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ABSTRACT. An integral domain R is said to be weakly factorial if every nonunit
of R is a product of primary elements. We give several conditions equivalent to
R being weakly factorial. For example, we show that the following conditions
are cquivalent: (1) R is weakly factorial; (2) every convex directed subgroup
of the group of divisibility of R is a cardinal summand; (3) if P is a prime
ideal of R minimal over a proper principal ideal (x), then P has height one
and (x)p, N R is principal; (4) R = NRy , where the intersection runs over the
height-one primes of R, is locally finite, and the t-class group of R is trivial.

Throughout this note, R will be a commutative integral domain with i1den-
tity having quotient field K. Suppose that R 1s a UFD. If S is a saturated
multiplicatively closed subset of R, then S ={Ap,--p,l\ a unitof R, n >0,

cach (p,) € Y} for some subset ¥ C x| where X is the set of height-one

prime 1deals of R. Conversely, every such subset ¥ C X (" determines a satu-
rated multiplicatively closed subset of R. If we set T = {Ap, -~ p,|4 a unit of

R, n>0,each (p;) € x — Y}, then every nonzero element r of R may be
written uniquely up to units in the form r = st where s € S and t e T . Stated
in terms of the group of divisibility G(R) of R, (S) isa cardinal summand
of G(R). In fact, (S)®.(T) = G(R). (See the next paragraph for definitions.)
Here G(R) is a cardinal sum of copies of Z, one for each height-one prime,
and (S) is the sum of the cyclic summands correspondlng to the primes from
Y . The purpose of this paper is to characterize the integral domains with this
property. We show that an integral domain R has the property that every con-
vex directed subgroup of G(R) is a cardinal summand of G(R) if and only
if every nonunit of R is a product of primary elements, that is, R is weakly
factorial.

Let R be an integral domain with quotient field K. The group of divisi-
bility of R is the group G(R) = K*/U(R), where K" is the multiplicative
group of K and U(R) is the group units of R. G(R) is partially ordered
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by xU(R) < yU(R) & x|y in R. For results on partially ordered abelian
groups and groups of divisibility, the reader is referred to [6, Chapter 3; 10].
If S is a saturated multiplicatively closed subset of R, then it is easily seen
that (S) = {slS;IU(R)M‘1 , 8, € S} is a convex directed subgroup of G(R).
Conversely, Mott [10, Theorem 2.1] has shown that every convex directed sub-
group of G(R) has this form. A subgroup H of G(R) is called a cardinal
summand of G(R) if there is a convex directed subgroup L of G(R) with
G(R) = H® L, thatis, G(R) is the algebraic direct sum of H and L and the
partial order on G(R) = H® L is given by (h,, /) < (hy, 1,) & h, < h, and
[, < I,. Mott and Schexnayder [11, Proposition 4.1] have shown that a satu-
rated multiplicatively closed subset S of R has (S) as a cardinal summand of
G(R) if and only if there is a saturated multiplicatively closed subset 7 of R
with SN 7T = U(R) such that every nonzero element r of R can be written
uniquely up to units in the form r = s¢, where s € S, t € T and each element
s of S is v-coprime to each element ¢ € T in the sense that (s, t), = R or,
equivalently, that (s)N(¢) = (st). Here v denotes the v-operation, that is, for
anideal I of R, I, =(I"")~' =[R: [R: I].

An element x € R is said to be primary if (x) is a primary ideal of R and
an integral domain R is said to be weakly factorial if every (nonzero) nonunit
of R is a finite product of primary elements. Weakly factorial domains were
introduced in [2]. Examples of weakly factorial domains include UFD’s, one-
dimensional semi-quasi-local domains, and GCD domains which are general-
1zed Krull domains. It was shown that, for R weakly factorial, R = N pex® R,,
where the intersection is locally finite. Also, a Krull domain is factorial if and
only if it is weakly factorial. Hence, a weakly factorial Noetherian domain is
factorial if and only if it is integrally closed.

For a Krull domain R, the intersection R = () pey® Rp 1s locally finite,
and R is fractorial if and only if CI/(R) = 0 where CI/(R) is the divisor
class group of R . Since the divisorial ideals form a group under the v-product
(A+xB = (AB),) if and only if R is completely integrally closed, C/(R) need not
be a group for an arbitrary integral domain. However, for any integral domain
R, there is a group C/(R) called the t-class group of R which agrees with
CI(R) when R is a Krull domain. A nonzero fractional ideal / of R is said
to be t-invertible if there is a fractional ideal B of R with (4B), = R. Here ¢
denotes the f-operation given by [, = u{(a,,...,a,),l0#(a,,...,a,) CI}.
An ideal 7 is said to be a t-ideal if I, = 1. The t-operation is an example
of a finite-character star operation. For results on star operations, the reader is
referred to [6, §§32 and 34]. For any integral domain R, the set of ‘-invertible
t-ideals forms a group under the f-product 4+ B = (AB) .- The t-class group of
R is C[(R)—the group of t-invertible t-ideals modulo the subgroup of prin-
cipal fractional ideals. For results on the t-class group, the reader 1is referred
to [4, 5]. We show that, for a domain R, R is weakly factorial if and only if
R = (\peym Rp is locally finite and Cl,(R) = 0. This result is part of the next
theorem, the main result of this paper.
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Theorem. Let R be an integral domain with quotient field K . Then the follow-
ing statements are equivalent:

(1) Every convex directed subgroup of G(R) is a cardinal summand of G(R).

(2) For each saturated multiplicatively closed subset S of R, (S) isa car-
dinal summand of G(R). :

(3) For each prime ideal P of R, (R—P) isa cardinal summand of G(R).

(4) R is weakly factorial, that is, every nonunit of R is a product of primary
elements.

(5) R=0NpcymRp where the intersection is locally finite and the natural map
G(R) — @PeXu VG(R) is surjective (and hence an order isomorphism).

(6) If P is a prime ideal of R minimal over a proper principal ideal (x),
then htP =1 and (x), N R is principal.

(7) R=\peyw Rp, where the intersection is locally finite and CIl(R) = 0.

Proof. (1) < (2). This follows from the previously mentioned result of Mott
[10, Theorem 2.1] that every convex directed subgroup of G(R) has the form
(S) for some saturated multiplicatively closed subset S of R, and conversely.
(2) = (3). Clear. (3)= (6). Let P be a prime ideal minimal over (x). Then
P is a t-ideal. Suppose that there is a prime ideal Q with 0 # Q € P. Let
S =R - Q. Then (S) is a cardinal summand of G(R). By [l1, Proposition
4.1] there is a multiplicatively closed subset 7" of R with SNT = U(R),
ST = R— {0}, and, for s€ S,and t €T, (s,1), = R. Now PNS #J,
so there exists an 5, € PN.S. Let 0#qeQ,so q=st where s €5 and
teT. Then s ¢ Q,s0 t € Q. Thus s,, 1 € P and hence R = (s,,1), C
P, = P, a contradiction. Therefore, htP = 1. (This shows that, in a weakly
factorlal domain, every prime t-ideal has height one.) It follows from [11,
Proposition 4.1], taking S = R — P, that (x), N R is principal. (6) = (4).
Let S be the multiplicatively closed subset of R consisting of all products of
primary elements and units. We first show that S is saturated. Let x € § be
a nonunit and y be a nonunit factor of x. If x = ¢q,---¢q,, where (g;) 1s

P-primary, then {P, ..., P, '} 1s the set of height-one primes containing (x).
Hence the set of helght one primes containing (y) is a subset of {P,, ..., P},
say {P,,..., P,}. Now (y)P N R is principal, say (y) NR = (‘11)~ Slnce

climRP1 =1, (q) is P -primary. Now y € (q) SOy —a1 , where 1, ¢ Pl,
but 1, € P,N---N P . Continuing in this manner, we get that y = q1 q” o
whcrc q) is P-primary and 7, is contained in no height-one prime ideal,
hence a unit. Supposc that some nonumt ae R isnotin S. Then (a)NS = ¢
since S is saturated. Hence (a) can be enlarged to a prime ideal P 2 (a)
maximal with respect to missing S . Shrinking P to a prime ideal Q minimal
over (a), we have a height-one prime ideal Q' containing no primary clements.
But this is absurd, for the ideal (a)Q N R 1is itself a principal primary ideal
contained in Q. (4) = (2). Let R be a weakly factorial integral domain
and let S be a saturated multiplicatively closed subset of R. Let x € .5 be a
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nonunit and suppose that x = ¢, ---q, where (q,) is P-primary. Let (g) be
P-primary. Then, for some s > 1, ¢ € (), so q, = rq for some r € R;
hence ¢ is a factor of x' € S. Since S is saturated, ¢ € S. Thus it is
casily seen that S = {Aq,---¢,]A € U(R), n > 0, each (g;) i1s P,-primary
where P e X' with NS # @}, Let T = {iq, ¢ A € UR), n >0,
(¢,) is P-primary where P, NS =@} . Then T is a saturated multiplicatively
closed subset of R satisfying the conditions of part (2) of [11, Proposition 4.1].
Hence by this proposition, (S) is a cardinal summand of G(R). (4) = (5).
By [2, Corollary 14], R =(1,_,n R, and this intersection is locally finite. Let
0 # € R, be a nonunit where P € X', Then ¢ = qu where (q) is P-
primary and u is a unit of R, Thus qU(R) — tU(R,) . It easily follows that
the natural map G(R 69 pexm G(Rp) is surjective and hence is an order
isomorphism. (5) = (4) Let O ;é r € R be a nonunit. Let P, ..., P be the
height-one prime ideals containing (r). Now, since the natural map G(R) —
Dpexm G(R,) is surjective, foreach i =1, ..., n, there exists a k, € K with
kU(R,)=rU(R,) and k,U(R,) = 1U(R,) for each P e X"V —{P}. Note
that each k, € ﬂ;)ex“’ R, = R. Morecover, since P, is the only height-one
prime ideal containing (k,), (k;) =\, (k,Rp) = kiRP[ N R is P-primary.
Now rU(R,) = k,---k,U(R,) for each P € X" so r= uk, -k, , where
u 1s a unit of R. (4) = (7). By [2, Corollary 14], R = (N, yn Rp, where
the intersection is locally finite. Let 4 be a t-invertible ideal of R. We must
show that A4, is principal. We may assume that A is an integral ideal. We
have already observed that every maximal -ideal of R has height one. Hence,
by a result of Griffin [7, Proposition 4], 4, is principal for each P € X (H

Moreover, since the intersection is locally finite, 4, = R, except, say, for
P,...,P € x"' . But at P, AP' = qiRP/, where (g,) is P-primary. So
A C mi)"i NR = (q;) and hence 4 C (q,)N---N(q,) = (¢, 4q,) . Thus
A = q1 e q, A" where A’ is contained in no height-one prime ideals. Hence
A = R. So A (‘11 an/)( = (ql ani)l = (Q] "‘q”)f = (ql ) "q”) is
prmupdl (7) : (4) Let 0 # x € R be a nonunit. Let P ,..., P, be
the height-one prime ideals containing (x). Let Q, = (x),,l NR,so (x) =
Q,N---NQ,, where Q, 1s P-primary. Now x‘"'Ql ---Q, s an ideal of R
and x“'Ql -+ Q@ R, = R, for each height-one prime ideal of R. Hence,
by [1, Theorem 1], ()c"lQl ++Q, )" = R where x is the finite character star
operation given by 4" = (peym AR, . Since # has finite character, R =
x'Q Q) S (xT'O0,), SR, s0 (x Q-+ Q,), = R. Thus cach Q,
is t-invertible and hence Q,, = (g,) forsome ¢, € R. Also, (x) = Q- Q) =
(Q, Q) =U4g))-(q, )) (q> -(q,) - Now (q,) 2 Q, and hence (gq,), =
R, except possibly at P: So Q. = (x)p ﬂR—(q)PﬂR 4R, N
ﬂPGX (P} 9. Rp) = (q;). Hence (g,) 18 P- prlmary, SO X 1s a product of
primary elements. O
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Corollary 1. Let R be a Noetherian integral domain. Then R is weakly factorial
if and only if every grade-one prime ideal has height one and CI(R) =0.

Proof. (=). A grade-one prime ideal is contained in a maximal r-ideal and
hence has height one. By the previous theorem, C/(R) = 0. (<=). If every
grade-one prime ideal has height one, R =, 0 Rp, where the intersection
is locally finite [8, Theorem 53]. By the previous theorem, R is weakly facto-
rial. 0O

In the spirit of Mott [9], we use the Theorem and the Krull-Kaplansky-
Jaffard-Ohn Theorem to obtain a result of A. Bigard (see, for example, [3,
Theoreme 14.4.3, pp. 290-291]) concerning lattice ordered groups.

Corollary 2 (A. Bigard). 4 lattice ordered abelian group G is a cardinal sum of
Archimedian totally ordered groups if and only if every convex directed subgroup
of G is a cardinal summand of G .

Proof. Let G be a lattice ordered abelian group. By the Krull-Kaplansky-
Jaffard—Ohm Theorem ([6, Theorem 18.6] or [9, Theorem 2.1]), G is order
isomorphic to the group of divisibility of a Bézout domain R. By the Theorem,
G(R), and hence G, has the property that every convex directed subgroup 1s a
cardinal summand if and only if R is weakly factorial. But by [2, Theorem 21]a
Bézout domain R is weakly factorial if and only if G(R) is order isomorphic to
a cardinal sum of rank one (equivalently, Archimedian) totally ordered abelian
groups. O '

As previously stated, examples of weakly factorial domains include UFD’s
and one-dimensional semi-quasi-local domains. Actually, it is easily seen that
a one-dimensional domain R is weakly factorial if and only if R is Laskerian
(i.e., every ideal has a primary decomposition) and Pic(R) = 0. Also, an
integral domain that is both a GCD-domain and a generalized Krull domain is
weakly factorial. (An integral domain R is called a generalized Krull domain
if R =nV,, where each V, is an essential rank one valuation overring of R
and the intersection is locally finite.) In fact, according to [2, Theorem 20}, the
following conditions on an integral domain R are equivalent: (1) R isa weakly
factorial GCD-domain; (2) R is weakly factorial generalized Krull domain; and
(3) R is a generalized Krull domain and a GCD-domain. To this list may be
added (4) R is weakly factorial and, for each height-one prime ideal P of R
(equivalently, maximal t-ideal £ of R), Rp is a valuation domain and (5) R
is weakly factorial and if p and g are non v-coprime primary elements of R,
then plg or glp. (Use [2, Theorem 18] and its proof). We next give another
source of weakly factorial domains.

Example. Let K C L be fields. Then R =K + XL[X]= {f(X) € L[X]|f(0) €
K} is an atomic weakly factorial domain. It is easily scen that every nonzero
nonunit of R may be written uniquely in one of the following two forms:
p,-'p, or p,---p,(aX"), where p,,....p, are principal primes of R and
aX" (r>1,a€ L) is primary.



912 D. D. ANDERSON AND MUHAMMAD ZAFRULLAH

It is well known [8, Theorem 5] that an integral domain R is a UFD if and
only if every nonzero prime ideal contains a nonzero principal prime ideal. The
proof is based on the fact that the set of principal primes forms a saturated mul-
tiplicatively closed set. A similar result for weakly factorial domains involving
primary elements is not true.

For let R be a Dedekind domain that is not a PID, but has torsion class
group. Since some power of each prime ideal is principal, each prime ideal
contains a principal primary ideal, but R is not weakly factorial. In this case,
the multiplicatively closed set of all products of primary elements is not sat-
urated. As a concrete example, suppose that R has nonprincipal maximal
ideals M and N with M> = (x), N> = (v), and MN = (z). Then (z%)
= (MN)2 = M’N* = (xy). So z? is a product of primary elements, but z it-
self is not. Note that x, y, and z are all irreducible. Thus a single irreducible
element of a Krull domain may be primary without being prime. However, a
Krull domain is a UFD if and only if each irreducible element is primary.

However, for any integral domain R and any nonzero prime ideal P of R,
it is easily proved that S, = {Ap,---p,[A€ U(R), n 20, (p;) is P-primary} is
a saturated multiplicatively closed subset of R. Let .S be the multiplicatively
closed subset of R consisting of all products of primary elements. Then, in
G(R), (S) = @(Sp) where the direct sum runs over all nonzero primes P
of R with P containing a P-primary element. Even though each (S,) is a
convex directed subgroup of G(R), &(S,) need not be convex, in fact, &(S;)
is convex if and only if S is saturated. Returning to the case where R 1is
a Dedekind domain with torsion class group but is not a PID, we see that
each (S,) is order isomorphic to (Z, +). Itis interesting to note that in
this case we have @, (Sp) & G(R) & B peyn G(Rp), with D pe i (Sp)
being a directed lattice ordered subgroup of G(R) and G(R) being a directed
lattice ordered subgroup of P pex G(Rp). Moreover, all three groups are

(algebraically) isomorphic to a direct sum of |X(”| copies of (Z, +).
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