by ¢, . . . t, yields that

ty. .. t,DgN---Ntt,...1, DgCt ...1,Dg.

n—1

Contracting back to D, Theorem 2.2 gives that

t,...t DO---N0it,...t, DCt,...1,D.

n—1 1
Then dividing by ¢, . .. ¢, gives that
Wt,,....t,) '=u;'DN---Nu,'DCD.
Hence r€(¢,,...,t,),. Thus x€ A,. The remaining statements arc now
immediate. [l

Corollary 3.4. With the notation of Theorem 3.3 let §# S, C S and 0# T, C T.
Then (S,),N(T), = ((S)(T))),.

Proof. Now (S,),N(T,), is a t-ideal, so by Theorem 3.2 (S$,) N(T)), =
((S,)(T,)),, where S,C S and T,CT. Now (T),2((5,)(T,)), 2 (5,)(T,), so
(T) Dy 2 (S,)(T,) Dy = (T,)Dg. Hence

(1), = (T)Dg) "D =(T)DsND 2(T,)Dgn DD (T5,) .
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By similar reasoning, we also have (S,), D (S,). Hence

(S0 N (T = ((S)(T)) € (S)(T1) ),
=((S)(T)), ) N(TY),. O

For an arbitrary multiplicatively closed subset S of an integral domain D, if A is
a t-ideal, AD¢ need not be a t-ideal [26]. The next corollary shows that this cannot
happen if S is a splitting set.

Corollary 3.5. With the notation of Theorem 3.3, if B is an (integral) t-ideal of D,
then BDg is an (integral) t-ideal of Dg. In fact, for a nonzero ideal A of D,
A,D;=(ADy),. If E is a t-ideal of Dg, then EN D is a t-ideal of D.

Proof. Let A be a nonzero integral ideal of D. By Theorem 3.2 and Corollary 3.4,
we have A, =((S,)(T))), =(S,), N(T,),, for some §, C S and T, C T. Then

ADg=(($),N(T)))Ds=(S,)DsN(T,) Dy
=(T,)Ds=(ADs) N D)Ds = (ADy), .

Dividing through by an appropriate element of D shows that the equality
A,Dg = (ADy), holds for nonzero fractional ideals as well. Hence if B is a t-ideal,
then so is BDg. It is well known and easily proved that if E is a t-ideal of Dy,
where S is any multiplicatively closed set, then £ N D is a t-ideal of D. However,
we offer the following alternative proof for the case where § is a splitting
multiplicatively closed set. If E is an integral t-ideal of Dy, then E = (ADy), for
some integral ideal A of D generated by elements of 7, and hence EN D =
(ADg), N D= A, is a t-ideal by Theorem 3.3. [

Our next theorem summarizes our observations that a splitting multiplicatively
closed set S, with m-complement 7, gives both a product and intersection
decomposition for integral t-ideals.

Theorem 3.6. Let S be a splitting multiplicatively closed subset of D and let T be
the m-complement for S. Let A be a nonzero integral ideal of D.

(1) There exist subsets S, C S and T, C T so that A, = ((S,)(T,)),. Moreover,
this product representation is unique in that (S,),=AD;ND and (T,), =
ADgN D.

(2) There exist subsets S, C S and T, C T so that A, = (S,),N(T,),. Moreover,
this intersection representation is unique in that (S,),= A D, N D and (T,), =
AD;ND. Thus A, = (ADg),N(AD;),, so the t-operation on D is induced by the
t-operations on D¢ and D .
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Proof. By Theorem 3.2 and Corollary 3.4, the representations given in (1) and
(2) exist. If A, = ((S)(T))),, then A, = (($,)(T)), =($)). N (T)); s0

ADg=(($).N(T))Ds=(S) DsN(T,)Ds=(T)) Dy,
and hence
ADsND=(T,)DsND=((T)Dg) ND=(T,),.

But T is also a splitting multiplicatively closed set with § for its m-complement.
Hence A,D,N D =(S,),. This proves (1) and the first part of (2). Since
D=DsND,, (ADy),N(AD;), C D, and hence

(ADg), N (AD;), = ((ADs) N D)N ((AD;) N D)
:(AtDSﬂD)ﬂ(A[DTﬂ D):(Tl)lﬂ(sl)t: Al N

Dividing through by an appropriate element of D shows that for any nonzero
fractional ideal A of D, A, = (AD;), N (AD,),, that is, in the terminology of [1],
the t-operation on D is induced by the t-operations on Dg and D,. [

Suppose that P is a prime t-ideal. Then from P=(PD;N D)N(PD; N D) we
see that either P = PD¢N D or P= PD, N D. Thus either PNS=Por PNT=
@, but not both; and there is a bijection between the prime t-ideals P with
PN S= (respectively, PN T =) and the prime t-ideals of Dg (respectively,
D,). Moreover, this correspondence preserves maximal t-ideals.

Let T, (D) be the monoid of integral t-ideals under the t-product. If A is an
integral t-ideal of D, then ADy is an integral t-ideal of Dy and AD, is an integral
t-ideal of D,. This gives a map 0 : T (D)— T,(Dg) X T, (D;), where 6(A)=
(ADg, AD;). Now

0(A*B)=0((AB),) = (AB),Dy, (AB)D;) = (ABDy),, (ABD),)
= ((ADsBDy),, (AD;BD),) = 6(A)*6(B) .
If 6(A)=0(B), then A= AD¢N AD, = BD;N BD, = B. Finally, if X is an

integral t-ideal of D and Y is an integral t-ideal of D, then XN D and Y N D
are integral t-ideals of D, and hence so is (XN D)N (Y N D). But

0(X N D)N (Y N D))
(XN D)N(YND)Ds, (XN D)N(YND)D,)=(X,Y)

since
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(XND)N(YND)Ds=(XND)D;N(YND)D
=(XND)D;NDy=XNDg=X

and similarly for the second variable.

The map 6 actually extends to an isomorphism 6 : T(D)— T(Dg) X T(D,),
given by 6(A) =(ADg, AD;), where A is now a fractional ideal of D. Certainly
ADg and AD are still t-ideals and 6 is still a monoid homomorphism. Suppose
that 0(A) = 0(B). Write A=4A" and B= {B’, where A’ and B’ are integral
t-ideals of D. Then § A'D; = } B'Dg implies that bA'Dg = aB'Dg and jA'D, =
+B'D, implies that bA'D, =aB'D,, i.e., 0(bA’)=6(aB’). Hence bA =
aB', so A=} (bA")= 2L (aB')=B. Thus 6 is still injective. Let (E, F)€&
T(Dg) x T(D;). Then E=¢E' and F= ;F’, where e € D, E’ is an integral
t-ideal of Dy, f € D, and F' is an integral t-ideal of D,. Moreover, we can take
e€ Tand fES. Let A be an integral t-ideal of D with AD¢=E' and AD, = F".
Then

LADg=LADg=L'E'=E and LYAD,=1AD,='F =F.

So 6(5A)=(E,F) and hence 6 is surjective. This proves part of our next
theorem.

Theorem 3.7. Let D be an integral domain, S a splitting multiplicatively closed
subset for D, and T the m-complement for S. Then the map
0:T(D)— T(Dy) X, T(D,), given by 0(A)=(AD, AD,), is a monoid order-
isomorphism. Moreover, for A€ T(D), A is integral (respectively; principal, of
finite type, t-invertible) if and only if both ADg and AD , are integral (respectively;
principal, of finite type, t-invertible).

Proof. We have already seen that 6 is a monoid isomorphism. Moreover, 6 maps
the positive cone T, (D) of T(D) to the positive cone (T(Dg)x_ T(D;)), =
T.(Dg) X T, (Dy;)of T(Dg) X, T(D;). Thus A is integral if and only if AD and
AD, are both integral. Also, A is a unit of 7(D) if and only if (ADg, AD,) is a
unit of T(Dg) X T(D,). Thus A is t-invertible if and only if ADg and AD, are
both t-invertible. If A is principal, certainly ADg and AD, are both principal.
Conversely, suppose that AD; and AD, are both principal. Choose 0# a € D so
that aA is an integral t-ideal. Then aAD; and aAD, are both principal, so
aAD¢=1tDg for some tE€T and aAD,=sD, for some s&€S. Thus aA =
(aADgN D)N(aAD, N D)=1tDNsD = stD is also principal. Hence A itself is
principal. To show that A has finite type if and only if both AD; and AD, have
finite type, we may restrict ourselves to integral t-ideals. If A=(a,,...,a,),,
then ADg=(a,,...,a,)Ds=((a,,...,a,)Ds), has finite type, as does
AD . Conversely, suppose that ADg and AD, both have finite type.
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Then ADg=((t,,...,t,)Dg), and AD,=((s,,...,s,,)D;),. For A =
(1, ....8,)0t,...,t,),wehave A{D;= ADgand A{D, = AD,. Hence A, = A,
so A has finite type. [

Corollary 3.8. With the notation of Theorem 3.7, the map 6 : Cl,(D)— Cl (D) x
Cl,(D,), given by 6([A]) = ([ADg],[AD,]), is a group isomorphism. In particu-
lar, the natural map Cl(D)— Cl(Dy) is a group epimorphism and is an iso-
morphism if and only if Cl(D,)=0.

Proof. By Theorem 3.7, the monoid isomorphism 6 : T(D)— T(D,) X T(D,)
restricts to a group isomorphism 6 : TI(D)— TI(D,) X TI(D,), where TI(D) is
the subgroup of T(D) consisting of t-invertible t-ideals. Moreover, the image of
the subgroup P(D) of principal fractional ideals is P(Dg) X P(D,). Thus the
induced map

9:Cl(D)=TI(D)/P(D)— (TI(Dg) x TI(D,))/(P(Dg) < P(D,))
= TID,)/P(Dg) X TI(D,)/P(D,)
= Cl(D;) X Cl(Dy),

given by [A]— ([AD],[AD,]), is a group isomorphism. Hence the map
Cl(D)— Cl(Dy) is surjective and is an isomorphism if and only if Cl(D,) =
0. O

We remark that similar results do not carry over for Pic(D). Suppose that we
are in the set-up of Theorem 3.7. If A is an invertible ideal of D, then certainly
ADg and AD, are both invertible. Thus we get an order-preserving monomorph-
ism I(D)— I(Dy) x_I(D,) by restricting 6 to I(D). However, this map need not
be surjective. For example, let (D, M) be a two-dimensional local Krull domain
that is not factorial but which has a nonzero principal prime p. Take §=
{up" |u€ U(D), n=0}. Then Dy = D[1/p] is a one-dimensional Krull domain,
that is, a Dedekind domain. Now D, can not be a PID, for then D would be a
UFD, and hence by Nagata’s Theorem, D would also be a UFD. Here D, = D,
is a DVR. The map I(D)— I(Dy) X I(D,) cannot be surjective, for I(D) = P(D)
and hence we would have I(Dg) = P(D,), that is, Dy is a PID, a contradiction.
Moreover, the group monomorphism Pic(D)— Pic(Dy) X Pic(D,) need not be
surjective either. For in our example, Pic(D)=0 while Pic(D;)#0. Also see
Example 4.5.

4. Applications

The purpose of this section is to provide applications of the splitting Cl,(Dy) X
Cl, (D) for ClI,(D), where S is a splitting multiplicatively closed subset of D. For



30 D.D. Anderson et al.

the most part, we will be interested in the case where S is an Iem splitting set,
usually where S is generated by principal primes. We then prove ‘Nagata-type’
theorems: if D has property X, then D has property X. Other Nagata-type
theorems are given in [3].

Theorem 4.1. Let D be an integral domain, S an Icm splitting set, and T the
m-complement for S. Then D= D¢N D, where D, is a GCD domain. Every
finite-type integral t-ideal A of D has the form A=s(AD;ND)=s(t,,...,t,),,
where s€ S and t,,...,t, € T. Moreover, the map Cl(D)— Cl(Dy) given by
[A]l—=[ADy] is a group isomorphism.

Proof. By Proposition 2.4, D, is a GCD domain, so Cl,(D;)=0. Hence every
finite-type t-ideal of D is principal. In particular, a finite-type integral t-ideal of
D, has the form sD, for some s€S. Thus A= ((AD,ND)AD;N D)) =
s(ADsN D)Y=s(t,,...,t,), forsomet,...,t, €T. By Corollary 3.8, the natur-
al map Cl (D)— Cl(Dy) X Cl(D;) is an isomorphism. Since Cl (D;)=0, the
natural map given by [A]— ([AD,],[AD;])—[ADy] is an isomorphism. [

Our next result is the special case of Theorem 4.1 where § is generated by
principal primes.

Theorem 4.2. Let {p,} be a set of splitting primes, let S be the saturated
multiplicatively closed subset of D that they generate, and let T be the m-
complement for S. Then D = D¢ D, where D, is a UFD with principal prime
ideals { p,D,}. Every t-ideal A of D has the formp, --- p, B, where B=AD3N
D is a tideal of D generated by elements of T. Moreover, the map
Cl(D)—Cl(Dy), given by [A]—[ADg], is an isomorphism.

Proof. By Proposition 2.6, D, is a UFD. Since every t-ideal of D, has the form
Pa,” " PanDy, the result concerning A follows. The last statement follows from
Theorem 4.1. [

It is known ([16] or [22]) that if S is an lem splitting set and Dy is a GCD
domain, then D is a GCD domain. We extend this result to Prufer v-multiplica-
tion domains (PVMD’s). Recall that an integral domain D is a PVMD if every
finite-type t-ideal of D is t-invertible, that is, T*(D)= TI(D).

Theorem 4.3. Let S be an lcm splitting set for an integral domain D. Then D is a
PVMD (respectively, GCD domain) if and only if D¢ is a PYMD (respectively,
GCD domain). Moreover, Cl(D) is naturally isomorphic to Cl(Dy) via the map
[A]—[AD,].

Proof. It is well known that for any multiplicatively closed set S, if D is a PVMD
(respectively, GCD domain), then Dy is a PVMD (respectively, GCD domain).
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Conversely, suppose that S is lcm splitting and that T'is the m-complement for .
We have an isomorphism T*(D)— T*(Dg) X T*(D;) that takes TI(D) to
TI(Dg) x TI(D;). Since D, is a GCD domain, T*(D,) = TI(D;)= P(D,). Thus
D is a PVMD (respectively, GCD domain) if and only if T*(Dg)= TI(Dy)
(respectively, T*(Dy) = P(Dy)), that is, if and only if Dgis a PVMD (respective-
ly, GCD domain). U

When D is a Krull domain, the natural homomorphism ¢ : CI(D)— CI(Dy) is
surjective for any multiplicatively closed subset S of D; and, as we have already
observed, ¢ is an isomorphism if and only if the saturation of § is generated
by principal primes. However, in general, the natural homomorphism
¢ : Cl(D)—Cl,(Dg) need be neither surjective nor injective. In fact, in [8,
Theorem 4.8], it was shown that for any two abelian groups G and H, there is an
integral domain D and a multiplicatively closed subset S of D with CI (D)= G
and Cl (D)= H. However, in [2, Theorem 2.3], we showed that
¢ : Cl(D)— Cl,(Dy) is injective when S is generated by principal primes. In [14],
Gabelli and Roitman studied conditions under which ¢ is surjective. In particular,
they showed that ¢ is surjective (and hence an isomorphism) when (in our
terminology) S is generated by a splitting set of principal primes. They also gave
an example in which § was generated by principal primes, but ¢ was not
surjective. Note, though, that ¢ may be surjective, and hence an isomorphism,
when S is generated by a nonsplitting set of principal primes. For example, this is
the case if D is a valuation domain of dimension greater than one with principal
maximal ideal M = fD and S={f"}. For, in this case, Cl (D)= Cl(Dy)=0.
Another method for constructing such examples is given in the next paragraph.
Finally, D. Nour El Abidine [11] has shown that ¢ is surjective when S is
generated by principal primes if [D : I] has finite type for each finitely generated
ideal I of D.

Here is an easy way, motivated by [11], to construct examples of integral
domains R with nonsplitting sets S generated by principal primes for which the
natural map Cl,(R)— CI,(R;) is an isomorphism. Let D be an integral domain
with quotient field K and $ a multiplicatively closed subset of D generated by
principal primes {p,}. Let R=D + XK[X]|C K[X]; so R=D+ M with M =
XK[X]. (Alternatively, one may use K[[X]] in place of K[X].) Now each p, € D
is also a principal prime in R since p_ R = p,D + XK[X] is a prime ideal of R. But
in R, M p"RD XK[X], so {p,} is not a splitting set of primes for R. We have
the following commutative square:

Cl(D)—— Cl(D + M) = CI(R)

l lB

Cl(Dg)——Cl(Dg+ M) =Cl(Ry) .

Now each horizontal map is an isomorphism by [8, Theorem 3.12]. By |[2,
Theorem 2.3], a and B are always injective. Clearly « is an isomorphism if and
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only if B is an isomorphism. Suppose that S is a splitting set for D generated by
principal primes, so Cl (D)— Cl,(Dy) is an isomorphism. Thus CI (R)— CI,(Ry)
is an isomorphism, too. Let S be the saturation of S in R. Then S is generated by
a set of nonsplitting primes and Cl (R)— Cl (R;) is an isomorphism. Note that
Cl,(R) can be chosen to be any abelian group.

A Krull domain D is of course characterized by the property that D = D,
where this intersection (running over the height-one prime ideals) has finite
character, and each D, is a DVR. Let us call a domain D weakly Krull if
D=(1{D,|ht P=1}, where the intersection has finite character. Weakly Krull
domains, although not called such, were studied in [5]. An integral domain D is
said to be weakly factorial [4] if every nonzero nonunit of D is a product of
primary elements. It is known [6] that D is weakly factorial if and only if D is
weakly Krull and Cl,(D)=0. A (weakly) Krull domain is said to be almost
(weakly) factorial if some power of each clement is a product of primary
elements, or equivalently, if Cl (D) is torsion ([5]). Finally, an integral domain is
a Mori domain if it has ACC on integral v-ideals, or equivalently, on integral
t-ideals. The next theorem gives a sampling of some Nagata-type theorems that
may be obtained.

Theorem 4.4. Let S be a saturated multiplicatively closed set generated by a set of
splitting principal primes. If Dg is weakly Krull (respectively; weakly factorial,
almost weakly factorial, Krull, almost factorial Krull, factorial, Mori), then so is
D.

Proof. Let T be the m-complement for S. Then D, is a UFD and D = D¢N D,.
Thus if Dy is weakly Krull, Krull, or Mori, then so is D. Moreover, Cl (D)=
Cl(Dg). Hence Cl(D)=0 (respectively, is torsion) if and only if Cl (Dg)=0
(respectively, is torsion). Thus if Dy is weakly factorial, then Dy is weakly Krull
and Cl (Dg) = 0. Thus D is weakly Krull and Cl1,(D) =0, so D is weakly factorial.
The other statements follow in a similar fashion.

The case in Theorem 4.4 where Dy is a Mori domain has been given by
Roitman [24, Theorem 5.1].

Example 4.5. Let D be an integral domain with quotient field K and let X be an
indeterminate over D. Then S = {uX"|u€ U(D), n=0} is the lem splitting
set generated by the principal prime X in D[X] and its m-complement is 7' =
{f(X)€E D[X]| f(0)#0}. Here D[X];s=D[X, X '], and D[X], = K[X], is
a DVR. By Theorem 4.2 the map Cl(D[X])—Cl(D[X, X ']) given by
[A]—[AD[X, X ']] is an isomorphism. The map Cl,(D)— Cl,(D[X]) given by
[A]—=[AD[X]] is an isomorphism if and only if D is integrally closed [13,
Theorem 3.6]. Thus the map Cl,(D)— Cl (D[X, X ']) is an isomorphism if
and only if D is integrally closed. It is interesting to contrast this to the situa-
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tion for Pic(). If D is integrally closed, then the natural map
i : Pic(D)— Pic(D[X, X ']) is also an isomorphism. Although the natural map
@ : Pic(D[X])— Pic(D[ X, X ']) is always injective, unlike the case for the t-class
group, ¢ need not be surjective. In fact, ¢ is surjective if and only if  is surjective
(and hence an isomorphism). We recall that the natural map Pic(D)— Pic(D[ X])
is an isomorphism if and only if D is seminormal and  is an isomorphism if and
only if D is quasinormal, and that a seminormal integral domain need not be
quasinormal [23].

Similar results hold for D[[X]], where X is a power series indeterminate over
D. Then D[[X]]s = D[[X]][X '], where now S = {uX" | u € U(D[|X]]), n =0},
and D[[X]], = K[[X]]N L, where L is the quotient field of D[[X]], is a DVR.

Example 4.5 admits a generalization to semigroup rings which we state as our
next theorem.

Theorem 4.6. Let (G, =) be a lattice ordered abelian group and let I' be a
l-submonoid of G with G, CI'. Then for any integral domain D, S = {uX* | u €
U(D), g€ TI'} is an lcm splitting set for the monoid domain D|X; I'|. Hence the
map Cl(D[X; I'))— Cl(D[X; G)), given by [A]— | AD|X; G|, is an isomorph-
ism. In particular, the map Cl (D[X; G,])— Cl(D[X; G]) is an isomorphism.

Proof. Let K be the quotient field of D. By the proof of [15, Theorem 18.6], the
map w: K[X; G]—= GU{x} given by w(0)=co and w())! , a,X*)=inf{g,}
(where each a, # 0 and the g,’s are distinct) extends to a semi-valuation on the
quotient field of K[X; G]. Moreover, w '(G,) U {0} is a Bézout domain.
Clearly S is a saturated multiplicatively closed subset of D[X; I']. Let

T={X(r X"+ - +r, X" gel'N-T,
g; € I' are distinct with r, %0 and inf{g,,..., g,} =0} .

Alternatively, T={f€ D[X; I'l|w(f)& ' " —I'}. This shows that T is also a
saturated multiplicatively closed subset of D[X; I'].

Let f=Y" ,aX%€D|[X;I'] and let a =inf{g,}. Then a =g,, so g, — a =0,
and hence g,—a € G, CI. Put h;=g,—«a, so h,€I and inf{h,} =0. Then
f=X"h, where h=Y"_, a,X". Now since I'is an I-submonoid, a € I', so X“ € §
and h € T. Moreover, this representation is unique up to units. For if uX*f, =
w' Xf1, where u,u' € UD), g.g' €T, and w(f,),w(f})ETN~TI, then g+
w(f) =g +w(f}). so g=g +(w(f])~w(f,), where w(f{)—w(f,) €N
—1I'. Thus uX® and u’X* differ by a unit factor from D|X; I'].

Now D[X;I'|ly = D[X; G]. It remains to show that D[X; ], is a GCD
domain. We claim that D[X; I'],, 2w~ '(G, ) U {0}. This will show that D[ X; I'],
is a Bézout domain since w™'(G,)U {0} is a Bézout domain. Now a typical



34 D.D. Anderson et al.

element of w™'(G,) may be written in the form

f r]Xgl 4.4 rnXg” B Xgof]

g s X"A+s, X B X"g,

2

where each r,,s,€ D — {0}, each g,,h, EG, C I, and inf{g,} =w(f)=w(g) =
inf{h,}. So f= X*f, and g = X"°g,, where g, = w(f) and h, = w(g). Now g, € T
and g, = w(f)=w(g) = h, implies that g, — A, =0 and hence g, — h,€I'. So

foXo,
~=—-—€eD[X;T],.
" % [X: 1],

Hence w '(G,)U{0}C D[X;I'],. O

For example, we may take G to be a cardinal product of copies of Z and I" to be
the positive cone of G. This gives that Cl (D[{X,}])— Cl(D[{X,, X, '}]) is an
isomorphism. Or suppose that we take G = Z@®, Z, the lexicographic direct sum,
and I'=G,. Then D[X; I'|=D[X,Y,{X/Y"},_]. So

CL(D[X, Y, {X/Y"},_ D =Cl(D[X, Y, X, Y 'D=CIL(D[X, Y]).

Note that if = is a total order on G, then any submonoid I'D G, is an
l-submonoid of G. In particular, for any submonoid I' of Z&®, Z with I'D
(Z®, 7),, we have CI(D|X; I']) =Cl(D[X, Y]).

Example 4.7. Let D be a GCD domain with quotient field K. For f(X) € D[X],
C(f), the content of f, is the ideal of D generated by the coefficients of f. It is
easily seen that the set S= D — {0} is a lem splitting set in D[X] with m-
complement 7= { f(X) € D[X]| C(f), = D}. Here D[X]y = K[X] is a PID, and
D[X], = D", the Kronecker function ring for v, which is a Bézout domain. We
have T(D[X]) = T(K[X]) x. T(D[X];). This gives yet another proof that if D is
a GCD domain, then so is D[ X]. Actually, since D is integrally closed, we have

T(D)/P(D)= T(D[X])/P(D[X])
= T(K[X])/P(K[X]) x T(D[X],)/P(D[X],)
= T(D[X],)/P(D[X],).

If D is a pseudo-principal domain (every v-ideal is principal), then §=
{df |de D - {0}, f€ U(D[[X]])} is a splitting multiplicatively closed set in
D[[X]], with m-complement T={f(X)=Y,,aX €D[X]]|({a}),=D}.
Here D, D[[X]], D[[X]]s, and D[[X]], are not so easy to describe or relate. For
example, it is well known that D may be a UFD while D[[X]] need not be a UFD
[12].
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Example 4.5 admits another generalization which may be used to give examples
of splitting sets S with neither S nor its m-complement 7" an lem splitting set.

Example 4.8. Let AC B be a pair of integral domains. We say that this pair
satisfies (x) if (1) for 0# b€ B, b=au where a€ A and u€ U(B) and (2)
b=au=a'u' (a,a’ € A, u,u’ € U(B)) implies u/u’ € U(A). Note that the pair
A C B satisfies () precisely when the map P, (A)— P, (B) given by Ax— Bx is
an isomorphism or, equivalently, when P(A)— P(B) is an order-isomorphism.
The following pairs of domains satisfy (*):

(1) AC A, (2) KC L, where K and L are fields (note that if A C B satisfies (*)
and if A or B is a field, then so is the other), (3) A C A, A is the completion of A,
where A is a quasi-complete local domain (that is, the map J— JA is a lattice
isomorphism), and (4) AC A({Y,})={flg| f.e € A[{Y,}], C(g)= A}, where
A is Bézout.

Let D= A+ XB[X]. Let S={uX"|u€ U(A) for n=0 and u€ U(B) for
n=1}. Then S is a saturated multiplicatively closed subset of D. In fact, S is the
saturation of {X"}. Let T={f(X)€ D| f(0)#0}. Clearly T is a saturated
multiplicatively closed set. Now by (1) of (x), ST =D — {0}. By (2) of (*) this
representation is unique up to unit factors. Hence S is a splitting multiplicatively
closed set with m-complement 7.

Here D= B[X,X '] and D, =(K+ XL[X]);., where T'={f(X)E K+
XL[X]] f(0)#0} (K (respectively, L) is the quotient field of A (respectively,
B)). Note that D, is atomic with irreducible elements X, where u € U(B). In
fact, D, has ACC on principal ideals. Thus § is lem splitting <D, is a GCD
domain& D, is a UFD&S is generated by principal primes< XD s
prime & A = B. In this case, K= L, so D, = K[X], = K[X],is a DVR. T'is
lem splitting<> Dy = B[X, X '] is a GCD domain< B is a GCD domain& A is a
GCD domain; while T is generated by principal primes< Dg= B[X, X 'lis a
UFD& B is a UFD < A is a UFD.

Thus neither S nor T is lem splitting if and only if A C B and B is not a GCD
domain. Thus if A is a quasi-complete local domain that is not complete and not a
UFD, then in D = A+ XA[X] we get a multiplicatively closed set S such that
neither S nor its m-complement is lem splitting.

If D is weakly factorial, then every saturated multiplicatively closed subset of D
is a splitting set, in fact, this property characterizes weakly factorial domains [6,
Theorem]. Moreover, if D is weakly factorial, then the finite-character repre-
sentation D =[(1{D,|ht P=1} gives rise to the order-isomorphism
G(D)-—>69c G(D,). We next show that this isomorphism may be extended to
T(D).

Theorem 4.9. Let D be weakly factorial. Then the natural map
T(D)—»EBL_{T(D,,) ht P =1}, given by A—(ADp),, p-,, is an order-isomor-
phism.
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Proof. Since D is weakly factorial, § = D — P is a splitting multiplicatively closed
set. This gives rise to the order-preserving homomorphism 7(D)— T(D,), given
by A— AD,. Since D=\ {D,|ht P=1)} has finite character, we get an
order-preserving homomorphism 6: T(D)— @c {T(D,)|ht P=1}, given by
0(A)=(AD,),, p-,- Note that if 6(A)=6(B), then each BD,C AD,, so B =
M BD,C (N AD, = A; hence A= B. Thus 6 is injective with A= B 6(A) =
6(B). It remains to show that 6 is surjective. It suffices to show that for each
height-one prime ideal P, of D and each E € T(Dp, ), there is an A € T(D) with
ADp =E and AD, = D, for each height-one prime ideal Q different from P,,.
Write E =e¢ 'E’, where 0% ¢ € D and E’ is an integral Dy -ideal. Let A" = E'N
D, so A’ is an integral t-ideal with E' = A'D, . Moreover, for Q # P, A'D,, =
D,. For, if E' = D,,O, then A’ = D; while if E'C D,,ﬂ, then A’ is P,-primary, so
A'D,=D,. From the previously mentioned isomorphism G(D)=
@ (G(D,) | ht P=1}, we can choose 0+ f € D with fDy,=eDp and fD, =D,
for Q # P,. Then ;A'D, = E, while A'D, = D, for Q # P,. [
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