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Let D be an integral domain, S a multiplicative set in D and X an indeterminate over D. We
show that if D is a GCD-domain, then the behaviour of D® = {a,+ X a,X'|a,E D, a,€
D} = D + XD,[X] depends upon the relationship between S and the prime ideals P of D such
that D, is a valuation domain. We use this study to construct locally GCD-domains which are
not GCD-domains. These domains have, each, at least one prime t-ideal P such that PD, is not
a t-ideal. We also give an example of an ideal A with AC A, G A, C D. The D construction
is also used to construct, from lattice ordered groups, Riesz groups which are not lattice
ordered.

Introduction

Given that S is a multiplicative set in a commutative integral domain D and that
X is an indeterminate over D, we can construct an integral domain D =
{a, + 2 a,X'|a, € D and a, € D} = D + XD[ X]. In this note we show that if D
is a GCD-domain, then the behaviour of D depends on the relationship
between S and the essential primes of D. (A prime ideal P is essential in D if D, is
a valuation domain.) We use this dependence to produce examples of locally
GCD-domains which are not Prifer v-multiplication domains and are Schreier
domains. Each of these integral domains D has a prime t-ideal P such that PD is
not a prime t-ideal of D,. From these integral domains we can also construct
examples of integral domains D with integral ideals A such that AG A, G A &
D.

Throughout hence the symbols D,K,X and D® will denote, respectively, a
commutative integral domain, its field of fractions, an indeterminate over D and
the D + XD[X] construction from D.

To give a clear idea of our results we need to recall some notions from
multiplicative ideal theory. Our main references in this direction are [6] and [10].

Let F(D) denote the set of non-zero fractional ideals of D. Defined on F(D)
are operations like A— (A~ ") "' = A, called the v-operation and A— UB,_ = A,
(where B ranges over finitely generated D-submodules of A) called the #-
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operation. For details the reader may refer to [6, Sections 32 and 34]. Yet, for our
purposes we note the following:

(1) D,=D and if A€ F(D), then ACA,CA,, (A,),=A,and (4),=A4,.

(2) If A,BE€ F(D), then AC B implies A, C B,, and if A is principal, then
(AB), = AB,.

So in general, if A is an integral ideal of D, then ACA,CA,CD. As a
consequence of our studies of D®, we construct an example of an integral
domain T with an ideal A suchthat AG A GCA GT.

An ideal A in F(D) is called a v-ideal if A= A, and a v-ideal of finite type if
A = B, for some finitely generated B € F(D). An integral domain D is called a
Priifer v-multiplication domain (PVMD) if the set H(D) of v-ideals of finite type
is a group under the v-multiplication: (AB), =(A,B),=(A B,),. Further an
ideal A € F(D) is called a t-ideal if A= A, and a maximal t-ideal if A is integral
and maximal w.r.t. being an integral t-ideal. A maximal t-ideal is a prime ideal
(cf. [7]). If A€ F(D) is finitely generated and if S is a multiplicative set of D, it
can be shown by using [6, Example 20, p. 432] that (ADy), = (A, Dy), (see [15]
for an alternative treatment). Using this result it can be shown that if P is a prime
ideal of D such that PD, is a t-ideal of D, then P is a t-ideal of D. This may lead
one to think that if P is a prime t-ideal of D, then PD, is a t-ideal of D,. Using
the D + XD [ X] construction, we give an example of an integral domain 7 with a
prime t-ideal P such that PT, is not a t-ideal of 7',. In the following we indicate
how this can be achieved:

If P is an essential prime in D, then PD, is a t-ideal of D,, because every finitely
generated ideal of a valuation domain is principal and a prime ideal is the union
of principal ideals contained in it. So every essential prime ideal is a t-ideal. A
prime ideal minimal over an ideal of the type 03 (a):(b)# D is called an
associated prime (cf. [1]) and according to [15], if P is an associated prime of D,
then PD, is a t-ideal of D,. Thus an associated prime is also a t-ideal. According
to [12] D is a P-domain if every associated prime of D is essential. Further,
according to [7] D is a PVMD if and only if every maximal t-ideal of D is
essential. Using the facts that every t-ideal is contained in a maximal t-ideal and
that if P C Q are prime ideals with Q essential, then P is essential, we conclude
that a PVMD is a P-domain and that every prime t-ideal is essential in a PVMD.
Now if we can construct a P-domain which is locally a PVMD (or a locally
GCD-domain) but not a PVMD, then we have our example. For if in a locally
PVMD D, for every maximal t-ideal P, PD, is a t-ideal in D,, then D being
locally a PVMD, D, is a PVMD with its maximal ideal a t-ideal which makes D, a
valuation domain. But then, as we already know, D is a PVMD. We now discuss
the means by which we propose to get to P-domains which are locally PVMD’s
but not PVMD’s. According to [2] an element x € D is primal if x|ab in D
implies that x = a,b, where a,|a and b,|b. An integrally closed integral domain
D is called Schreier if every element of D is primal. It is known that a PYMD is a
GCD-domain if and only if it is a Schreier domain (cf. [6, Example 7, p. 430].
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These considerations give the following picture:
GCD-domain = PVMD = P-domain.

Now according to [4] if D is a GCD-domain, then D is Schreier for every
multiplicative set S. So to show that D is a GCD-domain we only have to show
that it i1s a PVMD. On the other hand, if we construct D from a GCD-domain
D such that D is locally GCD but not GCD, then we have an example of a
P-domain which is not a PVMD. This follows from the fact that D is a P-domain
if an only if it is locally a P-domain [12].

Now to show how we get to a D with the required property we need to
introduce some more terminology. A non-zero prime ideal P in a GCD-domain is
called a PF-prime if for all x, y € P, GCD(x, y) € P. Using the fact that for every
finitely generated ideal A in a GCD-domain, A is principal, we can confirm that
in a GCD-domain a prime t-ideal is a PF-prime. According to [14] a PF-prime is
essential and conversely. So, in a GCD-domain the notions of prime t-ideal,
essential prime and PF-prime coincide. Indeed a maximal PF-prime can be
defined in an obvious manner. We shall say that a prime ideal P intersects a
multiplicative set S in detail if for all non-zero prime ideals Q C P, QN S#@. In
Section 1, we prove the following theorem: —

. We p g o woled
Theorem 1. Let D be a GCD-domain and let S be afmultiplicative set in D. Then
D® is a GCD-domain if and only if for each PF-prime P of D with PN S =
there exists d € P such that d is not divisible by any non-unit of S.

As a consequence of the proof of this theorem we conclude that if D® s a
GCD-domain and if P is a PF-prime of D with PN S # @, then P intersects S in
detail.

In Section 2, we show that if D is a GCD-domain and if S is a multiplicative set
of D with the property that every PF-prime P which intersects S, intersects it in
detail, then D® is a P-domain which may not be a GCD-domain and hence may
not be a PYMD. We establish a criterion for D®’ to be a non-PVMD, P-domain
and show that if E is the ring of entire functions and § the multiplicative set
generated by the principal primes of E, then E® is a P-domain which is not a
PVMD. In fact E® turns out to be a locally GCD-domain.

The study of the D + XD [ X] construction could be of interest in another area.
We know that if D is a GCD-domain, then for any multiplicative set S, D is a
Schreier domain [4]. If T is a Schreier domain its group of divisibility G(T') is a
Riesz group (cf. [2]). Now the divisibility group of a GCD-domain is a lattice
ordered (1.0.) group and it is well known (cf. e.g. [6, Theorem 18.6]) that given
any abelian l.o. group A we can construct a GCD-domain, which is Bezout and
whose group of divisibility is isomorphic to A. Thus the D + XD [ X] construction
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provides a rather mechanical method of constructing Riesz groups from l.o.
groups. The procedure would be as follows: We take up an abelian l.o. group A
and from it construct a GCD-domain D such that G(D)= A. Now for any
multiplicative set in D, D will be a Schreier domain. It only remains to find out
for which S, D® will be Schreier but not GCD. The divisibility group of such a
non-GCD, D® will be a Riesz group which is not l.o. It is interesting to note
that there do exist 1.o. groups from which we can construct only l.o. groups via
the D + XD | X] construction. These 1.0. groups must be eliminated if we wish to
make a general statement about the construction of Riesz groups which are not
L.o. groups. In Section 3 we show that these l.0. groups are isomorphic to small
cardinal sums of subgroups of real numbers.

In Section 4 we discuss some applications of the results of earlier sections. For
example, we construct locally GCD-domains from locally GCD-domains via the
D + XDg[X] construction. This section also includes the two examples already
discussed in the introduction.

1. Proof of Theorem 1

The D + XD[X] constructions were studied in [4] where it was shown that if D
is a GCD-domain, then D® is a GCD-domain if and only if for all d € D,
GCD(d, X) exists. Theorem 1 and its proof connect the event of D® being a
GCD-domain with the intrastructural relationship between the PF-primes of D
and the muitiplicative set S. The proof of Theorem 1 is based on the following
string of lemmas:

Lemma 1.1. Let V be a non-trivial valuation domain and let V' be an overring
(ring between V and its quotient field) of V with V' 2 V. Then the following are
equivalent:

() V+XV'[X]={a,+L,a,X'|a,EV, a, EV"'} is a GCD-domain;

(2) V' =K, the quotient field of V;

(3) V+ XV'[X] is a Bezout domain.

Proof. (1)=>(2). Suppose on the contrary that V' # K. Since V is a valuation
domain and V' is an overring of V, V' =V, where P is a prime ideal of V. Thus
V+ XV'[X] =V + XV,[X] where S =V — P. Now let 0# a € P. Then, since V is
a valuation domain, every element of S divides 4. Similarly, by the construction,
every element of S divides X. Now let d = GCD(a, X). Then since d| X and d|a,
d € S and so for all n, d"| X and d" | a. This contradicts GCD(a/d,X/d) =1 if d is
a non-unit, and contradicts V' #V if d is a unit. From this it follows that if
V + XV,[X] is a GCD-domain, with P non-maximal, then P=0 and hence
V' =K.

(2) = (3). Follows from [4].

(3) = (1). Obvious, because a Bezout domain is a GCD-domain. [J
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Lemma 1.2. Let S be a multiplicative set of D, let D = D + XD X] and let
P= P+ XDy[X] be a prime ideal in D®. Then P is essential if and only if

(i) P is essential and

(ii) P intersects S in detail.

Proof. We note that if S is a multiplicative set in D, then Dy = K if and only if
each non-zero prime ideal of D meets S. We also note that if S and T are two
multiplicative sets of D, then D¢, = (Dg) ;. = (D), where T* is the saturation of
Tin Dg and ST = {st|s €S and t € T}. Now let P be essential, then (D), is a
valuation overring of D[X]. Hence (D®); N K is the valuation domain D,. Note
that D —P=M={f(X)e D®|f(0)ZP}. So (D®);=(D®),,. But as
(D(S))ﬁQ(D(S))D—P:DP+XDS(D—P)[X]a we have (D®)p = (D +
XDy, p)[X])y- where M* = {f(X) (D), py| f(0) is a unit in Dp}. Now
since Dp is a valuation domain and Dy, p) is an overring of Dy, Dg,_py is at
least a valuation domain. This renders D, + XDy _py[X]= T’, a Schreier do-
main (cf. [4]).

We note that each f(X)€&€ M™ is a primitive polynomial of 7' and hence is a
product of irreducible elements of 7'. Each of these irreducible elements is a
prime because T’ is Schreier and an irreducible element in a Schreier domain is a
prime (cf. [2]). Further, since for each prime p(X)&€ M* p(X)T'N D, =(0),
p(X)T' is a rank one prime. Now according to [11], (D®), = (D, +
XDgp_py[ X1y is @ GCD-domain if and only if Dy + XDy, _p)[X] is a GCD-
domain. But, as P is essential, (D®); is a GCD-domain and we conclude that
Dp + XDy, _py[X] is @ GCD-domain. Now by Lemma 1.1, Dp + XDy, _p\[X] is
a GCD-domain if and only if Dg,_py is the field of fractions of D, and hence of
D. This is possible if and only if for each non-zero prime ideal Q C P, Q N S # 0.

Conversely, let P= P + XD [X] with P essential and intersecting S in detail.
Then (D(S))P = (D(S))(D—P) =Dp+ (XDg[X])p_py=Dp + XDS(D—P)[X]' Now
let Q #0 be any prime ideal of D. If O C P, then, as P intersects S in detail,
QN S+#P and hence Q N S(D — P)##@ and if Q Z P, then Q N (D — P)#@ and
hence O N S(D — P) #@. Consequently every non-zero prime ideal of D inter-
sects S(D — P) and Dy, _p, is the quotient field K of D. Now (D)5 is a quasi
local overring of the Bezout domain D, + XK[X] (cf. [4]) and hence is a
valuation domain. [

Lemma 1.3. Let P be a t-ideal in a Schreier domain D. Then no two elements of P
are coprime.

Proof. Suppose that a,b € P are coprime. Then according to [2], aD NbD =
abD. Now (a,b)'=(1/a)N(1/b)=(aD NbD)/ab=D and so (a,b),=
((a,b) )'=D7'=DC P, a contradiction. [

Lemma 1.4. Let P be a prime t-ideal in D = D + XD [X] such that PN D =
P #(0) and let D be a GCD-domain. Then P is a PF-prime ideal of D.
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Proof. We note that D is a GCD-domain and that, according to [4], D® is a
Schreier domain. Now by Lemma 1.3, no two elements of P are coprime.
Consequently no two elements of P are coprime. Now let a,b € P. Then since
GCD(a, b) = d exists, we can write a = a,d and b= b,d where a, and b, are
coprime. Because no two elements of P are coprime, at least one of a,, b, is not
in P and hence d = GCD(q, b)e P. O

Proof of Theorem 1. The proof is based on the fact that a Schreier domain is a
GCD-domain if and only if it is a PVMD. We note that D is a GCD-domain and
so D is a Schreier domain. So to show that D is a GCD-domain it is sufficient
to show that each maximal t-ideal of D’ is essential. For this we split the set T of
maximal t-ideals of D into the following three sets:

L={PET|PND=(0)},
M={PET|PND(0)and PNS=0},
N={PET|PNS#p).

(i) If PE L, then (D®); = (K[X]) pxx; which is a valuation domain.

(ii) If P € M, then by Lemma 1.4, P=P N D is a PF-prime of D such that
PN S =0. Hence by the hypothesis there is an element d € P such that for any
non-unit s €S, s} d. Since X is divisible by elements of S only, we have
GCD(d, X)=1. Hence X Z P = {a,+ % (a,/b)X'|b,€ S and a,, a, € P}. Let
H=D® — P Then H={a, + ) (a,/b)X'|b, € S and at least one a, € P}. Con-
sequently (D®’); D (D(S))(D_P) = D,[X], because PNS=@. Thus (D®); =
(Dp[X]) - where H* is the saturation of H in D,[X]. But as, by Lemma 1.4, D,
is a valuation domain, we have H* = { f(X) € D,[X]| A, = D,} where A, is the
ideal generated by the coefficients of f(X). Consequently (D®); = D,(X), the
trivial extension of D, to K(X).

(iii) If P € N, then P = P + XD¢| X] where, by Lemma 1.4, P is a PF-prime of
D. We show that P intersects § in detail. For this, let Q C P be a non-zero prime
ideal such that QO N S =. Then by the hypothesis there must be d & P such that
no non-unit of S divides d. But then for any s €SN P, GCD(s, d)=1. This
contradicts the fact that P is a maximal t-ideal (cf. Lemma 1.4). Now by Lemma
1.2, (D®?)p is a valuation domain. Thus having shown that every maximal t-ideal
of D® is essential, we conclude that D is a PVMD and hence a GCD-domain.

Conversely, if D® is a GCD-domain, then for each d € D, GCD(d,X) exists.
Now if P is such that PNS=0, let d€ P and let d'=GCD(d, X). Then

d, = d/d’" € P such that no non-unit s € § divides d,. [ ﬁ&‘d"jd‘
LA !

g

Corollary 1.5. Let D be a GCD-domain and let S be a’;‘;nultiplicative set in D.
Then the following are equivalent: . !
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(1) D® is a GCD-domain;

(2) For each element d € D, d = d,s where s € S and d, is coprime to all s € S;

(3) For each prime t-ideal P of D with PN\ S =4, there is at least one d € P
such that d is coprime to each element of S. [

Corollary (to proof) 1.6. Let D) = D + XD([X] be a GCD-domain. If P is a
prime t-ideal of D®, then the following hold:

(1) If P=P + XDy[X], then P intersects S in detail,

(2) f PNS =40, then PN D =(0) or

P=P[X]D,(X]ND® where P=PND .

Proof. (1) is obvious from Lemma 1.2, and (2) is immediate from the description
of P in case (ii) of the proof of Theorem 1. [

2. Construction of P-domains

An integral domain D is called essential if it has a family {P,},., of essential
primes such that D = ﬂDPi. Griffin [7] proved that a PVMD is essential. In
addition he conjectured that there should be an essential domain which is not a
PVMD. This conjecture was affirmed by Heinzer and Ohm [9]. Now according to
[1], for any integral domain D, we have D = (1D, where P ranges over the
associated primes (of principal ideals) of D. So a P-domain is essential. It was
pointed out in [12] that the example of the non-PVMD essential domain provided
in [9] was in fact a P-domain. Recently, Heinzer [8] has constructed an example
of an essential domain which is not a P-domain. This gives us the following
picture: GCD-domain = PVMD = P-domain = essential domain and in general
no arrows can be reversed. Now once it is established that the P-domains are a
distinct class of rings, it would be in order to have a ring-theoretic method of
constructing them. The following result is a clue to this method:

Tkeszem 2.1. Let D be a P-domain and let S be a multiplicative set in D such that
each associated prime of D that intersects S intersects it in detail. Then D® is a
P-domain.

The proof is based on Lemma 1.2 and the following two lemmas:
Lemma 2.2. Let S be a multiplicative set of D such that for each associated prime
P of D with PN S #80, D, is a valuation domain. If D is a P-domain, then so is

D. O

The proof of this lemma is immediate once we note that D; = (D, where P
ranges over associated primes with PN .S =0 [1].
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Lemma 2.3. Let S be a multiplicative set in D. If P is an associated prime of D®
with PN S##0, then PN D is an associated prime of D.

Proof. If P is an associated prime of D, then, according to [1], for each a € P
there is b € D® such that P is minimal over (a):(b). Now since PN S #§, for
each s € PN S there is A(X) € D such that P is minimal over (s): (h(X)). We
note that A(X)=h,+ ) h,X' where hy€ D and h, € Dy. Since each of h X’
(i=1) is divisible by each of sE€ S, we have rh(X) € (s) 1f and only if rh, € (s).
Thus (s):(h(X)) = A+ XDg[X] where A =(s):(h,) in D. Now as PDS#Q
P =P+ XDy[X] and as P is minimal over (s):(h,) + XD[X], P is minimal over
(s):(h,). Whence P= P N D is an associated prime of D. [

Proof of Theorem 2.1. If D is a P-domain, then, according to [12], so are D and

Dg[X]. So by Lemma 2.2 it is sufficient to show that for each associated prime P
of D with PN S+#@, P is essential.

Now by Lemma 2.3, P= P+ XDy[X]| where P is an associated prime of D.
Since D is a P-domain, P is essential. We have PN S#@ and so by the
hypothesis, P intersects S in detail. But then Lemma 1.2 applies and P =
P+ XD/ X] is an essential prime. O

We note that Theorem 2.1 gives us a method of constructing a P-domain but it
does not distinguish between P-domains and PVMD’s. To find P-domains which
are not PVMD’s we use an indirect method via Theorem 1. For this we note the
following points:

(i) If D is a GCD-domain and S is a multiplicative set in D, then D® is a
Schreier domain;
(i) A PVMD which is also a Schreier domain is a GCD-domain;

(iii) If D is a GCD-domain and S is a multiplicative set in D, then, according to
Theorem 1, the existence of a PF-prime with P N S = @ such that every element of
P is divisible by at least one non-unit from S implies that D is not a
GCD-domain.

Directly from points (i)—(iti) follows the theorem below.

Theorem 2.4. Let D be a GCD-domain. Suppose that S is a multiplicative set in D
such that each maximal PF-prime which intersects S intersects it in detail. If there
exists a PF-prime P disjoint from S such that every element of P is divisible by at
least one non-unit from S, then D is a P-domain which is not a PVMD. [

To work out simple and practical examples we need the notion of a rigid
element. A non-zero non-unit r € D is called rigid if for all x, y|r, x| y or y|x (cf.
[3, p. 129]). If D is a Schreier domain and r is a rigid element, then the set
{x € D|x is non-coprime to r} is a prime ideal which may be called the prime
ideal associated with r and may be denoted by P(r).
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Corollary 2.5. Let D be a GCD-domain and let P be a PF-prime of D. If
D + XD,[X] is a GCD-domain, then P is a maximal PF-prime such that every
PF-prime contained in P contains a rigid element.

Proof. Let P be a PF-prime and let D + XD,[X] be a GCD-domain. Then, as
PN (D~ P)=0, by Theorem 1, there exists d € P such that d is not divisible by
any non-unit element of D — P. So if d,,d,|d where d,, d, are non-units, then
d,,d, € P. Now P being a PF-prime, GCD(d,,d,) € P. Thus every two non-unit
factors of d are non-coprime and this, in a GCD-domain, is equivalent to saying
that d is a rigid element.

That P is a maximal PF-prime follows from the fact that any ideal A properly
containing P intersects D — P and so cannot be a PF-prime, because then it would
contain d and an element s € D — P which are coprime. So P is a maximal
PF-prime associated with the rigid element d. Now let Q be a non-zero prime
ideal contained in P. Then as Q is a PF-prime and Q N (D — P) =, by Theorem
1, there exists # € Q such that £ is not divisible by any non-unit of D — P. Then
again any two non-unit factors of / lie in P and hence are non-coprime and from
this we conclude as before that % is a rigid element. [

Corollary 2.5 gives us a clue to the type of GCD-domains to be selected to
construct non-PVMD P-domains. For instance, we could construct an example
from a GCD-domain which has a rank one maximal PF-prime which is not
associated with a rigid element. In this case D + XD ,[X] is a Schreier P-domain
which is not a PVMD. A large number of GCD-domains with this property exist.
Of these we take the following ring as a simple object for consideration:

Let K be an algebraically closed field of characteristic zero and let § = {x*|a is
arational = 0}. Then it is easy to establish that the ring K[S]= U _, K[x'"]is a
one-dimensional Bezout domain. This Bezout domain has only one type of rigid
elements, namely x* where a > 0 and hence only one prime ideal associated with a
rigid element. That is P = {y € K[S]|GCD(y, x) #1}. So we select a non-zero
prime P # P and conclude that D + XD;[X]is a P-domain which is not a PVMD.

We conclude this section with a rather interesting and unusual example of a
P-domain which is not a PVMD.

Example 2.6. Let E be the ring of entire functions. It is well known that E is a
Bezout domain and that every non-zero non-unit x € E is uniquely expressible as
a countable product x =11 pi’ where a; are natural numbers. The uniqueness of
this expression indicates that each principal prime ideal of E is a maximal ideal of
rank one. Now let S be generated by the principal primes of E. Then E®) =
E + XE [ X] is a P-domain which is not a PVMD. The reasons for this conclusion
are given below.

(i) Every prime ideal which intersects S is principal, hence of rank one and
hence it intersects S in detail. (This follows from the fact that if a prime ideal P
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intersects S, it contains a finite product of primes and hence contains a principal
prime . . . which is maximal.)

(ii) Every non-zero non-unit of E is divisible by principal primes and hence for
each prime P with PN S =4 it is true that each x € P is divisible by an infinite
number of non-units from S.

Clearly by (i), E® is a P-domain and by (ii), E*” is not a GCD-domain. Now
E being Bezout, E‘® is Schreier and Schreier non-GCD means non-PVMD.

3. Construction of integral domains whose groups of divisibility are Riesz groups

A directed partially ordered group G is called a Riesz group if for all a,, a,, b,,
b, € G witha; = b; (i, j =1, 2) there exists some ¢ € G such that a, =< ¢ < b, for all
i, j=1,2. These groups are a generalization of lattice ordered groups and they
arisc from the work of F. Riesz on linear operators. In view of their importance
any construction which gives rise to these groups is worth looking into. The
D + XDy[X] construction from a GCD-domain gives rise to integral domains
whose groups of divisibility are Riesz groups and thus it proves itself to be a
candidate for study.

In continuation with our remarks in the introduction, we shall be mainly
interested in eliminating the l.o. groups whose D + XD X] construction gives
rise to Lo. groups alone. For this it would be sufficient to find out the GCD-
domains D for which D®® is a GCD-domain for all multiplicative sets S. To give
our intended result a suitable statement we define a generalized UFD (GUFD) as
a GCD-domain each of whose non-zero non-units can be expressed as a product
of finitely many rigid elements r with the following property:

(f) For each non-unit 4| there is an n such that r| A"

Since the powers of a rank one principal prime have property (f), a UFD is a
GUFD.

Theorem 3.1. Let D be a GCD-domain. Then for D to be a GCD-domain for all
S, it is necessary and sufficient that D is a GUFD.

Proof. By the hypothesis and by Corollary 2.5 every PF-prime of D is a maximal
PF-prime and it contains a rigid element. From this it follows that every PF-prime
of D is of rank one. Further, if r is a rigid element, then since P(r)={x €&
D|GCD(x, r)# 1} is a PF-prime of D, which must be of rank one, we conclude
that for all non-units /| r there should exist an n such that r|h". So every rigid
element of D has property (f). Further, since, according to [14], every minimal
prime of a principal ideal of a GCD-domain is a PF-prime, we conclude that
every prime ideal contains a rigid element. Now using the GCD-property it is easy
to show that the multiplicative set T generated by all the rigid elements with
property (f) is saturated. If T # D — {0}, then there must be a non-zero ideal
disjoint with 7. But then this prime ideal must contain a rigid element and this
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gives the contradiction needed to ensure that every non-zero non-unit of D is
expressible as a product of finitely many rigid elements. Hence according to our
definition, D is a GUFD.

Conversely, if D is a GUFD, then it is easy to show that each PF-prime of D is
associated with a rigid element. Now a direct application of Theorem 1 shows that
if D is a GUFD, then D% is a GCD-domain for all multiplicative sets §. [

Remark 3.2. The generalized UFD’s were studied in the author’s doctoral thesis
submitted to the University of London in 1974. In the thesis the idea of GUFD’s
was developed parallel to that of UFD’s.

Now it is easy to verify that the group of divisibility of a GUFD is isomorphic to
a direct sum of additive subgroups of the set of reals (in fact, the divisibility group
of a GUFD is isomorphic to a small cardinal sum of these additive subgroups of
the set of reals). The general statement we had in mind can now be made as
follows:

Corollary 3.3. Let D be a GCD-domain such that it is not a generalized UFD.
Then for some multiplicative set S of D, G(D®) is a Riesz group which is not a
l.o. group. [

4. Applications

4.1. Constructing a locally GCD-domain from a locally GCD-domain

An integral domain D is called a locally GCD-domain if for each maximal ideal
M of D, D,,is a GCD-domain. It is easy to see that if D is a locally GCD-domain,
then so is Dy for every multiplicative set S of D.

Proposition 4.1. Let D be a locally GCD-domain and let S be a multiplicative set
of D such that for every maximal ideal M of D with M N S #@, M intersects S in
detail. Then D® is a locally GCD-domain.

Proof. Let M be a maximal ideal of D). Then the following cases arise:
(1) MND=(0);
2) MND#=(0) but MN S =6;
(3) MNS=#0.
(1) If M N D =(0), then

(D(S))M = ((D(S))Df(0})M(D(S))Df(n) - (K[X])MK[X] )

(2)If MN D #(0) but MN S =@, then

(D(S))M = ((D(S))S)M(D(S))S = (DS[X])MDS[X] .
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Now let M N D = P. Then, as MN S =@, we have M = MDX] N D® and so
P =MD X]N D. From this it is easy to conclude that MD([X]| N Dg = PD;. But
then

(D(S))M = (DS[X])MDS[X] = (DS[X])DS—PDS 2 (DS)PDS[X] = Dp[X]

which is a GCD-domain containing D[ X]. Now (D®)),,, being a quotient ring of
a GCD-domain is a GCD-domain.

(3) Finally, if MNS#@, then M =P+ XDJX] where P=MND and
(DY, 2(D®Y, ,=D, + XDy, _py[X]. Now, reasoning in the way we did in
the proof of Theorem 1, Dy, py = K. So Dp + XDy, py[X] is a GCD-domain.
Now, (D),,, being a localization of the GCD-domain D, + XDgip_plX], is a
GCD-domain. [

Corollary 4.2. If D is a locally GCD-domain, then so is D[X]. O

Proposition 4.1 is a rather difficult result to work with. Yet it simplifies matters
a great deal if we restrict out attention to locally GCD-domains whose prime
spectra form trees under inclusion (that is, Prifer domains). By doing so we
constructed P-domains from Bezout domains in Section 2. We note as a corollary
to Proposition 4.1 that the ring E®) of Example 2.6 is a locally GCD-domain.

4.2. The existence of a maximal t-ideal P with PD, not a t-ideal

Having indicated the area where non-PVMD, locally GCD-domains can be
found, we turn our attention to their applications. (But first some introduction.)

Locally GCD-domains arise as a natural concept in a number of ways, viz. as
locally factorial domains and as Priifer and Bezout domains. We recall that a
GCD-domain is a PVMD and hence a P-domain. We also recall that, according to
[12], D is a P-domain if and only if it is locally a P-domain. So a locally
GCD-domain is a P-domain. Consequently, a locally GCD-domain which is not a
PVMD can be put forward as an example of an essential domain which is not a
PVMD. But this we have already done. So we put locally GCD-domains to a
different use. We use them to derive, indirectly, the following result:

Proposition 4.3. Let P be a maximal t-ideal in a commutative integral domain D.
Then it is not necessary that PD, should be a t-ideal of Dp.

Proof. Suppose that the proposition is not true and let D be a locally GCD-
domain which is not a PVMD. Further, let P be a maximal t-ideal of D. Then by
our assumption PD, is a t-ideal. But since D, is a GCD-domain, PD, must be a
PF-prime and hence D, is a valuation domain. But then if the above is true for all
the maximal t-ideals, then, according to [7], D is a PVMD - a contradiction.
Hence if D is a locally GCD-domain which is not a PVMD, then D has a maximal
t-ideal P such that PD, is not a t-ideal of D,. O
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The need for Proposition 4.3 arose from a rather misleading (yet correct) result
of [15], which says that if A is a finitely generated ideal of D and § a multiplicative
set of D, then (ADg),=(A,Dg),. Now if S=D — P and if AC P, one could
easily be misled into thinking that if A ,D,C PD,, then (A,D,), C PD,. We
note that the contradiction required for the proof of Proposition 4.3 can also be
provided by taking D to be locally PVMD. So we have the following corollary:

Corollary 4.4. The following are equivalent for D:
(1) Disa PVMD;
(2) D is locally a PYMD and for every prime t-ideal P of D, PD, is a
t-ideal. U

4.3. Example of an ideal I with I CI1.C1 C D

t 7> v~

The v- and t-operations are special cases of the so called *-operations. For
details on =*-operations the reader is referred to [6]. For the purposes of this
example we note that for every fractionary ideal A of D, AC A, C A, (and hence
A,CA,). Moreover, if {D,},, is a family of overrings of D with D=1),D,,
then the operation defined by A— [),_, AD, on F(D), the set of fractional ideals
of D, is a *-operation (cf. [6, 32.5]).

Lemma 4.5. Let D be an essential domain. Then for all a,bec D — {0},

((a, b)(a) N (b)), = (ab).

Proof. Let {P,},., be a family of essential primes of D such that D = (1D, and
define * on F(D)by A— A, = mAD Then for any a, b € D ~ {0} and for any
pPe{pr}

, b D,NbD,
<(a, )((aab)ﬂ(b))>DP:(a7 0D, ° Z)
= (a, b)DP((a’ b)DP)_I =D,
because D, is a valuation domain. Thus
b
(@0 (Q0OY) ZA (@ n) @YY,
=MD, =D
Now, as A, C A, for all A€ F(D), we have for all a, b€ D — {0}

(a0 @0

or ((a, b)((a) N (b)), =abD. [
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Now, according to [7], if A is a finitely generated fractional ideal, then
(AB), = D if and only if B, = X, where X is finitely generated. Further, according
to [15] an essential domain D is a PVMD if and only if for all a, b € D — {0},
(a) N (b) is of finite type. From these observations we derive the following result:

Proposition 4.6. An essential domain D is a non-PVMD if and only if there is a
pair of non-zero elements a, b € D such that ((a, b)((a) N (b))/ab),# D. 0O

Corollary 4.7. In a non-PVMD essential domain D there is at least one pair of
non-zero elements such that

(a, b)((a) N (b)) C ((a, b)((a) N (D)),
G (@ b)((@n®),&D. O

Now to ensure the remaining inequality we proceed as follows: Let X be an
indeterminate over an integral domain D. Then for any A€ F(D), A”'[X]=
(A[X]) "' [13]. Using the same equation again we get A [X]= (A[X]),. Now to
avoid mentioning too many references we choose D to be a P-domain which is
not a PVMD. Then D[X] is a P-domain which is not a PVMD (cf. [12]). Then as
(1/ab)((a) N (b)) = (a, b)”' we have for a, b€ D — {0} with properties as in
Corollary 4.7,

<( py (0 (b)) [X]= (aT + bT) (Q-Tar;—bT>

where T = D|[X], and so

(a7 + b7 (a, b) (”)m(b))

= =T

aTﬂbT> < X

and, as in Corollary 4.7, we have A = (aT + bT)(aT N bT) such that AC A, C
A, CT.

Now we note that for any non-zero non-unit ¢ € D, ¢T N XT = ¢XT which
gives (cT'+ XT),=T. So we define I=(cT+ XT)A where A is as defined
above. Then, noting that if F is a finitely generated fractional ideal, then F,=F,
we conclude that

I =((cT+ XT)A),=({(cT + XT)A), = (cT + XT),A), = A
I,=((cT+ XT)A), =((cT + XT),A),= A,

This gives IG I, CI,CT.
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Remark 4.8. This example was constructed to answer a question raised, in a
personal communication, by Alain Bouvier about the existence of the ideal I of
the above example.
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