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If D is 2 commutative integral domain and S is a multiplicative system in D,
then T = D 4 XD X] is the subring of the polynomial ring DX} con-
sisting of those polynomials with constant term in D. In the special case where
S = D* = D\{0}, we omit the superscript and let T denote the ring
D+ XK[X], where K 1s the quotient fieid of 7.

Since T 1s the direct limit of the rings 2] X/s]. where 5 & 8, we can conclude
that many propesties hold in 7% because these properties are preserved by taking
polynomial ring extensions and direct [imits. Moreover, the ring 7 is the
symmetric algebra S,(D;) of D considered 2s a D-module. In addition, D[]
1s a quotient ring of 7! with respect to .5; in fact, in the terminology of [10],
TS s the composite of D and D[ X] over the ideal XD [X7]. (The most familiar
of the composite constructions is the so-called 2 L A construction [1], where
generally M is the maximal ideal of a valuation ring.)

The ring 7%, therefore, provides a test case for many questions about direct
limits, symmetric algebras, and composites.

The state of our knowledge of 7" is considerebly more advanced than that of
T8 generally speaking, we often show that a property holds in T if and only
if it holds in 0. In other cases we show that 7 does not have a given property
if Dg 5= K. For example, if T is a Prifer domain, then D [X] 1s a Friifer
domain and Dj is therefore equal to K. We show that 1 is Prifer (Bezout) if
and only if 2} is Priifer (Bezout). Yet 7 is a GCD-domain if D is 2 GCD-
domain and the greatest common divisor of 4 and X exists in 1 for each
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424 COSTA, MOTT, AND ZAFRULLAH

d e D*. Thus, we have a method for constructing GCD-domains that are not
Bezout domains. This observation ied to a counterexample to a conjecture of
Sheldon [11].

Coherence generalizes the notions of both Priifer domain and Noethertan
domain, Cleazly, the ring T is Noetherian only in the case that [ is Nostherian
and Dg = D. We show that T is coberent if D is Noetherian and, moreover,
that T is coherent if and only if D is coherent. Therefore, this construction can
be used to add to the known list of examples of non-Neetherian non-Prifer
coherent domains.

An elementary divisor domain (EDD) is an integral domain with the property
that every matrix is equivalent to a diagomal matrix. In [8], Kaplansky showed
that an EDD is necessarily a Bezout domain (that is, that finitely generated
ideals are principal) and that a Bezout domawn for which 2 X 2 triangular
matrices are equivalent to diagonal matrices is EDD. It is an open question
whether or not every Bezout domain is EDD: however, in [4], Butts and Dulin.
showed that, at that time, all known methods of constructing Bezout domains
gave rise to elementary divisor domains. We have mentioned that T'is 2 Bezout
domain if D is; thus it is not suxprising that we ask if this construction also
produces an EDD. We show in Section 4.6 that T is EDD if and oniy if D
is EDD.

1. D+ PX XY avo GCR-DomMaiNg

Recall that 2 GCD-domain is 2n integral domain in which each pair of non-
zero elements have a greatest common divisor. Cohn [2] designates such rings
as HCF-rings (for highest common factor) and in that paper, he discusses the
relationship between GCD-domains and the so-called Schreier domains. We
recall the definition of 2 Schreier domain.

An element X of an wtegral domain R is said to be primal if X | ¢b implies
that X = X,X,, whers X, | @ and X, | b. The element X is completely primal
if every factor of X is primal. An integrslly closed domain R is 2 Schreier domain
if every nonzero element is primal. An integrally closed domain is Schreier if
and only if its group of divisibility satisfies the Riesz interpelation property [3],
and since a GCD-domain has 2 lattice-ordered group of divisibility, a GCD-
domain is clearly a Schreier domain.

Since each of the properties, integral closure and Schreier, is preserved under
polynomial ring extensions and direct limits we see that T is integrally closed
or Schreier if D is integraily closed or Schreier.

TurorsM 1.1.  Suppose that S is a multipiicairve set in D. Then TS = D +
XDIX] is @ GCD-domain if and only if D is @ GCD-domartr and GCD(d, X0
exists in TS for each d € D*.
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THE CONSTRUCTION £ + XD JX] 425

Proof. We may assume without loss of generality that S is saturated. If
D 4 XD X} 1s 2 GCD-domain, then GCD(d, X) cxists for =ach de D*
Conversely, if D is 2 GCD-domain, D is Schreier and so is T, Suppose that
the given condition holds and consider an arbitrary nonzero nonunit ¢ € T, We
can write a=wu-+.  uX, aeD, w,eDs; a=u- s X+
T 4 XD, be Dandse S

Corresponding to # = 0 or & = §, & can be one of two possible types:

(i) @ = (bls) Xr{e' -5, u. X"}, where the expression in braces belongs
to T and is a primitive polynomial in D[ X].

(1) a =iy, - &)s) X L3 2, X5}, where o, = GCD(z, (5/s) L)
and the expression in braces is a primitive polynomial o D[ X1

Now in both cases the factorizations of the expressions in braces depend upon
their degrees in X, which are finite and so these expressions are products of
trreducible elements or atoms.

It is easy to see that an atom in a Schreier domain is a préme, and in view of
this we conclude that the expressions in braces in the above two cases are
products of primes.

Now consider two arbitrary nonzero nonuniis ¢, be T, Here a = o, +
g @ X b=y 3 5K, w € D, a,, by D . The following three cases
arise:

(1) 1w, and u, are both nonzerc.
(2} u; = Oy uy 5= O (or oy 550 2y = O).
(3) #, =0=u,.

In the first case, @ = upy =" p,, b = ©gy ** ¢, where u, v D and, for each
%, p; and g, are primes not in D. It can be verified that GCD(g, 5) = HGCD(x, 7)),
where d — GCD(f, = pr 1 G " 4.

In case (2), a=up;, - p, and b = {mfs;) X'’q, -~ .. If we show that
h = GCD(n, (mfs;)) exists, then it will follow that GCD{g, b) = hd, where
d=GCD(p, " prr 4, gs)- Simce k== GCD{x, X), we bave u =k,
X = x,k, where GCD(u, , x;) = 1 and ke S. Thus, k* | X for each integer =,
and this, in turn, implies that k| x, , that is, that GCD(ey, X) = 1 and
GCD(, X!/s,) = k, . anasscciate of k. Moreover, if c|u and c¢|mX's,
then ¢ | m by the Schreier property. But since D is a GCD~domain, GCD(, , )
exists and £ = A(GCD(y, , m)) = GCD(x, (mfs;) X'} exists,

Finally, in case (3), @ = (mfs;)) Xpy - pr: b = (mylsy) XPog: ¢ 15
say, t; <ty ,then GCD(g, b) = GCD(m, , mp) X%/[s;), where d = GCD{(p; = pr»
g, - g5). If, oo the other hand, #; = #, = 1, then GCD(a, b) = {GCD(m , m;)f
LCM(s, , s.)} Xtd, where d = GCD(p, = p,. ¢ - ¢s) and LCM(s;, 5) is
the least common multiple of 5, and s, in . Therefore, any two elements of

T have a GCD.
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CoroLLARY 1.2. If P is @ UFD exd S 45 a mzliiplicaitve set in P
then D + XD X} s a GCD-domair.

b4

Proof. We moay assume that S is saturated, If e D*, then we can write
d = di5; such that d, is not divisible by any nonunit of § and s €8 Then
obviously GCIMd, , X) = 5, and the result follows.

CoroLrary 1.3. If D is a GCD-damain and K is its field of fractions, ther
T = D -+ XK[X] s GCD-domass.

To see that there exist GCD-domains D with multiplicative sets .S such that
T is not a GCD-domain, we consider the following:

Examprie 1.4. Let D be a discrete valuation domain of rank 2 with maximal
ideal pD. Let S = {p%}2,; and consider D + XDg[X]. If we pick an element ¢
in the nonzere minimal prime ideal of D, and consider the common factors of
g and X, we find that p* | ¢ and 27 [ X for all &. But X and g have no greatest
common divisor and this implies that T is not 2 GCD-domain.

2. PraiME IpEaL STRUCTURE OF D -+ XD [X]

ToporeMm 2.1. Let L ={P, € Spec T [P, NS =% @} and M =
{PeSpec T | PN S = @} Then Spec T = L U M. Moveover, L and M
are isomorphic as partially ordered seis under containment o {P &Spec D | PN
S % o} and Spec(D[X]), respectively. Furthermore, each Py €L is of the form
(P 0 D) + XD[X]-

Proof. Obviously, DJX] = (T} and M o= Spec D[ X]. To show that
L 1is isomorphic to {Pe8pec D | PN 8§ = 2} we need only observe that any
any P eL contains the kernel XD JX] of the natural bomomorphism from
T onto . But this is iromediate, since there is an s€ P, N S and 5 divides
each element of XD [.X] in T,

We now proceed to indicate the relationship of chains of prime ideals of
T with those of D[X]. The observation that D{X]s = (T9); is crucial and
leads to the following definitions.

DermviTion 2.2. Suppose that R and R, are integral domains with RC R; .
We say that R and R, are in accord at the multiplicative system SCR i
Rs = (R))s and U(R) = U(R;). We denote by Specg R the set of all those
prime ideals of R that are disjoint from 3. The set I of Theorem2.1 is Specs 757,

It is well known that there is 2 one-to-one order preserving correspondence
between Specg R and Spec R . Moreover, it follows that f RC R, and R and
R, are in accord at S, then there is a one-to-one order preserving cor.espondence
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between Specg R and Specg R, . In particular, since D[X]and TS are in accord
at .S, the maps o: Specg DIX] — Spece T“’ and 7 Specg T — Specg DLX]
defined by o(P) = PDX] N T(SJ’ and () = O N D[X] are one-to-one and
inverse of each other,

Leviva 2.3, Let P be a prime ideal of D[X]. Define

=PT® =PND+XDJX]
= PDJX]NT® if

™

NS=£g
mSG

|

f

Then Pe the unique prime ideal of T suck that (Pe 0y DIX])e = Pe. Moreover.
if O is @ prime ideal of TS and P = Q M DX}, then Q = Pe.

FProof. We can apply Theorem 2.1 and properties of quotient rings to con-
clude P¢is a prime ideal of T Moreover, it is clear that

PeADX]=POD+ XDIX] i PAS+#g
=P F PNS=g.

This observation leads imunediately the conclusion that (Pen D[X])e = P,

Finally, suppose that P = Q N D{X], where O is 2 prime ideal of T If
ONS+# @,thenQ=0ND+ XDJX},P=0nD+XDX]=PnD+
XD[X], and P° = (. On the other hand, f QN S = &, then O = P* because
D{X]and T are in accord at 5.

mma 2.3 will be calied
Sumilarly i C is a col-
= {P¢| Fe C}will be calied

Dermvizzon 2.4. The prime ideal P¢ defined i
the elevation of P and we will say that # elevates ¢
lection of prime ideals of DLX], the set of primes C¢

the elevation of C.

n Lem
o Pe.

Remark 2.5. We see from Lemma 2.3 that eny chain of prime ideals of
TS is the elevation of some chain of prime ideals of DLX]. Thus, the Kruli
dimension of TS (denoted diza T) is less than or equal to dim D{X]. However,
not every chain of prime ideals of DL.X] elevates to a chain in T, For example,
let T == Z 4+ XQ[X], where Z and O denote the integers and rational numbers,
respecitvely. Let Py = (p 4+ X)Z[X] and P, = (p, X) = pZ - XZ[X].
Then P, CP,, 1+ XpePp, but 14 X/péPy =pZ + XQ[X] Note
that for this example § = Z* and P, NS = @, while P, S 52 &. One
additional observation: even if a chain of prime ideals in D[X] elevates to a chain
in T, the length of the elevated chain may be smaijer than that of the original
chain. For this example, let Py = (p) Z{X] and let P, be the same ideal as
above. Then P,CP,, but By® = Pt = pZ -+ XO{X]. Here the reason is

N Y Ry T N R S T R LT
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that P, 0§ = P, N 8. In general, if P is any prime ideal of D[X], and i
PN S s g, then Pe = (QX])¥, where 0 = P N D.

With this interpretation, we bave the following theorem.

TaeoreMm 2.6. dim DJX] < dim T < dim DIX]. Moreover, ditn. T =
sup{lengths of chains of prime ideals of the form C°, where C is & chain of prime

tdeals of DLXT}.

Since Theorem 2.1 imnplies that dim T > 1 + dim D, we have the following
corollary to Theorem 2.6.

CoroLLARY 2.7. Suppose that D is suck that dize D[X] =1+ dim D (,f
example, if I is Noetherian or if D is Priifer) or suppose that the multiplicotive
system @5 such that dim Dg[X]} = dim DLX]. Then, in these cases, dima T =
dim D{.X].

Theorem 2.6 has led to some conclusions, but 2 further guestion arises
immediately. Which chains of prime ideals in DLA] elevate to chains in 77
Two answers are readily obtained. Suppose that C is the chain of primes
P=P,DP,D~DP,DDP,. L NS = &, then since D[X] and T
are in accord at S, € is 2 chain in 7% of the same length. Cn the other hand,
if P,N S 5= @, then for each £, P,f = P: N D -+ XDX], and C elevates
to a chain 1o T, Unfortunately in this latter case, the length of C° may be
smaller than that of C.

But when we consider arbitrary chains in DL& ], 2 further difficulty arises.
Forif P,N S £ @ and P, , .S = &, then each of the chains P, D P, D -2 P,
and P, DD P, elevates to chains in T, but we camnot say that

r-'-l C P

DeFmiTioN 2.8. We call a chain P = P, D F,D - D P, of prime ideals
of D an S-chain if P, NS == 0. We also say that the above chain has length .
The S-height of P is the number of prime idezls in the longest S-chain des-
cending from P, while the supremum of {S-height P | PeSpec D} is th

S-dimension. of I, denoted by S-dim D. (Obviously, S-dim D < dim D,
and if S = D*, then S-dim D = dim D.)

If P is a prime ideal of D[X] and PN S = gz, where § is 2 multipheative
system in D, then height P = height P? = height PDJX]. But £ FN S +# o,
then P¢ = Q 4 XD X], where Q = P D, and Theorem 2.1 shows that
S-height Q = S-height P# = S-height P. If fact, all we know is that
S-height P < 1 + 2 (S-height Q). Eqguality may hold, for example, if & = D*
and if dim DX} = 1 + 2 dim D.

We see, therefore, that S-dim D contributes more %o determining dim 7
than does S-dim D[X]. In fact, we have the foliowing corollaries to Theorem 2.1
and 2.6.

T T T T ST T R S T TR T ST
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CoroLLARY 2.9. Suppese that dim D << co. Thezm 14 S-dim P <
dim D < max{l 4 dim D, dim D X1} < dim T < S-dim P 4 dim D

.
1
X1
4

i
X

Cororrary 2.10.  The dimension of T' = D + XK[X]és equal to 1 -+ dim P.

Proof. This is iromediate from Cor nljarv 2.9, since, in this case, S-dim D =
dira D and dim D{X] = dim K{X] =

Corollary 2.10 shows that for some 'fml*"'plicatzve systems S, 1 - S-dim D =
dim 7 == S-dim D + dim D [X]. Thus, the inequalities in Corollery 2.9
are, 1n soxne sense, the best possible estimates.

We ask: Is dima T = S-dim D + dim D [X], for all multiplicative systems
S ? The following example shows that the answer is, in general, no. This example
will be useful later as a counterexample to a conjecture of Sheldon.

=

2

Y

Examere 2.11. Let D be 2 PID and S a multiplicative sycee‘n of D such that
Ds = K. We show that diva 7% = 2, and that S-dima D + dima D X] = 3.
Clearly dim T = 2. On the other hand, if P, £, then P,; = F 4 XD {X]
and P, does not properly contain another prime 1n L since D is one-dimensionzl.
Moreover, Dg[X] is two-dimensional. Thus any privee ideal Pye M bas
height <(2. We show that hi{P.) << 2 by observing that P, contains no prime
Py, € M of height exactly 2. Any such prime Py issuchthatQ = P, 0 D # (0).
But Q and P are relatively prime ideals in D since D is one-dimensional. Thus,
Py, (Z'PL and ht(P;) = 2.

There is at least one other sitavtion where the
question.

wer is yes to the above

A

ut

(2]

ProrositioN 2.12. If D is a waluction ring of finite Krull dimension, iken
for amy multiplicative systern S iz D, 1+ dim D = dim T = S-dim P +

dim Ds[X]-

Proof. Without loss of generality we may assume that § is saturated and,
therefore, that S is the complement of 2 prime xma} of D. Then S-dim D =
depth of P = dim D — ht(P), and dim Dg[X] = 1 + he(P).

One might copjecture that dim 757 is equax to m = max{l + S-dim D,
dim Dg[X]}. But this conjecture is false, for there are examples where
m < 1 -+ dim P. For instance, consider the following example.

Exampre 2.13. Let D be a rank 2 vaiuation ring with nonzero prime ideals
P,DP,. Let S=D\P,. Then D: is a rank ope valuation zing, and
dim Dg[X] = 2. Clearly 1 4+ S-dim D = 2 and dim T = 3.

Unfortunately, we have not been ab“l- to deme mine the dimension of
exactly; what we desire is some func S-dim D, dim D, dim DJX], and

TS

on O
dim D[X] that precisely describes dim T ’ or alﬁ domains I? and 2l multipli-
cative systems S.

L s Ts e o
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3. SzELpoN's CONTECTURE

For a GCD-domein R, there exist prime ideals P of R such that R, is 2
“ualuauon ring. Moreover, the supremum of dim Ry for 21l such prime ideais

f R is called the prime filter dimension of R and is denoted by PF-dim R.
In [11], Sheldon conjectured that 2 GC“—dona‘“ R for which dmR =
PF-dim R < o0 is necessarily a Bezout domain. We give a counterexample
to this conjecture.

ExampLe 3.1. Let 2 be a PID and let & be a multplicative system for
which D5 % K. We have aiready cbserved that dim T = 2. Mexeover,
T is a GCD-domain, but not Bezout since D¢ £ K (for then D {X] is not
Bezout). We need only observe that PF-dim T = 2. By FProposition 4.2
of [11], 1 K PF-dim T < dim T = 2. If we are able to show that T
has at least one prime ideal P for which T is a rank 2 valuation ring, the
result will follow.

But this holds for any prime P, <L, for P, = P+ XD X] and T is
a GCD-domain (being 2 localization of a MCU—QO.uai"A) i which no two non-
zero nonunit elements are refatively prime. Thersfore T§ is a valuation ring

necessarily of rank 2.

We recall that if P is a prime ideal of 2 GCD domain D such that
GCD{x, v) € P for each pair of elements » and v of P, then Dp is 2 valuation
ring [i1, p. 99]. Moreover, if 8 = D*, then for 2 pair of elements 4, & in the
prime ideal Py = P -+ XK[X] of T, GCD{a, ) € P, . This observation estab-
lishes the following result.

Provosition 3.2. If D is a GCD-domain ond & = PF-dim B < co, ihen
PF-dim T = &k -+ i.

In view of this proposition, we state the foilowing:

Tusorem 3.3. For each positive infoger m = 2, there exists & mon-Bezout
GCD-domain R such that PF-dim R = dim R =
Proof. We have an example R, for z = 2. Forn = 3, wetake R, + LK [X],

where K, is the quotient field of R, . Similarly, the result follows for all 7 by
induction.

4. Tge D 4 XK[X] CONSTRUCTION
Up to this point, we have aliowed the mmitiplicative system 5 to be quitp

arbitrary for the most part. But now we turn our attention to the special ca

where .5 = D*. In this case recalithat we are using the notation T = D J.~

TT———— o= o T R T TR T I S R 3 TFETTRRT
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XK[X]. We are able to obtain in some cases more specific information about T
than for T = D + XDJX1.

4.1. The Ideals of T

First we give a description of certain of the ideals of T

Lemva 4.11. Let I be an ideal of T = D + XK{X]. The foliowing are
equivalent.

1 Inb#£90.
() IDXK[XL
(3) IK[X] = K[X].

If any of these kold, then I = (I N D)+ XKIZ] =TI D) T.

Proof. (1) —(2). Let a GI ND, a0 Then XK[X]=aaXK[XJCI
and hence I = (I N D) + XK[X].
(2)— Q). ¥ I2 XI&[X}, then £ =1nN D -+ XK[X], and therefore
InD {0}
(1) — (3) is clear. The last assertion follows from (1) as in (1} — (2).

ProrositioN 4.12. Each ideal of T is of the form f(X)FT == f(X)-
(F + XK[X]), where F is a nongero D-submodule of K such thet f{O)FC D,
and {(X)e K[X].

The finitelv generated ideals of T are of the form f{(X} JT, where [ is a fimitely
generated ideal of D and f(X)e T.

Proof. First observe that any subset of T of the form f(X)FT is in fact
ap ideal of 7.

Next jet I be an ideal of 7. If IK[X] = K[X], then N D 5= 0 and
I=((nD)+ XK X]=InD)T.

If IK[X] ## K[X], then IK[X]=f(X)}K[X] for some nonconstant
f(X)e K[X]. Then there is a nonzero element o€ K such that of (X)el
Let P = {x e K | of (X) € I}. Then F is 2 D-submodule of K.

Since F % Oandf(}{)FCI fo X0 U = f(x()(f -+ XK[&X]). Butif a(X)el,
then A(X) = f(X)og + - &), Where o ..., & € K; whence (X)) =
o f(X) + B(X), where h’(X ) € f (X) AK[X]CI. Hence ek and A(X)e
FIXNF + XKLX]). Thus £ = f{XNF + XK[X5) = AX)FT, from which it
also follows that f(0).F C D.

To prove the second assertion, let I be 2 finitely generated ideal of T and write
it according to the first statement as I = f(X) FT. Then F is a finitely generated
P-~module and thers is an element d € D such that dF C D,

If f(0) =0, then f(X)/deT, dF is = ﬁni’*eiy generated ideal of D, and

— (/IR T.
¥ 7D /Lf><7 FT
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X f(0) = « 5 0, then f(X)Jae T, oF is finitely generated ideal of D, and
I = (f(O)eF)T.

CoroLLARY 4.13. T = D 4 XK[X] is a Bezout domain if eud only if D is.

A ring is said to bave the m-generator property if every finitely generated
ideal has a bais s of # elements.

CoroLLary 4.14. T = D -+ XK[X] kas the wn-genorator property if and
only if D does.

Proof. The sufficiency follows from Proposition 4.12. For the necessity,
let J be 2 finitely generated ideal of D. Then J= JT 0D~ JTXKIX].
Since [T bas a basis of 7 elements, 30 does [.

CoroLLARY 4.15. T = D + XK[X] ts o Prifer domair if and only if D is.

Proof. Suppose D is a Pritfer domain. Let I be 2 fnztely geperated ideal of T
and write £ = f(X) JT, where [ is 2 finitely generated ideal of D. Since [ is
invertible, [J* = D. Assets, JC JT and J2C(F T)”’- and therefore 1 e JJ1C
(]T‘)(]T)“i Thus (JEYJTY? = T and ¥ = f(X} JT is invertibie.

By the class group C(D) of a Prifer domain £ we mean the group of equiv-
alence classes of invertible fractional ideals modulo the group of principal
fractional ideals.

If D is Prisfer, then by Corollary 4.15, T is also, and furthermeore [ — J7T
is a homomeorphism of C(D) into C(T). Since for integral ideals | of D,
Jo= JTIXK[X]., J and JT are simwlitancously principal. This shows that
the homomorphism C(D) — C(T) is injective. Furthermore Proposition 4.12
shows that the map s surjective. Hence C(D} ~ C(T.

We summarize these observations in the following:

COROLLARY 4.16. If D is a Priifer domain, then the class group of T is iso-
morphic to the class group of D.

Recall that the valuative dimension, dim,(R). of 2 domain R is the supremumn
of dim ¥V for all valuation overrings ¥ of R. For a Priifer domaim R,
dim,(R) = dim R.

CoroLLARY 4.17. The valuative dimension of T is 1 -+ dim,, D

Proof. If V is a valuation overring of T, thea W = V' N K is 2 valuation,
overring of D, and W -+ XK[X] is a Prifer domain of dimension equal to
dim W + 1 < dim, P - §. Thus, dim ¥V < dim, P + 1. On the other hand,

i#f W is =2 wvaluation overzing of D such that dim W = dim, D, then
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W+ XK[X]x) is a valuation overring of 7 with dimension equal to dim, D L 1.
Hence dim, T = dim, D -+ 1.

Ax integral domain D is said to have the QR-property if every overring (that
is, every ring between D and X)) of D is 2 quotient ring of . Such 2 domain is
necessarily 2 Priifer domain. But, more than that z Prisfer domain D has the
QR-property if and only if for cach finitely generated ideai I of D there exists
d €I and a positive integer 7 such that /7 C 4D [5, p. 3371

This characterization of the QR-property, Proposition 4.12 and Corollary 4.15
readily yield the following result.

CororLarY 4.18. T = D -+ XK[X] kes the QR-property if and ouly if P
does.

4.2. The Prime Spectrum of T

o

Our knowledge of the prime ideals of T considerably exceeds the information

contained in Theorem 2.1.

Trzorem 4.21. The momzerc prime ideals of T = D 4+ XK[X] are ithe
tdeals Q ++ XK[X], where Q is a prime idecl of D, ond the prim pf' ideals § (/') T,
where f(X) is irreducible in K{X] and f{3) = 1. The height one primes of T ave
XK[X] and the principal prime ideals f(X) T. The maximal ideals of T are those
of the form M+ XK[{X], where M is a maximal idezl of D, and the principcl primes
F(X) T described above.

Proof. et P be a nonzero prime ideal of 7. If X e P, then for every d € D,
(X[d) = (X[d*) X e P, and bence X/d € P. Thus XKIX]CP. LetQ = PN P,
Then P = Q + XK[X].

Suppose X ¢ P. Then by Lemma 4.15, PN D = Q) and P = PK[X]N T,
where PK[X] is 2 proper prime ideal of KLX]. Moreover, PK[X] = f(X) K[X],
where f(X) e P is an lireducible element of K[X] such that f(0) = 1. But then
P=PKXINT =fX)KIX]NT = f(X) T, as desired. The last equality
is a consequence of the fact that /(0) = 1.

That the primes f(X) T and XK[X] are height one is seen by localizing at
D\{0}. That they are the only height one primes follows from the first assertion.

The only assertion which still requires proof js that of the maximality of the
ideals f(X) T, where f(X) is izreducible in K[X] and f{0) = }. No such prime
ideal is contained in any other or in XK[X] since thev are all of height one.
Furthermore, the fact that f(0) = i exciudes f(X) from every prime ideal of
the form Q -+ XK[X]. Hence f{(X) T'is maximal.

Now let us discuss the meaximal spectrum of T. Recall that an ideal is a2 j-ideal
if it is an intersection of maximal ideals. We say thata prime J-idealisa j—pri*ne
Moreover, the j-dimension of a ring R is the supremum of the lengths of chain
of j-primes. Max-Spec(R) is the subspace of Spec{R) consisting of the maximal
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ideals of R; j-Spec(R) is the subspace of Spec(R)} consisting of the j-primes

of R.

TrEOREM 4.22. j~dim{T) = 1 -+ j-dim(D).

Progf. First observe that T has an infinite number of heig t one maxtmal
ideals f(X) T, where f(X) is trreducible in K[{X1 and £(0) = Moreever, the
zero ideal of T is the intersection of all these -nmmﬂ ideals, that s, (@) is 2
J-ideaj of T. Or, in other words, the Jacobson radical of T"is (0). T '\Tow if Pisa
JF-primoe of D, then P = {} M, , where each M, is 2 maximal ideal of D. Conse-
quently, P+ XK[X] = (\ (M, + XK[X]) 2nd P + XK[X] is a j-ideal of 7.
Thus, j-dim T = f-dim D + 1.

On. the other hand, suppose that 0C Q_,_ C---CQ, is a chain of j-prime
ideals of 7. I Q,, = P, + XK[.X], where P, is a prime ideal of 2, then each
of 4 5uunn O, has the same form since ail f be other kind of primae ideais of T
are maximal. Thus, @; = P,; - XK[X}, and P,C P, C--C P, is 2 chain of
j-primes of D. Therefore, » < 1 + j-Gim D\

If Q, does not have this foxm. then O, is 2 height one meaximal ideal of T
and z = 1. In either case, #» < I -+ j~dim 2, and the theorem is proved.

Recall that Spec(R) is Noetherian if and oniy if R satisfies the ascending chain
condition on radical ideals. I’s/{a/\—Spev(n) _-‘Stmc(R) are simujtaneously
Noetherian and this occurs if and only if Rsa i es the ascending chain condition

on. j-ideals.

TerorEM 4.23. Spec(7T) (respectively mazx-Spec(T)) is Noetheriap if and
only if Spec(D) (respectively, max-Spec(D)) is Nogtherian.

Proof. Spec{D) (max-Spec{D}) is hemeomorphic to a subspace of Spec(T)
(max-Spec(T)). Therefore, Spec(D) (max-Spec(D)) is Noetherian if qpec(T\
(max-Spec(T)) 1s Noetherian.

Conversely, suppose that Specr’ D) (max-Spec(D)) is Noetherian and that
0 = I, CE, C - is an ascending chain of radical ideals { j-ideals) of T. Observe
that there are only fmitely many height one maximal Nezls of the form f(X) T
containing a given Iy . For each &, let 4, denote the index set for the set of all
prime (maximal) ideals of the form P, + XK[X] that contain I, . Let B denote
the finite index set of maximal ideals of the form f(X) T that contain [, . Clearly
then fk = Neea, (Po + XELXD Nica, (f{X)T and A4, C4,C - =2nd B, C

B, C Ciearjy therﬂ is 2 k, such that By = By, for all & > k. Then for
k>k9\fk-[kleznu anhﬂk::Ak; )
Now ﬂaEA . Caes, . PuC -+ s 2n sscending chain of radical ideals

Fg4+T

{ j-ideals) of D. Smce D %atisfes the appro;ona’:e chain compdition, there is am
integer NV > k;such that for & = N, 4, = Ay - Thus Spec(T) (max-Spec(T))
is Noetherian.
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43, Coherence

Recall that a ring R is coherent if every finitely generated ideal of R is finiteiy
presenied.

TueoreM 4.31. T = P -+ XK[X] is cohereni if and only if D is coherent.

Proof. First note that T is a faithfuily flat D-module (one way to observe
this is to note that T = Sp(K) and use a result of Lazard [9, p. 34]). Therefore
JT =~ [ ®p T for any finitely generated ideal j of D.

If D is coberent and [ is a finitely generated ideal of T, then [ = f(X) JT,
where [ is a fnitely generated ideal of D. Hence I ~~ JT as T-modules. Now
JT =~ J ®p T and sivce [ is a finitely presented D-module, [7 is a finitely
presented T-module. Hence, I is a finitely presented T-module, and T is
ccoherent.

Conversely, if [ is 2 finitely generated ideal of D, then JT = J ®p 7 is
a finitely generated ideal of T and, hence, is finitely presented. Since T is 2
faithfully flat D-module, [ is finitely presented. Thus, D is coherent.

Under certain conditions we can prove that 7% is coherent.

TreoreM 4.32. If D is a Noetherian dowain and S is a multiplicaitve system
in B, then. T = D -+ XD J[X] & coherent. In facs, TWW{X,}] is coherent for
any family {X,} of indeterminates.

Proof. The proof is a direct applicetion of a result of Grecnberg and
Vasconcelos. For if ¥ is 2 finite family of indeterminates 2nd if D is Noetherian,
then the following diagram satisfies the hypothesis of Proposition 4.1 of [6]:

T[Y] = D[¥] + XDX, Y]

DX, V]

i
l
orv] Ds.

4

Hence T¥] is coberent.

If ¥ is an infinite family of indeterminates, observe that T Y] is the “fat
direct limit” of the coherent rings T[¥], where ¥, is 2 finite subset of Y.
Therefore, in this case, T'[Y] is coherent.

A 4. Divisorial Ideals of T

Suppose that f is a fractional ideal of an integral domain R. The intersection
I, of all principal fractional ideals of R that contain I is czlled the v-ideal or
divisorial ideal associated with . 1f I = I, , we say that I is a w-ideal or a divisoricl
ideal. A v-ideal T is a w-ideal of finite type if [ = F.. for some finitely generated
fractional ideal F¥ of R. The map 7 — F,, is called the 2-operation of R. A basic
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development of the v-operation and divisorial ideals can be found in Section 34
of [5]. A domain R is 2 w-domain if the v-operation satisfies the property that
for any finitely generated ideals 4, B, 20d C of R, (4B), C (4C o implies that
B,CC,.

In this section, we examine the v-operation on T = D 4+ XK[X]. We wish
to prove that T'is a v-domain if and only if D is a v-domain. The proof requires
knowledge of the structure of the finitely generated ideals of T and the following
lemma.

Levvia 4.4%. If I is @ nonzero ideal of D, then (IT), = (F 4+ XK[X]), —
I,+ XK[X].

Proof. Suppose oI DIT, ae K(X). Write a = f(X)g(X), where FX)
and g(X) are relatively prime clements in K[X]. Let d = 1\{0}. Then dg(X) =
J(X) i(X), where i(X) e T, and, therefore, fy = F(X) e K. We have then that
a = folg(X). I X|g(X), then g(X)TCf(D -+ XK[X)., awvd ITCTC
(folgXNT = oT. I Xig(X), then z, = g(0) % 0. Moreover, g(X) =
&(X)/goe T, so that Tjg'(X) D T. Note that I C(fyfg,} D. Hence, IT = I -+
XKIX]C (folgo) D+ XKLX] = (folgo) TC Tfoleo) Lg'(X) =aT. Tn sither
case, there is an element f € X such that IT C BT C «7. Therefors,

UT), = () {«T | «T 2T, e € K(X)}
= (" {BT | BT 2T, Be K}
= (J{PD + XK[X]|BD 2L, L K}
= I, + XK[X.

THEOREM 4.42. T = D -+ XK[X]#s a v-domain if and only if D is a v~-domats.

Preof. We show that if (48), C (4C), . then B, C C, for finitely generated
ideais of T. Let 4 = f(X) 4'T, B=gX) BT and C = X} C'T. where
A', B, and C" are finitely generated ideals of D and f(X), ¢(X), B(X) e T. Then
(AB), = F(X) gXNABT), = f(X) g XXAB + XKIX]), = F(X) g(X) -
((4'B)), + XK[X)), aad similarly (4C), = f(X) HX)(4'CH, + XKLX])-
Now (4R), K[X] = f(X) (X} K[X] and (AC), K[X] = f(X) i(X) K[X] since
(4'B"), and (4'C"), are nonzero ideals of B. Therefore. f(X)g(X) :f'{{}f];
O HX)K(X] and g(X) = BX) &(X), where A(X)e K[X]. If X]AX),
then BCHX) XK[X]C Cand B, CC,. If X1 AX), thea H0) = « e K\{0},
and o{4'B), C(4'C),. Thus, oB,CC, since D is a v-dowain. But then
B, = (s(X) B'T), = gXNB'T), = d(X)(B, + XK[X]) = KX) HX)B, +
XK[X]) C HX)oB) -+ XK[X]) CHINC, + KKIX]) = MENC'T), = C, .

Conversely, suppose that T is a z-domain. Suppose that 4, B, and C are
finitely generated ideals of D such that (4B), C(4C),. Then (4B} T),C
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{(AC)T), . 2nd therefore (BT),C(CT),. In other words, B, + XK[X]C
C, + XK[X]. From this it is immediate that B, C C, .

The w-operation on a domain R determines an equivalence relation on the
set of ideals of R. The equivalence class determined by an ideal 4 is denoted
div(4) and is called the divisor class of 4. The set D(R) of 2]l divisor ciasses of R
is a semigroup under div 4+ div B = div(4AB). D(R) isa group if and only if Ris
<ompletely integrally closed. Since 7" and K[{X] have a common ideal and K[.X]
is completely integrally clesed, the cowoplete integral closure of 7T is K[X]
Thus, if D % K, T is not completely integrally closed, and therefore div(T)
is pot a group. It is natural, nevertheless, to inguire if the subsemigroup &
of divisor classes div(4), where 4 is fnitely genersted, forms a2 group. In other
words, is it possible for T to be a Prifer v-multiphicative sing?

If Tis a Prifer v-multiplicative ring, then Lemma 4.41 readily shovws that 22 is.
To see the converse we use the fact that an integral domain D is a Priffer
o-oultiplicative ring if and only if Dy is 2 valuetion ring for each maximal
2-ideal P of . A t-ideal is 2 union of finite v-ideals[7,2.17].1f Pis a priroe ideal
of T such that PN D = §, then T, 2 K[X] and 7 is = valuation ring. There-
fore, we show that if P is a meximal i~ideal of T such that PN D =£ 0, then
P = Q- XK[X] such that O is a2 maximal #-ideal of P. This fact and the
assumption that D is 2 Prifer v-muliipiicative ring yield the comciusion that
Tp is 2z local overring of the Bezout dowmain Dy, -+ XK[X], and is therefore 2
valuation ring.

Buppose, then, that P = @ + XK[X] is a maximal i~ideal of T, where O 5 Q.
Lemma 4.41 shows that O is a #-ideal of DL If Q is not a maximal i-ideal of B,
then there is a #-ideal of D such that 0" 2 Q. But then P’ = Q' + XK[X] is 2
£-ideal of T such that P’ D P. In sumumary we have the following resuit.

Tazorem 443. T = D 4+ XK{X] is a Priifer w-multiplicotion ring if and
only if D s.

4.5 The Group of Divisibility of T

If R is an integral domain with quotient field L, then the group of divisibiiity
Vi(R) of R is the group L*/U(R), partially ordered by R*/U(R), where
R* = R\{0} and U(R) is the group of units of R. If G and H are partielly
ordered groups, let G @, H and G @¢ A denote the lexicographic and cardinal
sum of G and H, respectively. In like manaer, let 3* G, denste the cardinal
sum of the family of partiaily ordered groups G, -

Let 8§ be the subset of T consisting of all polynomials £(X} e R such that
F(©)e UD). Then S is 2 multiplicative system 2nd T = D + ZK[X]¢x -
Moreover, S is generated by the prime elements f(X), where f(X) is irreducible
in K[X] and £(0) € U(D). By results of [10], the group divisibility of T is the
lexicogrphic sum of the group of divisibility of D and the group of divisibility
of K[X iy - That is, Vy{Ts) = VD) @, Z. Moreover, the prime elements
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satisfy the UF-property described in [10]. Therefore, the group of divisibility
of T is the cardinal sum of the subgroup genwauad by the prime elements
of § and Vg(r)(Ts)- Let us summarize:

Turorem 4.51.  The group of divisivility of T is 3% Z; Qc (VD) @, Z),
where Z, denotes a copy of Z for each irreducible f(X) i S

It follows then that T inherits many properties from D that are characterized
by the group of divisibiltity.

In particular, we couid have conciuded, without Theorem 1.1, that 7 i
GCD-domain if and only if D is 3 GCD-domain.

[y
(%3
bYY

4.6 Elemeniary Divisor Domatns

We gave the definition of EDD in the Introduction snd we shall not repeat
it here, but one well-known fact that we use in this section should be mentioned.
A Bezout domain D is EDD if z2nd only if for each triplet g, b, cc D such
(a, b, ¢) D = D, there exist p, g £ D such that { pa, pb + go) D = D.

Teeorem 4.61. T = D - XK[X] is an EDD if and only if D is EDD.

Proof. It is easily shown that T #n EDD imphies that D is EDD. The con-~
verse is touch more difficult.

Suppose D is EDD. Then D is Bezout and, therefore, T is Bezout. Conse-
quently, it is sufficient to show that any matrix [§%F Z§§?j, where (a(X), #{X),
d(X)) T = T,is equivalent {over T} to a diagonal matrix. First let us simplify the
problem by establishing the following lemma.

Lamvma 4.62. If 4 = {55 U200 is a2 X I-matrix over T, where GCD{a(X),
BX), o(X), d(X)) = 1, then A is equivalerni to a matrix [%y) L5, where a € D.
Two things to keep in mind are the foilowing basic reductions:

(1) In a Bezout domain GiF G =1[d 0] wnef*e d = GCD{a, b),
d=1pa-+gh, a=dr, and k= —ds. Simﬂarl;-, ? A =15]- Sinee
pr — gs = 1, [a, &] is equivalent to [d 07 and [§] is equivalent to [g].

(2) A matrix [§F 5] where ofX) # 0, HX) #0, 0 #£d(X)eT is
equivalent to [§%) 507 where degree & (},() < min{degree a(X), degree d(X)}-

[e

For if B(X) = by+ b A", oX)=ay+ - g, ™ where nr>m, then
[o) B[S o0/ X““m] = “‘X’ w421 where degree #'(X) << » — 1, Repeating,

we can get degree §'(X) < dp&zg ee a(X). Carrying out a similar procedure, we
can get degree &'(X) < degree d(X).

Now we proceed to prove the lemma by induction on the degree of a(X).
Suppose the lemma is true for ali such matrices where the degree of the entry
in the first row and first column has degree less than that of a{X).

By (1) above we could replace a(X) by the GCD of a(X) and «(X), the GCD
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of a{ X} and b(X), or by the GCD of 5(X) and d(X) (after interchanging columas).
If any of these have smalier degree, we use the inductive hypothesis. Thus,
we may assume that A is equivalent to [§% LD, where GCD(a(X), b(X))
and d(X) = GCD(Y(X), d(X))), 2nd both have the same degree as o X).
By (2) above, we may assume that degree 5(X) = degree a*(X) = degree a(X) =
degree 2*(X). Therefore, o{X) = aa™(X), b(X) = ba*(X) = B'd*(X), where
, b, ¥ € D. But since a(X), H(X), and d(X) are relatively prime in 7, ¢*(X) and
d*(X) are relatively prime in T 2nd hence in K[X]. But since ba*(X) = b'd*(X),
this can be true only if 2*(X) and d*(57) have degree zero. Therefore, the lemma
is proved.

We return to the proof of the theorem.

By applying the lemma, and (1) and (2) above, we see that 4 = [0 507 s
equivalent to a matriix B = [§ ¥ 4] where g, b€ D. We show that B can be
diagonalized using the fact that the matrix [¢ g@}, where go is the constant term
of g(X), can be diagonalized over D. Since (a, 5, g(X) T = 7, (a2, b, g) P = D
and there are elements p, ¢ € D such that ( pa, pb + gg,) D = P. We consider
the ideal (pa, pb + ¢g(X)) 7. Since T is a Bezout domain this ideal is principal
and is generated by A(X). There are clements 7, s D such that ] = par -
(P& -+ gg,) s, hence,

par -+ (pb + ge( X)) s = par + (pb + gg0) 5 + gs(2(X) — o)
=1 + g5(g(X) — go) = A X) 2(X),

where #(X) e T. Thus, the constant term /i, of 2(X) is 2 unit of 2. But since
A(X) divides pa € D, the degree of A(X) is zerc. Hence (B{(X)) T = T and the
theorem is proved.
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