Unspecified Journal Volume 00, Number 0, Pages 000-000 S ????-????(XX)0000-0

ON SUPER *v*-DOMAINS

M. ZAFRULLAH

ABSTRACT. An integral domain D, with quotient field K, is a v-domain if for each nonzero finitely generated ideal A of D we have $(AA^{-1})^{-1} = D$. It is well known that if D is a v-domain, then some quotient ring D_S of D may not be a v-domain. Calling D a super v-domain if every quotient ring of D is a v-domain we characterize super v-domains as locally v-domains. Using techniques from factorization theory we show that D is a super v-domain if and only if D[X]is a super v-domain if and only if D + XK[X] is a super v-domain and give new examples of super v-domains that are strictly between v-domains and P-domains, domains that are essential along with all their quotient rings.

An integral domain D, with quotient field K, is called a v-domain if for every finitely generated nonzero ideal A of D, A is v-invertible, i.e., we have $(AA^{-1})_v = D$ or equivalently $(AA^{-1})^{-1} = D$. Essentially, v-domains are modeled after Prufer domains (every nonzero finitely generated ideal is invertible). Yet using an example of Heinzer's, [15], one can show that if D is a v-domain and S a multiplicative set of D, then D_S need not be a v-domain, see section 3 of [10] for a discussion on this example. This raises the following questions. If D is a v-domain, under what conditions on a multiplicative set S, or on D, can we be sure that D_S is a v-domain? Also, what are the v-domains whose quotient rings are again v-domains and that are not any of the known examples of v-domains all of whose quotient rings are v-domains. Finally, if every proper quotient ring of D is a v-domain, must D be a v-domain? Let's call a v-domain D a super v-domain if D_S is a v-domain for each multiplicative set of D. One purpose of this article is to discuss some conditions that will ensure that a quotient ring of a v-domain is a v-domain. We show for instance that if D is a v-domain and S is a splitting or a t-splitting set of D then D_S is a v-domain. Here a multiplicative set S of D is a splitting set if S is saturated and each $d \in D \setminus \{0\}$ is expressible as d = rs where $s \in S$ and $rD \cap tD = rt$ for all $t \in S$, (t-splitting sets are defined in a slightly complicated yet similar fashion). Using results on splitting and t-splitting sets, in conjunction with other results, we show that D is a super v-domain if and only if D + XK[X] is a super v-domain, where X is an indeterminate over K. We also show that if X is an indeterminate over D, then D is a super v-domain if and only if D[X] is. (The answer to question (c) is that for a one dimensional quasi local domain D a proper quotient ring is the field of fractions of D and hence a v-domain. But a one dimensional quasi local domain need not be a v-domain.)

©2001 enter name of copyright holder

¹⁹⁹¹ Mathematics Subject Classification. Primary 13F05, 13G05; Secondary 13B25, 13B30.

Key words and phrases. Super v-domain, P-domain, locally v-domain, splitting set, t-splitting set.

M. ZAFRULLAH

It seems pertinent to let the reader in on the terminology that we have used above and that we are going to use when we prove our results. Let D be an integral domain with quotient field K and let F(D) be the set of nonzero fractional ideals of D. A star operation is a function $A \mapsto A^*$ on F(D) with the following properties:

If $A, B \in F(D)$ and $a \in K \setminus \{0\}$, then

(i) $(a)^* = (a)$ and $(aA)^* = aA^*$.

(ii) $A \subseteq A^*$ and if $A \subseteq B$, then $A^* \subseteq B^*$.

(iii) $(A^*)^* = A^*$.

We may call A^* the *-image (or *-envelope) of A. An ideal A is said to be a *-*ideal* if $A^* = A$. Thus A^* is a *-ideal (by (iii)). Moreover (by (i)) every principal fractional ideal, including D = (1), is a *- ideal for any star operation *.

For all $A, B \in F(D)$ and for each star operation $*, (AB)^* = (A^*B)^* = (A^*B^*)^*$. These equations define what is called *-multiplication (or *-product).

Define $A_v = (A^{-1})^{-1}$ and $A_t = \bigcup \{J_v \mid 0 \neq J \text{ is a finitely generated subideal}$ of A}. The functions $A \mapsto A_v$ and $A \mapsto A_t$ on F(D) are more familiar examples of star operations defined on an integral domain. A v-ideal is better known as a divisorial ideal. The identity function d on F(D), defined by $A \mapsto A$ is another example of a star operation. There are of course many more star operations that can be defined on an integral domain D. But for any star operation * and for any $A \in F(D), A^* \subseteq A_v$. Some other useful relations are: For any $A \in F(D), (A^{-1})^* =$ $A^{-1} = (A^*)^{-1}$ and so, $(A_v)^* = A_v = (A^*)_v$. Using the definition of the *t*-operation one can show that an ideal that is maximal w.r.t. being a proper integral t-ideal is a prime ideal of D, each ideal A of D with $A_t \neq D$ is contained in a maximal t-ideal of D and $D = \cap D_M$, where M ranges over maximal t-ideals of D. For more on v- and t-operations the reader may consult sections 32 and 34 of Gilmer [12]. It was shown in [17] that D is a v-domain if and only if every 2-generated nonzero ideal of D is v-ivertible. An integral domain D is called a Prufer v-Multiplication domain (PVMD) if for every finitely generated $A \in F(D)$ we have $(AA^{=1})_t = D$. It can be shown that every quotient ring of a PVMD is a PVMD. Our terminology essentially comes from [12]. We define any terms that did not appear in [12].

Call a multiplicative set S of D a splitting set if S is saturated and for each $d \in D \setminus \{0\}$ we can write d = d's where $s \in S$ and $d' \in D$ such that $(d', t)_v = D$ for all $t \in S$. For more on splitting sets look up [3]. On the other hand a multiplicative set S of D is a t-splitting set if for all $d \in D \setminus \{0\}$ we can write $dD = (AB)_t$ where $B_t \cap S \neq \phi$ and $(A, s)_v = D$ for all $s \in S$. The t-splitting sets were introduced and applied in [4].

As mentioned above, v-domains are a generalization of Prufer domains. So, some generalizations of Prufer domains such as GCD domains, PVMDs, essential domains are v-domains and some, such as some integrally closed integral domains, are not. Here D is essential if D has a family \mathcal{F} of prime ideals such that D_P is a valuation domain for each $P \in \mathcal{F}$ and $D = \bigcap_{P \in \mathcal{F}} D_P$. As indicated in [10] an essential domain is a v-domain and so is the so-called "P-domain". A P-domain here is an essential domain, each of whose quotient rings is essential. It was shown in [18] that D is a P-domain if and only if D is locally essential. Perhaps that is why they were called locally essential domains in [9], and in later literature. While PVMDs and P-domains are super v-domains, an essential domain may not be a super v-domain. As a matter of fact P domains arose from an example by Heinzer

2

and Ohm [16] of an essential domain that was not a PVMD, yet happened to be a P-domain. When Heinzer found out about the work in [18], he wrote [15].

Let us be clear about what we are looking for, when we study "super v-domains" as there do exist super v-domains in the form of the P-domains and Prufer domains and the so-called Prufer v-Multiplication domains or PVMDs. While we prove general results about super v-domains, we are also looking for v-domains D that are not P-domains yet have the property that D_S is a v-domain for each multiplicative set S of D.

The first thing that seems to prevent a v-domain from having a quotient ring that is a v-domain seems to be that while for a nonzero finitely generated ideal Iwe have $(ID_S)^{-1} = I^{-1}D_S$ we have no such general formula for a nonzero ideal I. One way of dealing with a situation like this is to bring in a new definition. Call a quotient ring D_S of D super extending if for each nonzero ideal I of D we have $(ID_S)^{-1} = I^{-1}D_S$. An immediate consequence is that if D_S is super extending, then $(ID_S)_v = I_v D$.

Lemma 0.1. If D_S is super extending and D is a v-domain, then D_S is a v-domain.

Proof. Let $\alpha, \beta \in D_S$. Then $\alpha = \frac{a}{s}, \beta = \frac{b}{t}$ for some $a, b \in D$ and $s, t \in S$ and $(\alpha, \beta)D_S((\alpha, \beta)D_S)^{-1} = (a, b)D_S((a, b)D_S)^{-1} = ((a, b)(a, b)^{-1})D_S$. Now as D_S is super extending we conclude that $((\alpha, \beta)D_S((\alpha, \beta)D_S)^{-1})^{-1} = (((a, b)(a, b)^{-1})D_S)^{-1} = (((a, b)(a, b)^{-1}))^{-1}D_S = D_S$ because in D we have $(((a, b)(a, b)^{-1}))^{-1} = D$. \Box

But the drawback of Lemma 0.1 is that if D_S happens to be such that $(a, b)^{-1}D_S$ is a finitely generated ideal of D_S for each pair a, b of D, then Lemma 0.1 would be an overkill. Though D_S would have to be a stronger form of a PVMD. Also, in some domains, $(ID_S)_v = I_v D$ may not hold for some nonzero ideals I and multiplicative sets S of some domains D. For example, it can be shown that for every prime ideal \wp of height greater than one in the ring \mathcal{E} of entire functions $\wp_v = \mathcal{E}$. Yet if \wp is non-maximal and \mathcal{M} is a maximal ideal containing \wp , then $(\wp \mathcal{E}_{\mathcal{M}})_v = \wp \mathcal{E}_{\mathcal{M}} \neq \mathcal{E}_{\mathcal{M}} = \wp_v \mathcal{E}_{\mathcal{M}}$; because $\mathcal{E}_{\mathcal{M}}$ is a valuation domain and every nonmaximal nonzero prime ideal in a valuation domain is divisorial. All this beside, super extending is too much even for our needs. So let's call D_S simple extending if $(((a,b)(a,b)^{-1})D_S)^{-1} = (((a,b)(a,b)^{-1}))^{-1}D_S$. We do seem to have disadvantages of super extending when working with simple extending and simple extending is sort of too obvious a ploy, but it may work in some interesting ways.

Proposition 1. Let D be an integral domain and let $\{S_{\alpha}\}$ be a family of multiplicative sets of D such that $D = \cap D_{S_{\alpha}}$. If, for each $\alpha \in I$, $D_{S_{\alpha}}$ is a simple extending quotient ring of D and a v-domain, then D is a v-domain.

Proof. Note that, as the inverse of an ideal is divisorial, we have $(((a, b)(a, b)^{-1}))^{-1} = \cap (((a, b)(a, b)^{-1}))^{-1}D_{S_{\alpha}} = \cap ((((a, b)(a, b)^{-1}))D_{S_{\alpha}})^{-1} = \cap D_{S_{\alpha}} = D.$

If on the other hand D_S is a v-domain, then D_S is simple extending anyway. This follows from the observation that if D_S is a v-domain, then for all $a, b \in D \setminus \{0\}$ we have $(((a, b)(a, b)^{-1})D_S)^{-1} = D_S$, (because D_S is a v-domain) $(((a, b)(a, b)^{-1}))^{-1}D_S \supseteq D_S$, (because $((a, b)(a, b)^{-1}) \subseteq D$) and as for each nonzero ideal I of $D, I^{-1}D_S \subseteq (ID_S)^{-1}$ we have $(((a, b)(a, b)^{-1}))^{-1}D_S \subseteq (((a, b)(a, b)^{-1})D_S)^{-1} = D_S$. Thus we have the following corollary. **Corollary 1.** Let D be an integral domain and let $\{S_{\alpha}\}$ be a family of multiplicative sets of D such that $D = \cap D_{S_{\alpha}}$. If, for each $\alpha \in I$, $D_{S_{\alpha}}$ is a v-domain, then D is a v-domain.

Remark 0.2. Of course generally D_S is not simple extending. For example if D is a v-domain such that D_S is not a v-domain then for some $a, b \in D$ we must have $(((a,b)(a,b)^{-1})D_S)^{-1} \neq D_S$. On the other hand $(((a,b)(a,b)^{-1}))^{-1}D_S = D$, because D is a v-domain.

In any case there is a better result available on the market in the form of Proposition 3.1 of [10]. This result says.

Proposition 2. Let $\{D_{\lambda} | \lambda \in \Lambda\}$ be a family of flat overrings of D such that $D = \bigcap_{\lambda \in \Lambda} D_{\lambda}$. If each of D_{λ} is a v-domain, then so is D.

Let us recall that a prime ideal P is called an associated prime of a principal ideal (a) if P is minimal over an ideal of the form $0 \neq (a) : (b) = \{r \in D | rb \in (a)\} \neq D$. Associated primes of principal ideals, or simply associated primes, of D have been studied by quite a few authors, but our reference in this regard is [5]. According to Proposition 4 of [5], if S is a multiplicative set of D and $\{P_{\alpha}\}$ is the family of associated primes of principal ideals of D disjoint from S, then $D_S = \bigcap_{\alpha} D_{P_{\alpha}}$.

With Proposition 2, or Corollary 1, at hand, we can state and prove the following characterization of super v-domains.

Theorem 0.3. ([10, Proposition 3.4]) The following are equivalent for an integral domain D. (1) D_S is a v-domain for every multiplicative set S of D, (2) D_P is a v-domain for every prime ideal P of D and (3) D_P is a v-domain for every associated prime P of D.

Proof. That $(1) \Rightarrow (2) \Rightarrow (3)$ is obvious. For $(3) \Rightarrow (1)$, let S be a multiplicative set of D and let $\mathcal{F} = \{P_{\alpha}\}$ be the family of associated primes disjoint from S. Then by (3) each of $D_{P_{\alpha}}$ is a v-domain and by [5, Proposition 4] $D_S = \bigcap_{P_{\alpha} \in \mathcal{F}} D_{P_{\alpha}}$. Thus by Proposition 2, or Corollary 1, D_S is a v-domain.

My reason for proving Theorem 0.3 all over again is that its proof can now be carried out via Corollary 1 rather than via Proposition 2 which was proven in [10], using the star operation theoretic approach. Now, however much fulfilling Theorem 0.3 may appear, it does not give us a clue as to how to find/construct super v-domains. This makes us look for multiplicative sets S for which D_S is a vdomain, whenever D is. As we shall see below this happens when the multiplicative set S in D is a splitting set. If S is a splitting set, the set $T = \{t \in D | (t, s)_v = D$ for all $s \in S\}$ often denoted as S^{\perp} is called the m-complement of S. Indeed if S is a splitting set and $T = S^{\perp}$, then $D = D_S \cap D_T$ and $dD_S \cap D = tD$ where $t \in T$ such that d = ts for some $s \in S$. A splitting set S of D is an lcm splitting set if $sD \cap xD$ is principal for all $s \in S$ and for all $x \in D \setminus \{0\}$.

Theorem 0.4. Let S be a splitting multiplicative set of D and let $T = S^{\perp}$. If D is a v-domain, then so is D_S . Moreover if S is an lcm splitting set then D_S is a v-domain if and only if D is a v-domain.

Proof. Suppose that D_S is not a v-domain. That is, there is a pair a, b of D_S such that $(((a, b)(a, b)^{-1}) D_S)_v \neq D_S$. Since $(r, s)^{-1}D_S = ((r, s)D_S)^{-1}$, for $r, s \in D \setminus \{0\}$, we can take $a, b \in D$ and regard $(a, b)(a, b)^{-1}$ as an ideal of D. Since $(((a, b)(a, b)^{-1})$

 $D_S)_v \neq D_S$, $(a,b)(a,b)^{-1} \cap S = \phi$. Again since $(((a,b)(a,b)^{-1}) D_S)_v \neq D_S$ there exist $x, y \in D_S$ such that $((a,b)(a,b)^{-1}) D_S \subseteq \frac{x}{y}D_S$ where $x \nmid y$ in D_S . As Sis a splitting set, we can take $x, y \in T$. But then $y((a,b)(a,b)^{-1}) D_S \subseteq xD_S$ and $y((a,b)(a,b)^{-1}) \subseteq y((a,b)(a,b)^{-1}) D_S \cap D \subseteq xD_S \cap D$. As $x \in T$, we have $xD_S \cap D = xD$ ([3], Theorem 2.2). Thus we have $y((a,b)(a,b)^{-1}) \subseteq xD$. Applying the v-operation throughout and noting that D is a v-domain we conclude that $yD \subseteq xD$. But then $yD_S \subseteq xD_S$, a contradiction. Whence D_S is a v-domain. For the moreover part note that $D = D_S \cap D_T$ where D_T is a GCD domain, by Theorem 2.4 of [3]. Thus if S is lcm splitting D_S is a v-domain and so is D_T , being a GCD domain, forcing $D = D_S \cap D_T$ to be a v-domain, by Proposition 2.

Theorem 0.5. Let D be an integral domain with quotient field K and let X be an indeterminate over D. Then D is a super v-domain if and only if D + XK[X] is a super v-domain.

Proof. Let D be a super v-domain. Then by Theorem 4.42 of [7] T = D + XK[X]is a v-domain. Also by Proposition 2.2 of [8], every overring S, and hence every quotient ring S, of T is a quotient ring of $S \cap K + XK[X]$. According to the proof of Proposition 2.2 of [8] the elements of S are of the form $\frac{\alpha + X f(X)}{1 + X g(X)}$ where $\alpha \in S \cap L$. Let $U = \{u \in D | u \text{ is a unit in } S\}$. Then $D_U \subseteq S \cap K$. Let $h \in S$. Then $h = \frac{a + Xf(X)}{b + Xg(X)}$ where, $a, b \in D$ and, b + Xg(X) is a unit in S. This gives $b = b(1 + \frac{X}{b}g(X)(1 + \frac{X}{b}g(X)^{-1})$ and so b is a unit in $S \cap K$, whence $b \in U$. But then $a/b = h(0) \in D_U$. Noting that $h(0) \in S \cap K$ we conclude that $D_U = S \cap K$. This leads to the conclusion that S is a quotient ring of $D_U + XK[X]$. Since D is a super v-domain D_U is a v-domain and so is $D_U + XK[X]$. Next, by the proof of Proposition 2.2 of [8], denoting by U(S) the set of units of S we have $U(S) = \{f \in D_U + XK[X] | f = u + Xg(X), \text{ where } u \text{ is a unit in } D_U\}$ and as elements of the form 1 + Xg(X) are finite products of height one primes of $D_U + XK[X]$ ([7], Theorem 4.21) we conclude that U(S) is a splitting set generated by primes. But then, by Theorem 0.4, $S = (D_U + XK[X])_{U(S)}$ is a v-domain. For the converse note that if T is a multiplicative set in D, then $(D + XK[X])_T = D_T + XK[X]$ which is a v-domain if and only if D_T is a v-domain. Thus if D + XK[X] is a super v-domain, then so is D.

Some super v-domains such as the P-domains have the property that D_P is a valuation domain for every associated prime of a principal ideal of D. Now if P is an associated prime of a principal ideal, one can easily show that D_P is t-local, i.e., PD_P is a t-ideal [10]. This may lead one to ask if a t-local super v-domain is close to a valuation domain. The answer is: Close but not too close, as there does exist a one dimensional completely integrally closed integral domain \mathcal{N} , due to Nagata [19] and [20], that is not a valuation domain and a one dimensional quasi local domain is t-local. (Of course a completely integrally closed domain is a v-domain.) Now, trivially, \mathcal{N} has the property that every quotient ring of \mathcal{N} is \mathcal{N} or $qf(\mathcal{N})$. Thus, albeit trivially, \mathcal{N} serves as an example of a super v-domain. This gives us the following example.

Example 0.6. Let F be the quotient field of \mathcal{N} and let X be an indeterminate on F. Then $\mathcal{N}+XF[X]$ is a super v-domain.

Illustration: By Theorem 0.5, every quotient ring S of $\mathcal{N}+XF[X]$ is a quotient ring $(\mathcal{N}+XF[X])_U$ of $\mathcal{N}+XF[X]$, by a multiplicative set U generated by elements

M. ZAFRULLAH

of the form 1 + Xg(X), or a quotient ring of F[X]. Since $\mathcal{N} + XF[X]$ is a v domain and elements of the form 1 + Xg(X) being products of height one primes, U is a splitting set and by Theorem 0.4, $(\mathcal{N} + XF[X])_U$ is a v-domain. Also since F[X]is a PID every quotient ring of F[X] is a PID and hence a v-domain. So, every quotient ring of $\mathcal{N} + XF[X]$ is indeed a v-domain.

Indeed $\mathcal{N}+XF[X]$ provides a "non-trivial" example of a super v-domain and Theorem 0.5 provides a scheme for producing super v-domains of any Krull dimension. And these super v-domains are not essential and hence not P-domains.

Next call a domain D a v-local domain if D is quasi local such that the maximal ideal M of D is divisorial. Of course, the situation can drastically change if we relax "t-local" to "v-local".

Proposition 3. An integral domain D is a v-local v-domain if and only if D is a valuation domain with maximal ideal M principal.

Proof. Let D be a v-local v-domain and let A be a nonzero finitely generated ideal of D. Then $AA^{-1} = D$. For if $AA^{-1} \neq D$ we must have $AA^{-1} \subseteq M$. But as Mis a v-ideal and D a v-domain we have $D = (AA^{-1})_v \subseteq M_v = M$ a contradiction. Whence every nonzero finitely generated ideal of D is invertible and hence principal, because D is v-local and hence quasi local. Thus D is a valuation domain. Now the maximal ideal being divisorial means $M_v \neq D$ which means that there is a pair of elements a, b of D such that $M \subseteq (a/b)D$ where $a \nmid b$. Since $a \nmid b$ and D is a valuation domain $M \subseteq (a/d)D$ a principal ideal of D. But then M is principal because M is the maximal ideal. The converse is obvious.

Let's recall from Griffin [13, Theorem 5] that D is a PVMD if and only if for every finitely generated nonzero ideal I of D we have $(II^{-1})_t = D$ if and only if D_P is a valuation ring for every maximal t-ideal of D.

Corollary 2. Let D be locally a v-domain. Suppose that for every maximal t-ideal M of D we have MD_M divisorial then D is a PVMD.

Proof. For every maximal t-ideal M we have D_M a v-domain and MD_M a divisorial ideal. Then by Proposition 3 we have that D_M is a valuation domain with maximal ideal principal.

Alternative proof: Let J be a nonzero ideal of D. We claim that JJ^{-1} is not in any maximal t-ideal of D. For if $JJ^{-1} \subseteq M$. Then $(JJ^{-1})D_M = JD_MJ^{-1}D_M =$ $JD_M(JD_M)^{-1} \subseteq MD_M$. Since D_M is a v-domain, $D_M = ((JD_M(JD_M)^{-1})_v)$. Yet as MD_M is divisorial and $JD_MJ^{-1}D_M = JD_M(JD_M)^{-1} \subseteq MD_M$ we get $D_M = ((JD_M(JD_M)^{-1})_v \subseteq MD_M$ a contradiction. Now JJ^{-1} not being in any maximal t-ideals means that $(JJ^{-1})_t = D$. Thus every nonzero finitely generated ideal of D is t-invertible and this is another characteristic property of PVMDs. \Box

Recall that a prime ideal P of a domain D is called strongly prime if $x, y \in K$ and $xy \in P$ imply that $x \in P$ or $y \in P$. According to [14], D is a pseudo valuation domain PVD if every prime ideal of D is strongly prime. It turns out that a PVD is a valuation domain or a quasi local domain (D, M) such that $M^{-1} = V$ a valuation ring. This makes the maximal ideal of a non-valuation PVD a divisorial ideal.

Corollary 3. In a non-valuation PVD D, every v-invertible ideal is principal. Consequently a non-valuation PVD can never be a v-domain.

Proof. Suppose that a non-valuation PVD D is a v-domain. Then D is a v-local v-domain and hence a valuation domain by Proposition 3, a contradiction.

Remark 0.7. Using the fact that the set of prime ideals in a PVD is linearly ordered it is shown in [14] that a GCD PVD is a valuation domain. However a non-valuation PVD D can never be a GCD domain, because a GCD domain is a v-domain. We can also say that a non-valuation PVD can never be a PVMD, because a PVMD is a v-domain as well.

Let S be a multiplicative set of D. Following [4] we say that $d \in D \setminus \{0\}$ is tsplit by S if there are two integral ideals A, B of D such that $(d) = (AB)_t$ where $B_t \cap S \neq \phi$ and $(A, s)_t = D$ for all $s \in S$. As in [4] we call S a t-splitting set if S t-splits every $d \in D \setminus \{0\}$. By Lemma 2.1 of [4] if S is a t-splitting set of D, then $dD_S \cap D = A_t$ is a t-invertible t-ideal and hence a v-ideal and of course $B_t = dA^{-1}$.

Theorem 0.8. Let S be a t-splitting set of an integral domain D. If D is a vdomain, then so is D_S .

Proof. Suppose that D_S is not a v-domain. That is, there is a pair a, b of D_S such that $(((a, b)(a, b)^{-1}) D_S)_v \neq D_S$. Since $(r, s)^{-1}D_S = ((r, s)D_S)^{-1}$ for all $r, s \in D \setminus \{0\}$, we can take $a, b \in D$ and regard $(a, b)(a, b)^{-1}$ as an ideal of D. Since $(((a, b)(a, b)^{-1}) D_S)_v \neq D_S$, $(a, b)(a, b)^{-1} \cap S = \phi$. Again since $(((a, b)(a, b)^{-1}) D_S)_v \neq D_S$ there exist $x, y \in D_S$ such that $((a, b)(a, b)^{-1}) D_S \subseteq \frac{x}{y}D_S$ where $x \nmid y$ in D_S and we can take x, y in D. This gives $y((a, b)(a, b)^{-1})D_S \subseteq xD_S$ and $y((a, b)(a, b)^{-1}) \subseteq y((a, b)(a, b)^{-1}) D_S \cap D \subseteq xD_S \cap D$. Now as $y((a, b)(a, b)^{-1}) \subseteq xD_S \cap D$ is divisorial, we have $y((a, b)(a, b)^{-1})_v \subseteq xD_S \cap D$, which forces $yD \subseteq xD_S \cap D$. But then $yD_S \subseteq (xD_S \cap D)D_S = xD_S$ which contradicts the assumption that $x \nmid y$ in D_S .

Let X be an indeterminate over D, let R = D[X] and let $G = \{f \in D[X] | (A_f)_v = D\}$. It was shown in [6, Proposition 3.7] that G is a t-complemented t-lcm t-splitting set of D[X]. Here a t-splitting set S is a t-lcm t-splitting set if for all $s \in S$ and for all $x \in D \setminus \{0\}$, $sD \cap xD$ is t-invertible. The following result was proved, as Theorem 3.4 in [6].

Proposition 4. Let D be an integral domain with quotient field K, S a t-splitting set of D, and $S = \{A_1 \cdots A_n | A_i = d_i DS \cap D \text{ for some } 0 \neq d_i \in D\}$. Then the following statements are equivalent. (1) S is a t-lcm t-splitting set, (2) every finite type integral v-ideal of D intersecting S is t-invertible and (3) $D_S = \{x \in K | xC \subseteq D \text{ for some } C \in T\}$ is a PVMD.

A *t*-splitting set *S* is called *t*-complemented if $D_{\mathcal{S}} = D_T$ for some multiplicative set *T* of *D*.

Corollary 4. Let X be an indeterminate over D, let R = D[X] and let $G = \{f \in D[X] | (A_f)_v = D\}$. Then D is a v-domain if and only if $D[X]_G$ is.

Proof. Indeed as D is a v-domain, then so is D[X] [10, Theorem 4.1]. Since G is a t-splitting set, Theorem 0.8 applies. For the converse, note that according to Proposition 3.7 of [6], G is a t-complemented t-lcm t-splitting set of D[X]. So, $D[X]_S$ is a PVMD and there is a multiplicative set N of D[X] such that $D[X]_S = D[X]_N$. So $D[X] = D[X]_G \cap D[X]_N$ where $D[X]_N$ is a PVMD. Thus if $D[X]_G$ is a v-domain, then so is D[X]. But then D is a v-domain, [10, Theorem 4.1].

M. ZAFRULLAH

Corollary 4 can be put to an interesting use, but for that we need some preparation. Let's first note that if (D, M) is a *t*-local domain and X an indeterminate over D, then $G = \{f \in D[X] | (A_f)_v = D\}$ is precisely $H = \{f \in D[X] | A_f = D\}$, because the maximal ideal of D is a *t*-ideal. In other words if D is a *t*-local domain, then $D[X]_G = D[X]_H = D(X)$, the Nagata extension of D. For description and properties of D(X) the reader may consult [1].

Corollary 5. (to Corollary 4)Let D be a t-local domain. Then D is a v-domain if and only if D(X) is a v-domain.

Next, according to Corollary 8 of [5], if \mathcal{P} is an associated prime of a nonzero polynomial of D[X], then $\mathcal{P} \cap D = (0)$ or $\mathcal{P} = (\mathcal{P} \cap D)[X]$ where $(\mathcal{P} \cap D)$ is an associated prime of a principal ideal of D.

Corollary 6. Let D be an integral domain. Then D is a super v-domain if and only if D[X] is.

Proof. Let D be a super v-domain. To see that D[X] is a super v-domain let φ be an associated prime of D[X]. Then φ is an upper to 0, i.e., $\varphi \cap D = (0)$ or $\varphi = P[X]$ where P is an associated prime of a principal ideal of D. If φ is an upper to 0 then $D[X]_{\varphi}$ is a rank one DVR and so a v-domain. If, on the other hand, $\varphi = P[X]$, where P is an associated prime of a principal ideal of D, then $D[X]_{\varphi} = D[X]_{P[X]} = D_P(X)$. Since D is a super v-domain, D_P is a v-domain. But, then so is $D_P(X)$, by Corollary 5; because D_P is t-local [11, Corollary 2.3]. That D[X] is a super v-domain, now follows from Theorem 0.3. For the converse note that if P is a minimal prime of (a) : (b) then P[X] is minimal over aD[X] : bD[X], making P[X] an associated prime of a principal ideal of D[X]. Since D[X] is a super v-domain, $D[X]_{P[X]} = D_P(X)$ is a v-domain. Now as D_P is t-local, Corollary 5 applies to give the conclusion that D_P is a v-domain. Now P being any associated prime of D we conclude, by Theorem 0.3, that D is indeed a super v-domain.

References

[1] D.D. Anderson, D.F. Anderson and R. Markanda, The rings R(X) and R < X >, J. Algebra

95 (1985), 96-115.

- [2] D.D. Anderson, D.F. Anderson, M. Fontana, and M. Zafrullah, On v-domains and star operations, Comm. Algebra, 37 (2009) 3018–3043.
- [3] D.D. Anderson, D.F. Anderson and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74(1991) 17-37.
- [4] D.D. Anderson, D.F. Anderson and M. Zafrullah, The ring D + XDS[X] and t-splitting sets, Commutative Algebra Arabian J. Sci. Eng. Sect. C Theme Issues 26 (1) (2001) 3–16.
- [5] J. Brewer and W. Heinzer, Associated primes of principal ideals, Duke Math. J. 41(1974) 1-7.
- [6] G.W. Chang, T. Dumitrescu and M. Zafrullah, t-Splitting sets in integral domains, J. Pure Appl. Algebra 187 (2004) 71–86.
- [7] D.L. Costa, J.L. Mott and M. Zafrullah, The construction $D + XD_S[X]$, J. Algebra 53(1978) 423-439.
- [8] D.L. Costa, J.L. Mott and M. Zafrullah, Overrings and dimensions of general D + M constructions, J. Natur. Sci. and Math. 26 (2) (1986), 7-14.
- [9] M. Fontana and S. Kabbaj, Essential domains and two conjectures in dimension theory, Proc. Amer. Math. Soc. 132 (2004), 2529-2535.

- [10] M. Fontana and M. Zafrullah, On v-domains: a survey. In: Fontana, M., Kabbaj, S., Olberding, B., Swanson, I. (eds.) Commutative Algebra: Noetherian and Non-Noetherian Perspectives, pp. 145–180. Springer, New York (2011)
- [11] M. Fontana and M. Zafrullah, On t-local domains and valuation domains, in "Advances in Commutative Algebra" Editors: Badawi, Ayman, Coykendall, Jim, Trends in Mathematics, Birkhäuser 2019, pp. 33-62.
- [12] R. Gilmer, Multiplicative Ideal Theory, Marcel-Dekker, New York, 1972.
- [13] M. Griffin, Some results on v-multiplication rings, Canad. J. Math.19(1967) 710-722.
- [14] J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), 137–147.
- [15] W. Heinzer, An essential integral domain with a nonessential localization, Can. J. Math. 33, 400–403 (1981).
- [16] W. Heinzer and J. Ohm, An essential ring which is not a v-multiplication ring, Can. J. Math. 21 (1972), 856-861.
- [17] J. Mott, B. Nashier and M. Zafrullah, Contents of polynomials and invertibility. Comm. Algebra18 (1990), 1569–1583.
- [18] J. Mott and M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math. 35(1981)1-26.
- [19] M. Nagata, On Krull's conjecture concerning valuation rings, Nagoya Math. J. (4)(1952) 29-33.
- [20] M. Nagata, Correction to my paper "On Krull's conjecture concerning valuation overrings", Nagoya Math.J. (9)(1955) 209-212.

DEPARTMENT OF MATHEMATICS, IDAHO STATE UNIVERSITY,, POCATELLO, IDAHO, USA *E-mail address*: mzafrullah@usa.net