Unspecified Journal
Volume 00, Number 0, Pages 000-000

ON SUPER v-DOMAINS

M. ZAFRULLAH

ABSTRACT. An integral domain D, with quotient field K, is a v-domain if for
each nonzero finitely generated ideal A of D we have (AA™Y)~1 = D. Tt is well
known that if D is a v-domain, then some quotient ring Dg of D may not be a
v-domain. Calling D a super v-domain if every quotient ring of D is a v-domain
we characterize super v-domains as locally v-domains. Using techniques from
factorization theory we show that D is a super v-domain if and only if D[X]
is a super v-domain if and only if D + XK[X] is a super v-domain and give
new examples of super v-domains that are strictly between v-domains and
P-domains, domains that are essential along with all their quotient rings.

An integral domain D, with quotient field K, is called a v-domain if for every
finitely generated nonzero ideal A of D, A is v-invertible, i.e., we have (AA~!), = D
or equivalently (AA~!)~! = D. Essentially, v-domains are modeled after Prufer
domains (every nonzero finitely generated ideal is invertible). Yet using an example
of Heinzer’s, [15], one can show that if D is a v-domain and S a multiplicative set
of D, then Dg need not be a v-domain, see section 3 of [10] for a discussion on
this example. This raises the following questions. If D is a v-domain, under what
conditions on a multiplicative set .S, or on D, can we be sure that Dg is a v-domain?
Also, what are the v-domains whose quotient rings are again v-domains and that
are not any of the known examples of v-domains all of whose quotient rings are
v-domains. Finally, if every proper quotient ring of D is a v-domain, must D be a
v-domain? Let’s call a v-domain D a super v-domain if Dg is a v-domain for each
multiplicative set of D. One purpose of this article is to discuss some conditions
that will ensure that a quotient ring of a v-domain is a v-domain. We show for
instance that if D is a v-domain and S is a splitting or a ¢-splitting set of D then
Dg is a v-domain. Here a multiplicative set S of D is a splitting set if S is saturated
and each d € D\{0} is expressible as d = rs where s € S and rD NtD = rt for
all t € S, (t-splitting sets are defined in a slightly complicated yet similar fashion).
Using results on splitting and ¢-splitting sets, in conjunction with other results, we
show that D is a super v-domain if and only if D + X K[X] is a super v-domain,
where X is an indeterminate over K. We also show that if X is an indeterminate
over D, then D is a super v-domain if and only if D[X] is. (The answer to question
(c) is that for a one dimensional quasi local domain D a proper quotient ring is the
field of fractions of D and hence a v-domain. But a one dimensional quasi local
domain need not be a v-domain.)
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It seems pertinent to let the reader in on the terminology that we have used
above and that we are going to use when we prove our results. Let D be an integral
domain with quotient field K and let F'(D) be the set of nonzero fractional ideals
of D. A star operation is a function A — A* on F(D) with the following properties:

If A,B € F(D) and a € K\{0}, then

(i) (a)* = (a) and (aA)* = aA*.

(i) A C A* and if A C B, then A* C B*.

(iii) (A*)* = A*.

We may call A* the x-image ( or *-envelope ) of A. An ideal A is said to be a
x-ideal if A* = A. Thus A* is a *-ideal (by (iii)). Moreover (by (i)) every principal
fractional ideal, including D = (1), is a x- ideal for any star operation .

For all A, B € F(D) and for each star operation *, (AB)* = (A*B)* = (A*B*)*.
These equations define what is called *-multiplication (" or *-product).

Define A, = (A71)~! and A, = |J{J,| 0 # J is a finitely generated subideal
of A}. The functions A — A, and A — A; on F(D) are more familiar examples
of star operations defined on an integral domain. A wv-ideal is better known as a
divisorial ideal. The identity function d on F(D), defined by A — A is another
example of a star operation. There are of course many more star operations that
can be defined on an integral domain D. But for any star operation * and for any
A€ F(D), A* C A,. Some other useful relations are: For any A € F(D), (A71)* =
A7t = (A*)7! and so, (A,)* = A, = (A*),. Using the definition of the t-operation
one can show that an ideal that is maximal w.r.t. being a proper integral t-ideal
is a prime ideal of D, each ideal A of D with A; # D is contained in a maximal
t-ideal of D and D = ND);, where M ranges over maximal ¢-ideals of D. For more
on v- and t-operations the reader may consult sections 32 and 34 of Gilmer [12].
It was shown in [17] that D is a v-domain if and only if every 2-generated nonzero
ideal of D is v-ivertible. An integral domain D is called a Prufer v-Multiplication
domain (PVMD) if for every finitely generated A € F(D) we have (AA=1), = D.
It can be shown that every quotient ring of a PVMD is a PVMD. Our terminology
essentially comes from [12]. We define any terms that did not appear in [12].

Call a multiplicative set S of D a splitting set if S is saturated and for each
d € D\{0} we can write d = d’'s where s € S and d’ € D such that (d',t), = D for
all t € S. For more on splitting sets look up [3]. On the other hand a multiplicative
set S of D is a t-splitting set if for all d € D\{0} we can write dD = (AB); where
B:NS # ¢and (A,s), =D for all s € S. The t-splitting sets were introduced and
applied in [4].

As mentioned above, v-domains are a generalization of Prufer domains. So,
some generalizations of Prufer domains such as GCD domains, PVMDs, essential
domains are v-domains and some, such as some integrally closed integral domains,
are not. Here D is essential if D has a family F of prime ideals such that Dp is
a valuation domain for each P € F and D = NperDp. As indicated in [10] an
essential domain is a v-domain and so is the so-called "P-domain". A P-domain
here is an essential domain, each of whose quotient rings is essential. It was shown
in [18] that D is a P-domain if and only if D is locally essential. Perhaps that is
why they were called locally essential domains in [9], and in later literature. While
PVMDs and P-domains are super v-domains, an essential domain may not be a
super v-domain. As a matter of fact P domains arose from an example by Heinzer
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and Ohm [16] of an essential domain that was not a PVMD, yet happened to be a
P-domain. When Heinzer found out about the work in [18], he wrote [15].

Let us be clear about what we are looking for, when we study "super v-domains"
as there do exist super v-domains in the form of the P-domains and Prufer domains
and the so-called Prufer v-Multiplication domains or PVMDs. While we prove
general results about super v-domains, we are also looking for v-domains D that are
not P-domains yet have the property that Dg is a v-domain for each multiplicative
set S of D.

The first thing that seems to prevent a v-domain from having a quotient ring
that is a v-domain seems to be that while for a nonzero finitely generated ideal I
we have (IDg)~! = I"'Dg we have no such general formula for a nonzero ideal I.
One way of dealing with a situation like this is to bring in a new definition. Call
a quotient ring Dg of D super extending if for each nonzero ideal I of D we have
(IDg)~! = I"'Dg. An immediate consequence is that if Dg is super extending,
then (IDg), = I, D.

Lemma 0.1. If Dg is super extending and D is a v-domain, then Dg is a v-domain.

Proof. Let o, € Ds. Then a = £,8 = % for some a,b € D and s,t € S and
(a, B)Ds((c, B)Ds)~t = (a,b)Ds((a,b)Ds)~t = ((a,b)(a,b)"!)Ds. Now as Dg is
super extending we conclude that ((a, 3)Ds((c, 8)Ds)™ 1)t = (((a,b)(a,b) ") Ds) "t =
(((a,b)(a,b)™1))"1Dg = Dg because in D we have (((a,b)(a,b)™1))"! = D. O

But the drawback of Lemma 0.1 is that if Dg happens to be such that (a,b) "' Dg
is a finitely generated ideal of Dg for each pair a,b of D, then Lemma 0.1 would
be an overkill. Though Dg would have to be a stronger form of a PVMD. Also,
in some domains, (IDg), = I,D may not hold for some nonzero ideals I and
multiplicative sets S of some domains D. For example, it can be shown that for
every prime ideal g of height greater than one in the ring £ of entire functions
pr = E. Yet if p is non-maximal and M is a maximal ideal containing g, then
(PEM)v = PEM # Epm = Pu€ar; because Epq is a valuation domain and every non-
maximal nonzero prime ideal in a valuation domain is divisorial. All this beside,
super extending is too much even for our needs. So let’s call Dg simple extending if
(((a,b)(a,b) 1) Ds)~t = (((a,b)(a,b)~1)) "1 Dg. We do seem to have disadvantages
of super extending when working with simple extending and simple extending is
sort of too obvious a ploy, but it may work in some interesting ways.

Proposition 1. Let D be an integral domain and let {S,} be a family of multiplica-
tive sets of D such that D = NDg,, . If, for each o € I, Dg,_ is a simple extending
quotient ring of D and a v-domain, then D is a v-domain.

Proof. Note that, as the inverse of an ideal is divisorial, we have (((a,b)(a,b)~1))"! =
N(((a,b)(a,0)1)~ Ds, = n((((a,b)(a,b)")Ds,) ™" = NDs, = D. O

If on the other hand Dg is a v-domain, then Dg is simple extending any-
way. This follows from the observation that if Dg is a v-domain, then for all
a,b € D\{0} we have (((a,b)(a,b)"1)Ds)~! = Dg, (because Dg is a v-domain)
(((a,b)(a,b)"1))"tDs D Dg, (because ((a,b)(a,b)~!) C D) and as for each nonzero
ideal I of D, I"'Dg C (IDg)~* we have (((a,b)(a,b)"1))"1Ds C (((a,b)(a,b)"1)Dg)~t =
Dg. Thus we have the following corollary.
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Corollary 1. Let D be an integral domain and let {S,} be a family of multiplicative
sets of D such that D = NDg, . If, for each o € I, Dg, is a v-domain, then D is a
v-domain.

Remark 0.2. Of course generally Dg is not simple extending. For example if D
is a v-domain such that Dg is not a v-domain then for some a,b € D we must
have (((a,b)(a,b)"1)Dg)~! # Dg. On the other hand (((a,b)(a,b)™1))"1Dg = D,
because D is a v-domain.

In any case there is a better result available on the market in the form of Propo-
sition 3.1 of [10]. This result says.

Proposition 2. Let {Dy|A € A} be a family of flat overrings of D such that D =
Nxea D . If each of Dy is a v-domain, then so is D.

Let us recall that a prime ideal P is called an associated prime of a principal ideal
(a) if P is minimal over an ideal of the form 0 # (a) : (b) = {r € D|rb € (a)} # D.
Associated primes of principal ideals, or simply associated primes, of D have been
studied by quite a few authors, but our reference in this regard is [5]. According
to Proposition 4 of [5], if S is a multiplicative set of D and {P,} is the family of
associated primes of principal ideals of D disjoint from S, then Dg = Ny, Dp, .

With Proposition 2, or Corollary 1, at hand, we can state and prove the following
characterization of super v-domains.

Theorem 0.3. ([10, Proposition 3.4])The following are equivalent for an integral
domain D. (1) Dg is a v-domain for every multiplicative set S of D, (2) Dp is
a v-domain for every prime ideal P of D and (3) Dp is a v-domain for every
associated prime P of D.

Proof. That (1) = (2) = (3) is obvious. For (3) = (1), let S be a multiplicative
set of D and let F = {P,} be the family of associated primes disjoint from S. Then
by (3) each of Dp, is a v-domain and by [5, Proposition 4] Dg = Np, erDp,. Thus
by Proposition 2, or Corollary 1, Dg is a v-domain. U

My reason for proving Theorem 0.3 all over again is that its proof can now
be carried out via Corollary 1 rather than via Proposition 2 which was proven in
[10], using the star operation theoretic approach. Now, however much fulfilling
Theorem 0.3 may appear, it does not give us a clue as to how to find/construct
super v-domains. This makes us look for multiplicative sets S for which Dg is a v-
domain, whenever D is. As we shall see below this happens when the multiplicative
set S in D is a splitting set. If S is a splitting set, the set T'= {t € D| (¢, ), = D
for all s € S} often denoted as S+ is called the m-complement of S. Indeed if S is
a splitting set and 7' = S+, then D = Dg N Dy and dDg N D = tD where t € T
such that d = ts for some s € S. A splitting set S of D is an lcm splitting set if
sD NaD is principal for all s € S and for all z € D\{0}.

Theorem 0.4. Let S be a splitting multiplicative set of D and let T = S+. If D
is a v-domain, then so is Dg. Moreover if S is an lem splitting set then Dg is a
v-domain if and only if D is a v-domain.

Proof. Suppose that Dg is not a v-domain. That is, there is a pair a,b of Dg such
that (((a,b)(a,b)"t) Dg), # Ds. Since (r,s)"'Dgs = ((r,s)Dg) 1, for r, s € D\{0},
we can take a,b € D and regard (a,b)(a,b)~! as an ideal of D. Since (((a,b)(a,b)™?!)
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Ds), # Ds, (a,b)(a,b)"1 NS = ¢. Again since (((a,b)(a,b)™t) Dg), # Dg there
exist z,y € Dg such that ((a,b)(a,b)"!) Dg C +Dg where x { y in Ds. As §
is a splitting set, we can take x,y € 7. But then y((a,b)(a,b)"!) Ds C xDg
and y((a,b)(a,b)™1) C y((a,b)(a,b)™') DsN D C xDgN D. As z € T, we have
xDsN D = xD ([3], Theorem 2.2). Thus we have y((a,b)(a,b)"!) C zD. Applying
the v-operation throughout and noting that D is a v-domain we conclude that
yD C zD. But then yDg C xDg, a contradiction. Whence Dg is a v-domain.
For the moreover part note that D = Dg N Dp where Dp is a GCD domain, by
Theorem 2.4 of [3]. Thus if S is lem splitting Dg is a v-domain and so is D, being
a GCD domain, forcing D = Dg N D7 to be a v-domain, by Proposition 2. O

Theorem 0.5. Let D be an integral domain with quotient field K and let X be an
indeterminate over D. Then D is a super v-domain if and only if D+ XK[X] is a
super v-domain.

Proof. Let D be a super v-domain. Then by Theorem 4.42 of [7] T = D + X K[X]
is a v-domain. Also by Proposition 2.2 of [8], every overring S, and hence every
quotient ring S, of T is a quotient ring of S N K + X K[X]. According to the

proof of Proposition 2.2 of [8] the elements of S are of the form ﬁ;ig(())(()) where

a€ SNL. Let U ={u € D|uis a unit in S}. Then Dy C SN K. Let h € S.

Then h = % where, a,b € D and, b+ Xg(X) is a unit in S. This gives

b=0b1l+g(X)(1+Fg(X)"! and so b is a unit in SN K, whence b € U. But
then a/b = h(0) € Dy. Noting that h(0) € SN K we conclude that Dy = SN K.
This leads to the conclusion that S is a quotient ring of Dy + X K[X]. Since
D is a super v-domain Dy is a v-domain and so is Dy + X K[X]. Next, by the
proof of Proposition 2.2 of [8], denoting by U(S) the set of units of S we have
U(S)={f € Du+XK[X]|f = u+Xg(X), where u is a unit in Dy} and as elements
of the form 1+ Xg(X) are finite products of height one primes of Dy + X K[X]
([7], Theorem 4.21) we conclude that U(S) is a splitting set generated by primes.
But then, by Theorem 0.4, S = (Dy 4+ X K[X])y(s) is a v-domain. For the converse
note that if 7' is a multiplicative set in D, then (D + XK[X])r = Dy + XK[X]
which is a v-domain if and only if Dy is a v-domain. Thus if D + X K[X] is a super
v-domain, then so is D. ([l

Some super v-domains such as the P-domains have the property that Dp is a
valuation domain for every associated prime of a principal ideal of D. Now if P is
an associated prime of a principal ideal, one can easily show that Dp is t-local, i.e.,
PDp is a t-ideal [10]. This may lead one to ask if a ¢-local super v-domain is close
to a valuation domain. The answer is: Close but not too close, as there does exist
a one dimensional completely integrally closed integral domain A/, due to Nagata
[19] and [20], that is not a valuation domain and a one dimensional quasi local
domain is t-local. (Of course a completely integrally closed domain is a v-domain.)
Now, trivially, N has the property that every quotient ring of A/ is N or qf(N).
Thus, albeit trivially, N serves as an example of a super v-domain. This gives us
the following example.

Example 0.6. Let F be the quotient field of N and let X be an indeterminate on
F. Then N+ X F[X] is a super v-domain.

Mlustration: By Theorem 0.5, every quotient ring S of N+ X F[X] is a quotient
ring (N+X F[X])y of N+ X F[X], by a multiplicative set U generated by elements
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of the form 1+ Xg(X), or a quotient ring of F[X]. Since N+ X F[X] is a v domain
and elements of the form 1 + Xg(X) being products of height one primes, U is a
splitting set and by Theorem 0.4, (N+XF[X])y is a v-domain. Also since F[X]
is a PID every quotient ring of F[X] is a PID and hence a v-domain. So, every
quotient ring of N'+X F[X] is indeed a v-domain.

Indeed N+XF[X] provides a "non-trivial" example of a super v-domain and
Theorem 0.5 provides a scheme for producing super v-domains of any Krull dimen-
sion. And these super v-domains are not essential and hence not P-domains.

Next call a domain D a v-local domain if D is quasi local such that the maximal
ideal M of D is divisorial. Of course, the situation can drastically change if we
relax "t-local" to "v-local".

Proposition 3. An integral domain D is a v-local v-domain if and only if D is a
valuation domain with maximal ideal M principal.

Proof. Let D be a v-local v-domain and let A be a nonzero finitely generated ideal
of D. Then AA~! = D. For if AA™! # D we must have AA~! C M. But as M
is a v-ideal and D a v-domain we have D = (AA~!), € M, = M a contradiction.
Whence every nonzero finitely generated ideal of D is invertible and hence principal,
because D is v-local and hence quasi local. Thus D is a valuation domain. Now
the maximal ideal being divisorial means M, # D which means that there is a pair
of elements a,b of D such that M C (a/b)D where a { b. Since a 1 b and D is a
valuation domain M C (a/d)D a principal ideal of D. But then M is principal
because M is the maximal ideal. The converse is obvious. (]

Let’s recall from Griffin [13, Theorem 5] that D is a PVMD if and only if for
every finitely generated nonzero ideal I of D we have (I17!);, = D if and only if
Dp is a valuation ring for every maximal t-ideal of D.

Corollary 2. Let D be locally a v-domain. Suppose that for every mazimal t-ideal
M of D we have M Dy divisorial then D is a PVMD.

Proof. For every maximal t-ideal M we have D), a v-domain and M D), a divisorial
ideal. Then by Proposition 3 we have that D, is a valuation domain with maximal
ideal principal.

Alternative proof: Let J be a nonzero ideal of D. We claim that JJ ! is not in
any maximal t-ideal of D. For if JJ~! C M. Then (JJ Y)Dy = JDpJ 1Dy =
JDy(JDy)™t € MDyy. Since Dy is a v-domain, Dy = ((JDar(JDar)™b)e.
Yet as M Dy is divisorial and JDy;J *Dyr = JDpy(JDp )™t € M Dy we get
Dy = ((JDy(JDar)™1)y € M Dy a contradiction. Now JJ~! not being in any
maximal t-ideals means that (JJ~1); = D. Thus every nonzero finitely generated
ideal of D is t-invertible and this is another characteristic property of PVMDs. [O

Recall that a prime ideal P of a domain D is called strongly prime if z,y € K
and zy € P imply that € P or y € P. According to [14], D is a pseudo valuation
domain PVD if every prime ideal of D is strongly prime. It turns out that a PVD is
a valuation domain or a quasi local domain (D, M) such that M~ = V a valuation
ring. This makes the maximal ideal of a non-valuation PVD a divisorial ideal.

Corollary 3. In a non-valuation PVD D, every v-invertible ideal is principal.
Consequently a non-valuation PVD can never be a v-domain.
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Proof. Suppose that a non-valuation PVD D is a v-domain. Then D is a v-local
v-domain and hence a valuation domain by Proposition 3, a contradiction. (]

Remark 0.7. Using the fact that the set of prime ideals in a PVD is linearly ordered
it is shown in [14] that a GCD PVD is a valuation domain. However a non-valuation
PVD D can never be a GCD domain, because a GCD domain is a v-domain. We
can also say that a non-valuation PVD can never be a PVMD, because a PVMD
is a v-domain as well.

Let S be a multiplicative set of D. Following [4] we say that d € D\{0} is ¢-
split by S if there are two integral ideals A, B of D such that (d) = (AB); where
B;NS # ¢and (A,s)y =D for all s € S. As in [4] we call S a t-splitting set if S
t-splits every d € D\{0}. By Lemma 2.1 of [4] if S is a t-splitting set of D, then
dDgN D = A, is a t-invertible t-ideal and hence a v-ideal and of course B; = dA~1.

Theorem 0.8. Let S be a t-splitting set of an integral domain D. If D is a v-
domain, then so is Dg.

Proof. Suppose that Dg is not a v-domain. That is, there is a pair a,b of Dg
such that (((a,b)(a,b)™%) Ds), # Ds. Since (r,s)"1Dg = ((r,5)Dg)"* for all
r,s € D\{0}, we can take a,b € D and regard (a,b)(a,b)"! as an ideal of D. Since
(((a,b)(a,b)~Y) Dg), # Ds, (a,b)(a,b)"* NS = ¢. Again since (((a,b)(a,b)" 1)
Ds), # Dg there exist 7,y € Dg such that ((a,b)(a,b)"!) Ds C %Ds where
x {1y in Dg and we can take x,y in D. This gives y((a,b)(a,b)"!)Ds C xDg and
y((a,b)(a,;b)™") € y((a,b)(a,b)™") Ds N D € xDs N D. Now as y((a,b)(a, b))
C xDgND and xDgN D is divisorial, we have y((a,b)(a,b)™1), C 2Dg N D, which
forces yD C xDg N D. But then yDg C (xDs N D)Ds = xDg which contradicts
the assumption that z ty in Dg. ]

Let X be an indeterminate over D, let R = D[X] and let G = {f € D[X]|(A}), =
D}. Tt was shown in [6, Proposition 3.7] that G is a t-complemented ¢-lcm ¢-splitting
set of D[X]. Here a t-splitting set S is a t-lem t-splitting set if for all s € S and
for all x € D\{0}, sD NxD is ¢-invertible. The following result was proved, as
Theorem 3.4 in [6].

Proposition 4. Let D be an integral domain with quotient field K, S a t-splitting
set of D, and S = {A1-+-Ap|A; = d;DS N D for some 0 # d; € D}. Then the
following statements are equivalent. (1) S is a t-lem t-splitting set, (2) every finite
type integral v-ideal of D intersecting S is t-invertible and (8) Ds = {x € K|zC C
D for some C € T} is a PVMD.

A t-splitting set S is called t-complemented if Dg = Dy for some multiplicative
set T of D.

Corollary 4. Let X be an indeterminate over D, let R = D[X] and let G ={f €
D[X]|(Af), = D}. Then D is a v-domain if and only if D[ X is.

Proof. Indeed as D is a v-domain, then so is D[X] [10, Theorem 4.1]. Since G
is a t-splitting set, Theorem 0.8 applies. For the converse, note that according to
Proposition 3.7 of [6], G is a t-complemented t-lcm ¢-splitting set of D[X]. So, D[X]s
is a PVMD and there is a multiplicative set N of D[X] such that D[X]s = D[X]y.
So D[X] = D[X]eND[X]n where D[X]y is a PVMD. Thus if D[X]s is a v-domain,
then so is D[X]. But then D is a v-domain, [10, Theorem 4.1]. O
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Corollary 4 can be put to an interesting use, but for that we need some prepa-
ration. Let’s first note that if (D, M) is a t-local domain and X an indeterminate
over D, then G = {f € D[X]|(Af), = D} is precisely H = {f € D[X]|A; = D},
because the maximal ideal of D is a t-ideal. In other words if D is a t-local domain,
then D[X]g = D[X]|y = D(X), the Nagata extension of D. For description and
properties of D(X) the reader may consult [1].

Corollary 5. (to Corollary 4)Let D be a t-local domain. Then D is a v-domain if
and only if D(X) is a v-domain.

Next, according to Corollary 8 of [5], if P is an associated prime of a nonzero
polynomial of D[X], then PND = (0) or P= (PN D)[X] where (PN D) is an
associated prime of a principal ideal of D.

Corollary 6. Let D be an integral domain. Then D is a super v-domain if and
only if D[X] is.

Proof. Let D be a super v-domain. To see that D[X] is a super v-domain let
p be an associated prime of D[X]. Then g is an upper to 0, i.e., p N D = (0)
or p = P[X] where P is an associated prime of a principal ideal of D. If g is
an upper to 0 then D[X], is a rank one DVR and so a v-domain. If, on the
other hand, p = P[X], where P is an associated prime of a principal ideal of
D, then D[X], = D[X]p;x] = Dp(X). Since D is a a super v-domain, Dp is
a v-domain. But, then so is Dp(X), by Corollary 5; because Dp is t-local [11,
Corollary 2.3]. That D[X] is a super v-domain, now follows from Theorem 0.3. For
the converse note that if P is a minimal prime of (a) : (b) then P[X] is minimal
over aD[X] : bD[X], making P[X] an associated prime of a principal ideal of D[X].
Since D[X] is a super v-domain, D[X|p(x) = Dp(X) is a v-domain. Now as Dp is
t-local, Corollary 5 applies to give the conclusion that Dp is a a v-domain. Now P
being any associated prime of D we conclude, by Theorem 0.3, that D is indeed a
super v-domain. O
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